JPS60263357A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS60263357A
JPS60263357A JP11963584A JP11963584A JPS60263357A JP S60263357 A JPS60263357 A JP S60263357A JP 11963584 A JP11963584 A JP 11963584A JP 11963584 A JP11963584 A JP 11963584A JP S60263357 A JPS60263357 A JP S60263357A
Authority
JP
Japan
Prior art keywords
layer
recording medium
magnetic
magnetic layer
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11963584A
Other languages
Japanese (ja)
Other versions
JPH0664762B2 (en
Inventor
Hajime Machida
元 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59119635A priority Critical patent/JPH0664762B2/en
Publication of JPS60263357A publication Critical patent/JPS60263357A/en
Publication of JPH0664762B2 publication Critical patent/JPH0664762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Compounds Of Iron (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a photomagnetic recording medium which is free from deterioration due to the aging or heat and excels in the sensitivity, etc., by holding a metallic oxide magnetic layer of a hexagonal system or spinel system having a specific composition between light transmissive dielectric layers having absolute diffractive indexes higher than a specific level and setting them on the surface of a reflecting layer formed on a heat-resistant substrate. CONSTITUTION:A metallic oxide magnetic layer of a hexagonal system shown by an equation I (Me: >=1 kind among Ba, Pb, and Sr; M I : >=1 kind among Ga, Al, Mn and Cr; MII: >=1 kind among 38 elements including Sc, Ta, etc.; m and n: ion-valent numbers of M I and MII; x and y: substitution element numbers of M I and MII; 5<=A<=6, 0<x<=1.0, 0<y<=0.5) or a metallic oxide magnetic layer 3 of a spinel system shown by an equation II (M: >=1 kind among 22 elements including Mn, Al, Cr, etc.; n: ion-valent number of M; 0<x<=0.8, 0.2<y <1.0) is held between light transmissive dielectric layers 5 and 5' having high diffractive indexes containing CeF3 of >=1.7 absolute diffractive index and then put on a reflecting layer 2 formed on a heat-resistant substrate 1. Then a transparent protection layer 4 is formed on the layer 5. Thus a recording medium is obtained with use of a semiconductor laser.

Description

【発明の詳細な説明】 技術分野 本発明は半導体レーザー光によって記録、再生するだめ
の光磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a magneto-optical recording medium for recording and reproducing information using semiconductor laser light.

従来技術 近年、半導体レーザー光により磁気記録及び再生を行な
う光磁気記録媒体が高密度記録用として研究開発されて
いる。この種の光磁気記録媒体の最も基本的なものは石
英ガラスのような耐熱性の透明基板上にス・ゼツタリン
グ、真空蒸着等の方法で基板面に対し垂直磁化可能な磁
性膜を設けたものである。ここで磁性膜の材料としては
希土類金属と還移金属との非晶質合金(例えばTb −
Fe合金)からなる磁性体が主として使われている。こ
のような光磁気記録媒体への記録、再生は次のようにし
て行なわれる。
BACKGROUND OF THE INVENTION In recent years, magneto-optical recording media for performing magnetic recording and reproduction using semiconductor laser light have been researched and developed for high-density recording. The most basic type of magneto-optical recording medium is one in which a magnetic film that can be magnetized perpendicular to the substrate surface is provided on a heat-resistant transparent substrate such as quartz glass by a method such as sintering or vacuum evaporation. It is. Here, the material for the magnetic film is an amorphous alloy of a rare earth metal and a reduced metal (for example, Tb -
A magnetic material made of (Fe alloy) is mainly used. Recording and reproduction on such a magneto-optical recording medium are performed as follows.

