JPS60263470A - Manufacture of semiconductor nonvolatile memory - Google Patents

Manufacture of semiconductor nonvolatile memory

Info

Publication number
JPS60263470A
JPS60263470A JP12047984A JP12047984A JPS60263470A JP S60263470 A JPS60263470 A JP S60263470A JP 12047984 A JP12047984 A JP 12047984A JP 12047984 A JP12047984 A JP 12047984A JP S60263470 A JPS60263470 A JP S60263470A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
floating gate
forming
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12047984A
Other languages
Japanese (ja)
Inventor
Chiharu Ueda
植田 千春
Yoshikazu Kojima
芳和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP12047984A priority Critical patent/JPS60263470A/en
Publication of JPS60263470A publication Critical patent/JPS60263470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To ensure highly efficient implantation of ions into a small cell area by a method wherein a floating gate electrode is built in an ion-implanted layer of the second conductivity type, a selective gate electrode is formed in a second gate insulating film, and a drain region and source region of the second conductivity type are formed on the surface of semiconductor to sandwich the floating gate electrode and selective gate electrode. CONSTITUTION:An n type impurity is implanted by the ion implantation method into the surface of a p type substrate for the formation of an n type inversion region 2. A floating gate electrode 4 is built in the n type inversion region 2 through the intermediary of a first gate insulating film 3. With the floating gate electrode 4 acting as a portion of the master, a p type impurity is implanted by the ion implantation method into a portion of the n type inversion region 2, for the formation of a p type region 5. Next, a second gate insulating film 7 is formed on the p type region 5. An insulating film 6 is next formed on the top and sides of the floating gate electrode 4. A process follows wherein a selective gate electrode 8 is formed with an end thereof in contact with the insulating film 6 situated on the floating gate electrode 4. A drain region 9 and source region 10 are formed by implanting an n type impurity so that they may sandwich the floating gate electrode 4 and selective gate electrode 8.

Description

【発明の詳細な説明】 本発明は、MI8構造を有する浮遊ゲート型半導体不揮
発性メモリの製造方法に関する。さらに詳細には、低い
電圧でかつ高い注入効率で電荷の浮遊ゲート電極への書
き込みを可能にする半導体不揮発性メモリの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a floating gate type semiconductor nonvolatile memory having an MI8 structure. More specifically, the present invention relates to a method of manufacturing a semiconductor nonvolatile memory that enables writing of charges into a floating gate electrode at low voltage and with high injection efficiency.

まず、低プログラムの電圧のチャネル注入浮遊ゲート型
半導体不揮発性メモリ(以下、PAOMO8メモリと呼
ぶ)の構造、動作及び製造方法について説明する。
First, the structure, operation, and manufacturing method of a low program voltage channel injection floating gate semiconductor nonvolatile memory (hereinafter referred to as PAOMO8 memory) will be described.

第1図にPAOMOSメモリの断面図を示す。以下、P
AOMOSメモリがNチャネル型の場合について説明す
る。
FIG. 1 shows a cross-sectional view of a PAOMOS memory. Below, P
A case where the AOMOS memory is an N-channel type will be explained.

P型半導体基板1の表面KN 導゛1型のソース領域1
0と、ドレイン領域9が形成されており、ドレイン領域
9とソース領域10との間にある第1のチャネル領域L
1上から、ドレイン領域6の上にかけてゲート絶縁膜3
を介して浮遊ゲート電極4が形成されている。また第2
のチャネル領域L2上から浮遊ゲート電極4の上にかけ
ては、ゲート絶縁膜7と層間の絶縁膜6を介して選択ゲ
ート8が形成されている。
Surface KN of P-type semiconductor substrate 1 Type 1 source region 1
0 and a first channel region L in which a drain region 9 is formed and located between the drain region 9 and the source region 10.
A gate insulating film 3 is formed from above 1 to above drain region 6.
A floating gate electrode 4 is formed through the gate electrode. Also the second
A selection gate 8 is formed from above the channel region L2 to above the floating gate electrode 4 via a gate insulating film 7 and an interlayer insulating film 6.