即ち記録は磁性膜のキュリ一温度又は補償温度’ fi
[Kおゆ、おゆえイ6.ヵ9いヶエヵ。1□な変化特性
を利用して2値化号で変調されたレーザー光を磁性膜に
照射加熱して磁化の向きを反転させることにより行なわ
れる。捷だ再生はこうして反転記録された磁性膜に偏光
されたレーザー光を照射し、磁性膜の磁気光学効果の差
を利用して、磁化の向きに応じて偏光wIヲ回転せしめ
、これを2値化号として検出することにより行彦われる
That is, recording is performed at the Curie temperature or compensation temperature of the magnetic film.
[K Oyu, Oyu I6. Ka9ikaeka. This is done by heating the magnetic film by irradiating it with a laser beam modulated by a binary signal, making use of the 1□ change characteristic, and reversing the direction of magnetization. In the reversible reproduction, polarized laser light is irradiated onto the magnetic film that has been recorded in reverse in this way, and the polarized light wI is rotated according to the direction of magnetization using the difference in the magneto-optic effect of the magnetic film, and this is converted into binary data. Yukihiko is detected by detecting it as a symbol.

以上のような記録、再生方法においては更に反射光の透
過による偏光面の回転角の増大、即ちファラデー効果に
よって高い再生出力を得る目的で磁性股上にスパッタリ
ング、真空蒸着等の方法でAI 、 Cu 、 Ag 
、 Pt 、 Au等の反射膜ヲ設けた記録媒体を用い
ることも提案されている。
In the above-mentioned recording and reproducing methods, AI, Cu, Ag
It has also been proposed to use a recording medium provided with a reflective film such as Pt, Au, or the like.

前述のような非晶質合金磁性体を用いた光磁気記録媒体
はいずれも記録感度が高いため、半導体レーザー光によ
って高速度(周波数IMHzにおいて)で記録できると
いう利点はあるが、非晶質合金磁性体、特に希土類金属
成分は酸化腐食を受け易いので、特に保護膜を持た表い
ものは経時と共に磁性膜の磁気光学特性が劣化するとい
う大きな欠点がある。これを防止するた ・め、非晶質
磁性膜上にsto 、 sto、等の保護層を設ける(
形成法は一般に磁性膜の場合と同様、真空蒸着、スパッ
タリング等による)ことも知られているが、磁性膜或い
は保護層の形成時、真空中に残存する01基板面に吸着
されたo、。
Magneto-optical recording media using amorphous alloy magnetic materials as mentioned above all have high recording sensitivity, so they have the advantage of being able to record at high speeds (at a frequency of IMHz) using semiconductor laser light. Magnetic materials, especially rare earth metal components, are susceptible to oxidative corrosion, and therefore, a major drawback is that the magneto-optical properties of the magnetic film deteriorate over time, especially those with a protective film. To prevent this, a protective layer such as sto, sto, etc. is provided on the amorphous magnetic film (
It is also known that the formation method is generally the same as in the case of magnetic films (vacuum deposition, sputtering, etc.); however, when forming a magnetic film or protective layer, o, which remains in vacuum and is adsorbed to the surface of the substrate.

H,0等及び合金磁性体のターゲット中に含まれるO、
、H2O等により経時と共に磁性膜が酸化腐食される上
、記録時の光及び熱により更にこの酸化腐食は促進され
る。また非晶質磁性体は熱によって結晶化され易く、そ
のために磁気光量特性の劣化を来たし易いという欠点を
有する。
H, 0, etc. and O contained in the alloy magnetic target,
, H2O, etc. over time, and this oxidative corrosion is further accelerated by light and heat during recording. In addition, amorphous magnetic materials have the disadvantage that they are easily crystallized by heat, which tends to cause deterioration of the magnetic light quantity characteristics.

これらの欠点は磁性膜の材料に起因するものなので、保
護膜を設けた記録媒体についても同様なことが云える。
Since these defects are caused by the material of the magnetic film, the same can be said of recording media provided with a protective film.

またこの種の記録媒体においては反射法による再生出力
の向上効果も不充分であった。
Furthermore, in this type of recording medium, the effect of improving the reproduction output by the reflection method was also insufficient.

目 的 本発明の目的は、経時や熱による磁気光学特性の劣化が
殆どない上、記録感度が高く再生出力の改善された光磁
気記録媒体を提供すること 5 − にある。
Object The object of the present invention is to provide a magneto-optical recording medium which exhibits almost no deterioration of magneto-optical properties due to aging or heat, has high recording sensitivity, and has improved reproduction output.