次に、浮遊ゲート電極4への電荷の書き込み動作を説明
する。選択ゲート電極8に加えられる電位により、第2
のチャネル領域L2の表面ポテンシャルはほぼソース領
域ioI/c対応するレベルに制御する事ができる。
Next, the operation of writing charges into the floating gate electrode 4 will be explained. The potential applied to the selection gate electrode 8 causes the second
The surface potential of the channel region L2 can be controlled to a level approximately corresponding to the source region ioI/c.

第1のチャネル領域L1の表面ポテンシャルは、ドレイ
ン領域9の電位及び浮遊ゲート電極4の電荷量によって
制御される。従って、ドレイン領域9にプログラム4電
圧を印加する事によ)、第2のチャネル領域L2上のA
点付近に、プログラム電圧に対応する大きなポテンシャ
ルギャップが形成され、ソース領域10から流出するチ
ャネル電子をそのポテンシャルギャップにより電界加速
する事によって、チャネル電子の一部を浮遊ゲート電極
4へ注入して書き込みが実行される。この場合、浮遊ゲ
ート電極4はゲート絶縁膜3を介してドレイン領域9と
で形成される容量結合により電位が与えられる為、浮遊
ゲート電極4への電荷の注入の効率はこの結合容量O1
の全体の容量に対する割合 01 ・・・・・・・・・(a) 01+ 02 + 03 5− の値が大きい方が有利となる。
The surface potential of the first channel region L1 is controlled by the potential of the drain region 9 and the amount of charge of the floating gate electrode 4. Therefore, by applying the program voltage 4 to the drain region 9), the A
A large potential gap corresponding to the programming voltage is formed near the point, and by accelerating the channel electrons flowing out from the source region 10 by the electric field, some of the channel electrons are injected into the floating gate electrode 4 and written. is executed. In this case, since the floating gate electrode 4 is given a potential by the capacitive coupling formed with the drain region 9 via the gate insulating film 3, the efficiency of charge injection into the floating gate electrode 4 is this coupling capacitance O1.
It is advantageous to have a larger value of the ratio 01 (a) 01+ 02 + 03 5- to the total capacity.

このメモリの製造方法では、上記結合容量CIを形成す
る為に、ドレイン領域?−を形成後、ゲート絶縁膜3を
介して浮遊ゲート電極4を形成する工程を採用していた
。この製造方法では、浮遊ゲート電極4を形成する場合
、第1のチャネル領域π1の寸法はマスクずれに対し充
分考慮した長さにする必要があった。従って、02が大
きくなり前記(a)式の値は小さくなる。これを補う為
には01を大きくする必要があり、浮遊ゲート電極4と
ドレイン領域9の+i積の増大が伴うという欠点があっ
た。
In this memory manufacturing method, in order to form the above-mentioned coupling capacitance CI, the drain region? A process of forming a floating gate electrode 4 with a gate insulating film 3 interposed therebetween is adopted. In this manufacturing method, when forming the floating gate electrode 4, the dimension of the first channel region π1 needs to be set to a length that takes mask misalignment into full consideration. Therefore, 02 becomes large and the value of the above equation (a) becomes small. In order to compensate for this, it is necessary to increase 01, which has the drawback of increasing the +i product between the floating gate electrode 4 and the drain region 9.

本発明は、この様な欠点を除去する為になされたもので
あシ、小さいセル面積で高い注入効率が得られる事を可
能にした半導体不揮発性メモリの製造方法を与えるもの
である。以下本発明の第1の実施例を、第2図(a)〜
(f)を用いて詳細に説明する。
The present invention has been made to eliminate these drawbacks, and provides a method for manufacturing a semiconductor nonvolatile memory that makes it possible to obtain high injection efficiency with a small cell area. The first embodiment of the present invention will be described below in Figures 2(a) to 2(a).
This will be explained in detail using (f).