構成 本発明は側熱性基板上に、磁性層と反射層を有する光磁
気記録媒体において、前記磁性層が一般式(1) %式%(1) (但しMe= Ba 、 Pb 、 Srの少なくとも
18[以上、M1= Ga 、 AI 、 Mn 、 
Crの少なくとも1種以上、Ml(=Sc、Ta、Ti
 、Zn、Sn、Go。
Structure The present invention provides a magneto-optical recording medium having a magnetic layer and a reflective layer on a heat-generating substrate, in which the magnetic layer has the general formula (1) % formula % (1) (where Me=at least 18 of Ba, Pb, and Sr). [Above, M1= Ga, AI, Mn,
At least one kind of Cr, Ml (=Sc, Ta, Ti
, Zn, Sn, Go.

In 、 Bi 、 Y 、 Tb 、 Yb 、 S
m 、 V 、 Gd 、 Dy 。
In, Bi, Y, Tb, Yb, S
m, V, Gd, Dy.

Ho 、 Er 、 Eu 、 Yb 、 Pr 、 
Co 、 Mg 、 B 、 Mo 。
Ho, Er, Eu, Yb, Pr,
Co, Mg, B, Mo.

W 、 Os 、 Pt 、 Ag 、 Au 、 P
d 、 Ru 、 Rh 、 Re 。
W, Os, Pt, Ag, Au, P
d, Ru, Rh, Re.

Ir 、 Sb 、 Tm 、 Pm 、 Thの少な
くとも1種以上を示し、m、nはそれぞれMlとMiの
イオン価数、XmYはそれぞれMlとMXの置換原子数
を示し、A、x、yはそれぞれ5≦A≦6.0(x≦1
−0+0<y≦0.5の範囲内にある。) で示される金属酸化物磁性体あるいは下記一般式(2) [Coy〕[MxFel−Ja−、o4(21(但しM
=Mn 、AI 、 Cr 、Ga 、 In 、 S
o 、 Zn。
At least one of Ir, Sb, Tm, Pm, and Th is represented, m and n are the ion valences of Ml and Mi, respectively, XmY is the number of substituted atoms of Ml and MX, respectively, and A, x, and y are each 5≦A≦6.0 (x≦1
It is within the range of -0+0<y≦0.5. ) or the following general formula (2) [Coy] [MxFel-Ja-, o4 (21 (however, M
=Mn, AI, Cr, Ga, In, S
o, Zn.

Ti 、Mg 、Ta 、Pt 、Ag 、Pt 、8
n 、Bl 、V 。
Ti, Mg, Ta, Pt, Ag, Pt, 8
n, Bl, V.

Sm 、 Gd 、 Rh 、 Ru 、 Pr 、 
Yの少なくとも1種以上を示し、X+7はCo及びMの
置換原子数、nはMのイオン価数を示し、x、yは0 
(x≦0.8 、0.2(y(:1.0の範囲内にある
。) で示される金属酸化物磁性体から々す、該磁性層が絶対
屈折率1.7以上の透光性高屈折率誘電層に挾まれてい
ることを特徴とするものである。
Sm, Gd, Rh, Ru, Pr,
At least one type of Y is represented, X+7 is the number of substituted atoms of Co and M, n is the ion valence of M, and x and y are 0.
(x≦0.8, 0.2 (y (within the range of 1.0) It is characterized by being sandwiched between dielectric layers with a high refractive index.

光磁気記録媒体に用いられる磁性体又は磁性膜には半導
体レーザー光によって記録、再生可能な磁気光学特性(
適正なキュリ一温度、保磁力等)を備えていなければな
らないが、特に高い記録感度を得るためにキュリ一温度
Tcが低いこと及び記録したメモリーラ安定に維持する
゛ ために保磁力Haが適度に高いことが必要である。
The magnetic material or magnetic film used in magneto-optical recording media has magneto-optical properties (
In particular, in order to obtain high recording sensitivity, the Curie temperature Tc must be low, and in order to maintain the recorded memorization stability, the coercive force Ha must be moderate. It is necessary to have a high

一般にこのTc及びHcの適正範囲はTcについては1
00〜350℃、HCについては300〜6000エル
ステツドと考えられる。
Generally, the appropriate range for Tc and Hc is 1 for Tc.
00-350°C, HC is considered to be 300-6000 oersted.