まず第2図(a)の如く、P型基板1の表面KN型不純
物をイオン注入によシ注入しN型反転領域26− を形成する。次に第2図(b)に示す様にN型反転領域
2の上に、第1のゲート絶縁膜3を介して浮遊ゲート電
極4を形成する。浮遊ゲート電極4をマスクの一部とし
て、第2図(0)の様にN型反転領域2の一部KP型不
純物をイオン注入により注入し、P型領域5を形成する
。次に、第2図(d)の様KP型領領域の上に第2のゲ
ート絶縁膜7を形成し、ま友、浮遊ゲート電極4の上及
び側面には絶縁膜6を形成する。次に第2図(θ)の如
く、一端が浮遊ゲート電極4上の絶縁膜6Kかかる様に
選択ゲート電極8を形成する。そして第2図(f)の様
に、浮遊ゲート電極4と選択ゲート電極8とが間に入る
様に、ドレイン領域9とソース領域10をN型不純物に
よりそれぞれ形成する。
First, as shown in FIG. 2(a), KN type impurities are implanted into the surface of the P type substrate 1 by ion implantation to form an N type inversion region 26-. Next, as shown in FIG. 2(b), a floating gate electrode 4 is formed on the N-type inversion region 2 with the first gate insulating film 3 interposed therebetween. Using the floating gate electrode 4 as part of a mask, a part of the N-type inversion region 2 is ion-implanted with KP-type impurities to form a P-type region 5, as shown in FIG. 2(0). Next, as shown in FIG. 2(d), a second gate insulating film 7 is formed on the KP type region, and an insulating film 6 is formed on the top and side surfaces of the floating gate electrode 4. Next, as shown in FIG. 2 (θ), the selection gate electrode 8 is formed so that one end thereof covers the insulating film 6K on the floating gate electrode 4. Then, as shown in FIG. 2(f), a drain region 9 and a source region 10 are formed with N-type impurities so that the floating gate electrode 4 and the selection gate electrode 8 are interposed therebetween.

この様にして製造されたPAOMO8メモリーの断面図
を第5図に示す。P型領域5は、浮遊ゲート電極4に対
して自己整合的に形成されるので、i □1゜アヤ第2
゜1.ゆ、ア。よ5゜よヵ。
A cross-sectional view of the PAOMO8 memory manufactured in this manner is shown in FIG. Since the P-type region 5 is formed in a self-aligned manner with respect to the floating gate electrode 4, i □1°
゜1. Yu, a. Yo 5° Yoka.

の拡がりにより制御されることになる。ここでP型領域
5の横方向の拡がりは、通常熱工程により制御すること
ができる。これは、浮遊ゲート電極4を形成するときの
マスクずれに対して、全く影響を受けない構造を得る事
ができる為、第1のチャネル領域L1を充分に小さい長
さに作り込む事ができ、浮遊ゲート電極4と第1のチャ
ネル領域51間の寄生容量02は充分小さくする事が可
能である。前記(a)式((おいて、02が小さくなれ
ば前記(a)式の値を大きく保ったまま、01を小さく
する事ができる。従って、浮遊ゲート電極4の面積を縮
めても浮遊ゲート電極4の面積を縮めても浮遊ゲート電
極4vζ充分に高い電位を与えることができ、高い注入
効率が得られる。
will be controlled by the spread of Here, the lateral expansion of the P-type region 5 can be generally controlled by a thermal process. This is because it is possible to obtain a structure that is completely unaffected by mask displacement when forming the floating gate electrode 4, and the first channel region L1 can be made to have a sufficiently small length. The parasitic capacitance 02 between the floating gate electrode 4 and the first channel region 51 can be made sufficiently small. If 02 becomes smaller, 01 can be made smaller while keeping the value of equation (a) large. Therefore, even if the area of the floating gate electrode 4 is reduced, the floating gate Even if the area of the electrode 4 is reduced, a sufficiently high potential can be applied to the floating gate electrode 4vζ, and high injection efficiency can be obtained.

次に、本発明第2の実施例を第5図(a)〜(f)に示
しこれを説明する。第3図(a)の如く、P型基板1の
表面KN型不純物をイオン注入によシ注入し、N型反転
領域2を形成し、第3図(b)の様に、N型反転領域2
の上に第1のゲート絶縁膜3を介して浮遊ゲート電極4
を形成する。次に第3図(C)の様に、浮遊ゲート電極
4で覆われていない。N型反転領域2の上に第2のゲー
ト絶縁膜7を形成し、浮遊ゲート電極4の上及び側面に
は絶縁膜6を形成する。
Next, a second embodiment of the present invention is shown in FIGS. 5(a) to 5(f) and will be described. As shown in FIG. 3(a), a KN type impurity is implanted into the surface of the P type substrate 1 by ion implantation to form an N type inversion region 2, and as shown in FIG. 3(b), an N type inversion region is formed. 2
A floating gate electrode 4 is placed on top of the first gate insulating film 3 via the first gate insulating film 3.
form. Next, as shown in FIG. 3(C), it is not covered with the floating gate electrode 4. A second gate insulating film 7 is formed on the N-type inversion region 2, and an insulating film 6 is formed on the top and side surfaces of the floating gate electrode 4.

次に、第3図(d)の如く、浮遊ゲート電極上の絶縁膜
6をマスクの一部として、N型反転領域2の一部にP型
不純物をイオン注入により注入し、P型領域5を形成す
る。次に第3図(θ)の様に、一端が浮遊ゲート電極4
の上の絶縁膜6にかかる様に選択ゲート電極8を形成し
、そして、第3図(f)の様に、浮遊ゲート電極4と選
択ゲート電極8とが間に入る様にドレイン領域9とソー
ス領域10をN型不純物によりそれぞれ形成する。
Next, as shown in FIG. 3(d), using the insulating film 6 on the floating gate electrode as part of a mask, a P-type impurity is ion-implanted into a part of the N-type inversion region 2. form. Next, as shown in FIG. 3 (θ), one end is connected to the floating gate electrode 4.
A selection gate electrode 8 is formed so as to span the insulating film 6 on top of the insulating film 6, and as shown in FIG. Source regions 10 are formed using N-type impurities.

また、本発明第3の実施例を第4図(a)〜(f) K
示し、これを説明する。第4図(a)の如く、P型基板
1の表面にN型不純物をイオン注入により注入し、N型
反転領域2を形成し、第4図(b)の様に、N型反転領
域2の上に第1のゲート絶縁膜3を介して浮遊ゲート電
極4を形成する。第4図(C)の様に、浮遊ゲート電極
4で覆われていないN型反転領域2の上に第2のゲート
絶縁膜7を形成し、浮遊ゲート電極4の上及び側面には
絶縁膜6を形成し、 9− 一端が浮遊ゲート電極4の上の絶縁膜6Kかかる様に選
択電極8を第4図((1)の如く形成する。次に第4図
(e)の様に、絶縁膜6の上の選択ゲート電極8をマス
クの一部として、選択ゲート電極8をマスクの一部とし
て選択ゲート電極8の上よシ、N型反転領域2の一部[
P型不純物をイオン注入法により注入し、P型領域5を
形成する。そして第4図(f)の様に、浮遊ゲート電極
4と選択ゲート電極8とが間に入る様にドレイン領域1
0をN型不純物によりそれぞれ形成する。
In addition, the third embodiment of the present invention is shown in FIGS. 4(a) to (f) K.
and explain this. As shown in FIG. 4(a), an N-type impurity is implanted into the surface of the P-type substrate 1 by ion implantation to form an N-type inversion region 2, and as shown in FIG. 4(b), an N-type inversion region 2 is formed. A floating gate electrode 4 is formed on the first gate insulating film 3 with a first gate insulating film 3 interposed therebetween. As shown in FIG. 4(C), a second gate insulating film 7 is formed on the N-type inversion region 2 that is not covered with the floating gate electrode 4, and an insulating film is formed on the top and side surfaces of the floating gate electrode 4. 9- Form the selection electrode 8 as shown in FIG. 4 ((1)) so that one end covers the insulating film 6K on the floating gate electrode 4. Next, as shown in FIG. 4(e), Using the selection gate electrode 8 on the insulating film 6 as part of a mask, using the selection gate electrode 8 as part of the mask, a part of the N-type inversion region 2 [
P-type impurities are implanted by ion implantation to form P-type regions 5. Then, as shown in FIG. 4(f), the drain region 1 is placed so that the floating gate electrode 4 and the selection gate electrode 8 are in between.
0 are formed by N-type impurities.

第2及び第3の実施例と共に第1の実施例に対し、P型
領域5の位置が微妙に変るが−1の部分については、P
型領域5の横方向の拡が9で制御できる為、効果は変り
ない。
Although the position of the P-type region 5 is slightly different from the first embodiment as well as the second and third embodiments, for the -1 part, the P type region 5 is slightly different from the first embodiment.
Since the lateral expansion of the mold region 5 can be controlled by 9, the effect remains the same.

また、第1.第2.及び第3の実施例共に、ドレイン領
域及びソース領域の形成はこれらの工程中、どの順で行
っても本発明による効果は何らそこなわれるものでない
事は明らかである。
Also, 1st. Second. It is clear that in both the third embodiment and the third embodiment, the effects of the present invention will not be impaired in any way even if the drain region and the source region are formed in any order during these steps.

以上述べた様に、本発明によれば不揮発性メモリの欠点
であった大きな浮遊ゲート面積を必要と−10= せずに、小さなメモリーセル面積で高い注入効率の得ら
れる不揮発性メモリーセルを製造する事ができる。
As described above, according to the present invention, a nonvolatile memory cell can be manufactured that can obtain high injection efficiency with a small memory cell area without requiring a large floating gate area, which is a disadvantage of nonvolatile memories. I can do that.

本発明の実施例は、P型基板上に設けたNチャネル型の
不揮発性メモリーに対して示したが、N基板中のPウェ
ル上、あるいは絶縁膜上のP8!!半導体層上に作られ
た不揮発性メモリーに本発明の製造方法を適用できる事
は言うまでもない。またN基板上、Nウェルあるいは絶
縁膜上のN型半導体層上につくられたPチャネル型の不
揮発性メモリーについても同様な製造方法を適用できる
The embodiments of the present invention have been shown for an N-channel type nonvolatile memory provided on a P-type substrate, but P8! ! It goes without saying that the manufacturing method of the present invention can be applied to nonvolatile memories made on semiconductor layers. Further, a similar manufacturing method can be applied to a P-channel type nonvolatile memory fabricated on an N-type semiconductor layer on an N-substrate, N-well, or insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半導体不揮発性メモリーセルの断面図、第2図
(a)〜(f)は、本発明の第1の実施例の製造方法の
工程順を示し比断面図、第6図(a)〜(f)は、本発
明の第2の実施例の製造方法の工程順を示したl 断つ
II、!41体〜(1)□8つ、。第6゜□イ2.。 製造方法の工程順を示した断面図、第5図は本発明によ
り、造された半導体不揮発性メモリーセルの断面図であ
る。 1・・・P型半導体基板 2・・・N型反転ノー3・・
・第1のゲート絶縁膜 4・・・浮遊ゲート電極 5・・・P型頭域6・・・絶
縁膜 7・・・第2のゲート絶縁膜8・・・選択ゲート
電極 9・・・ドレイン領域10・・・ソース領域 以 上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上 務
FIG. 1 is a cross-sectional view of a semiconductor nonvolatile memory cell, FIGS. 2(a) to (f) are ratio cross-sectional views showing the order of steps in the manufacturing method of the first embodiment of the present invention, and FIG. ) to (f) show the process order of the manufacturing method of the second embodiment of the present invention. 41 bodies ~ (1) □ 8 pieces. 6゜□a2. . FIG. 5 is a cross-sectional view showing the process order of the manufacturing method, and is a cross-sectional view of a semiconductor nonvolatile memory cell manufactured according to the present invention. 1... P-type semiconductor substrate 2... N-type inverted no. 3...
・First gate insulating film 4...Floating gate electrode 5...P-type head region 6...Insulating film 7...Second gate insulating film 8...Selection gate electrode 9...Drain Area 10...Source area and above Applicant: Seiko Electronic Industries Co., Ltd. Agent Patent Attorney Mogami

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも、第1導電型の半導体基板表面に第1
導電型と異なる第2導電型のイオン注入層を形成する工
程と、前記第2導電型のイオン注入層上に、第1の絶縁
膜を介して浮遊ゲート電極を形成する工程と、前記浮遊
ゲート電極をマスクの一部として、!@1導電型のイオ
ン注入層を形成する工程と、前記浮遊ゲート電極の上及
び側面に絶縁膜を形成する工程と、前記第1導電型のイ
オン注入層上に第2のゲート絶縁膜を形成する工程と、
一端が前記浮遊ゲート電極上の前記絶縁膜にかかる様に
前記第2のゲート絶縁膜上に選択ゲート電極を形成する
工程と、前記浮遊ゲート電極と、前記選択ゲートとを間
にはさむ様に前記半導体表面に第2導電型のドレイン領
域及びソース領域を形成する工程とからなる半導体不揮
発性メモリの製造方法。
(1) At least a first
a step of forming an ion implantation layer of a second conductivity type different from the conductivity type; a step of forming a floating gate electrode on the ion implantation layer of the second conductivity type via a first insulating film; Electrodes as part of the mask! forming an ion implantation layer of @1 conductivity type, forming an insulating film on top and side surfaces of the floating gate electrode, and forming a second gate insulating film on the ion implantation layer of the first conductivity type. The process of
forming a selection gate electrode on the second gate insulating film so that one end thereof covers the insulating film on the floating gate electrode; A method for manufacturing a semiconductor nonvolatile memory, comprising the step of forming a second conductivity type drain region and source region on a semiconductor surface.
(2) 少なくとも第1導電型の半導体基板表面に第1
導電型と異なる第2導電型のイオン注入層を形成する工
程と、前記第2導電型のイオン注入層上に第1のゲート
絶縁膜を介して浮遊ゲート電極を形成する工程と、前記
浮遊ゲート電極の上及び側面に絶縁膜を形成する工程と
、前記第2導電型のイオン注入層に第2のゲート絶縁膜
を形成する工程と、前記浮遊ゲート電極の上及び側面の
前記絶縁膜をマスクの一部として、第2のゲート絶縁膜
の下に第1導電型のイオン注入層を形成する工程と、一
端が前記浮遊ゲート電極上の前記絶縁膜にかかる様に前
記第2のゲート絶縁膜上に選択ゲート電極を形成する工
程と、前記浮遊ゲート電極と前記選択ゲートとを間には
さむ様に、前記半導体基板表面に第2導電型のドレイン
領域及びソース領域を形成する工程とからなる半導体不
揮発性メモリの製造方法。
(2) At least a first conductive layer is formed on the surface of the semiconductor substrate of the first conductivity type.
a step of forming an ion implantation layer of a second conductivity type different from the conductivity type; a step of forming a floating gate electrode on the ion implantation layer of the second conductivity type via a first gate insulating film; forming an insulating film on the top and side surfaces of the electrode; forming a second gate insulating film on the second conductivity type ion implantation layer; and masking the insulating film on the top and side surfaces of the floating gate electrode. forming an ion-implanted layer of the first conductivity type under the second gate insulating film; a step of forming a selection gate electrode thereon; and a step of forming a drain region and a source region of a second conductivity type on the surface of the semiconductor substrate so as to sandwich the floating gate electrode and the selection gate. A method of manufacturing non-volatile memory.
(3)少なくとも、第1導電型の半導体基板表面に第1
導電型と異なる第2導電型のイオン注入層を形成する工
程と、前記第2導電型のイオン注入層上に、第1のゲー
ト絶縁膜を介して浮遊ゲート電極を形成する工程と、前
記浮遊ゲート電極の上及び側面に絶縁膜を形成する工程
と、一端が前記浮遊ゲート電極上の前記絶縁膜にかかる
様に前記第2導電型のイオン注入層上に第2のゲート絶
縁膜を介して選択ゲート電極を形成する工程と、前記浮
遊ゲート電極上及び側面の前記絶縁膜をマスクの一部と
して、前記選択ゲート電極を介して、前記選択ゲートの
下に第1導電型のイオン注入層を形成する工程と、前記
浮遊ゲートと、前記選択ゲートとを間にはさむ様に前記
半導体基板表面に第2導電型のドレイン領域及びソース
領域を形成する工程とからなる半導体不揮発性メモリの
製造方法。
(3) At least a first conductive layer on the surface of the first conductivity type semiconductor substrate.
a step of forming an ion implantation layer of a second conductivity type different from the conductivity type; a step of forming a floating gate electrode on the ion implantation layer of the second conductivity type via a first gate insulating film; forming an insulating film on top and side surfaces of the gate electrode; and forming a second gate insulating film on the second conductivity type ion implantation layer so that one end thereof covers the insulating film on the floating gate electrode. forming a selection gate electrode, and using the insulating film on the floating gate electrode and the side surfaces as part of a mask, forming an ion implantation layer of a first conductivity type under the selection gate via the selection gate electrode; A method for manufacturing a semiconductor nonvolatile memory, comprising the steps of: forming a drain region and a source region of a second conductivity type on the surface of the semiconductor substrate so as to sandwich the floating gate and the selection gate therebetween.
JP12047984A 1984-06-12 1984-06-12 Manufacture of semiconductor nonvolatile memory Pending JPS60263470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12047984A JPS60263470A (en) 1984-06-12 1984-06-12 Manufacture of semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12047984A JPS60263470A (en) 1984-06-12 1984-06-12 Manufacture of semiconductor nonvolatile memory

Publications (1)

Publication Number Publication Date
JPS60263470A true JPS60263470A (en) 1985-12-26

Family

ID=14787189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12047984A Pending JPS60263470A (en) 1984-06-12 1984-06-12 Manufacture of semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JPS60263470A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776878A (en) * 1980-10-31 1982-05-14 Fujitsu Ltd Semiconductor memory device
JPS59111370A (en) * 1982-12-16 1984-06-27 Seiko Instr & Electronics Ltd Nonvolatile semiconductor memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776878A (en) * 1980-10-31 1982-05-14 Fujitsu Ltd Semiconductor memory device
JPS59111370A (en) * 1982-12-16 1984-06-27 Seiko Instr & Electronics Ltd Nonvolatile semiconductor memory

Similar Documents

Publication Publication Date Title
US6627928B2 (en) Method of manufacturing an integrated circuit, for integrating an electrically programmable, non-volatile memory and high-performance logic circuitry in the same semiconductor chip
US5596213A (en) Shallow trench source EPROM cell
KR940010930B1 (en) Manufacturing method of semiconductor
US4822750A (en) MOS floating gate memory cell containing tunneling diffusion region in contact with drain and extending under edges of field oxide
US6232182B1 (en) Non-volatile semiconductor memory device including memory transistor with a composite gate structure and method of manufacturing the same
US5231299A (en) Structure and fabrication method for EEPROM memory cell with selective channel implants
JP3124101B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
KR930011232A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
JPH03222471A (en) Semiconductor integrated circuit device and its manufacture
JP2006019373A5 (en)
US6417044B1 (en) Non-volatile memory and memory of manufacturing the same
KR960036093A (en) Flash Y pyrom cell and manufacturing method thereof
US6355523B1 (en) Manufacturing process for making single polysilicon level flash EEPROM cell
JPH11330280A (en) Manufacture of flash memory cell structure by erasing/ writing channel and its operation method
US5149664A (en) Self-aligning ion-implantation method for semiconductor device having multi-gate type MOS transistor structure
JPS60263470A (en) Manufacture of semiconductor nonvolatile memory
JPS6329979A (en) Semiconductor memory device
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0147905B2 (en)
JPH06151782A (en) Non-volatile semiconductor memory
KR100277900B1 (en) Nonvolatile Memory Cells and Manufacturing Method Thereof
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory
JPH09237846A (en) Semiconductor device, nonvolatile semiconductor memory device and its manufacture
JP3335876B2 (en) Semiconductor device manufacturing method and semiconductor device
KR920009374B1 (en) Method of fabricating a semiconductor device having multi-gate type transistors