従来より磁気バブル材料として六方晶系及びスピネル系
の金属酸化物磁性体が研究されている。六方晶系のもの
では例えば一般式(3)%式%(3) (但しMe 、 Aは一般式(1)に同じ)で示される
ものが知られており、またスピネル系のものではCoF
e104が知られている。本発明者はとの種の磁性体が
それ自体、耐化物であるため、酸化劣化の恐れが々いこ
とに注目した。
Hexagonal and spinel metal oxide magnetic materials have been studied as magnetic bubble materials. Hexagonal crystal systems are known, for example, those represented by the general formula (3)% formula (3) (where Me and A are the same as in general formula (1)), and spinel systems such as CoF
e104 is known. The present inventors have focused on the fact that since the above type of magnetic material is itself a chemically resistant material, there is a high risk of oxidative deterioration.

しかし、これらはキュリ一温度Tcが450℃以上と高
いため、前述のように半導体レーザー光による記録は困
難であり、そのままでは光磁気記録媒体用材料として適
用できない。そこで本発明者は種々検討したところ、一
般式(3)の磁性体及びCoFe104のFe原子の一
部を特定の他の金属原子で置換するとTcが低下し、光
磁気記録媒体用の磁性層に要求されるTe及びHaの前
記適正範囲を満足する一般式(1)及び(2)の金[2
化物磁性体を見い出した。
However, since the Curie temperature Tc of these materials is as high as 450° C. or higher, recording with semiconductor laser light is difficult as described above, and they cannot be used as is as a material for magneto-optical recording media. Therefore, the present inventor conducted various studies and found that when some of the Fe atoms of the magnetic material of general formula (3) and CoFe104 are replaced with specific other metal atoms, the Tc decreases, and the magnetic layer for the magneto-optical recording medium is Gold [2
Discovered a compound magnetic material.

さらに本発明者は従来の反射層を有する光磁気記録媒体
における再生出力のいっそうの向上を図る目的でファラ
デー効果のある材料を用いることに着目し、前記材料と
してSlO、TIO□。
Furthermore, the present inventor focused on using a material with a Faraday effect for the purpose of further improving the reproduction output in a conventional magneto-optical recording medium having a reflective layer, and used SlO and TIO□ as the material.

Th01 、 Ce01 、810g 、 TiO等の
高屈折率無機透明誘電材料を用い、且つこれらを透光性
高屈折率誘電層として前記磁性層を挾むことによって前
記目的が達成できることを見い出して本発明に至ったも
のである。
It has been discovered that the above object can be achieved by using a high refractive index inorganic transparent dielectric material such as Th01, Ce01, 810g, TiO, etc. and sandwiching the above magnetic layer as a light-transmitting high refractive index dielectric layer, and the present invention has been made based on this discovery. This is what we have come to.

次に、磁性層に透光性高屈折率誘電層を挾むことによる
特長を中心に本発明の基本的な層構成について説明する
。第1図〜第6図は光磁気記録媒体の概略断面図を示し
、このうち第1図は透光性高屈折率誘電層を有さないも
のを、第2図及び第3図は磁性層の片面に透光性高屈折
率誘電層を有するものを、第4図〜第6図は磁性層が透
光性高屈折率誘電層に挾まれた本発明に係るものを示す
。図中、1は耐熱性基板、2は反射層、3は磁性層、4
は保護層、5.5’は透光性高屈折率誘電層、6はレー
ザー光、7は 9− 空隙層、8はスペーサーを示す。
Next, the basic layer structure of the present invention will be explained, focusing on the advantages of sandwiching a light-transmitting dielectric layer with a high refractive index between the magnetic layers. Figures 1 to 6 show schematic cross-sectional views of magneto-optical recording media, of which Figure 1 shows one without a transparent high refractive index dielectric layer, and Figures 2 and 3 show a magnetic layer. FIGS. 4 to 6 show a structure according to the present invention in which a magnetic layer is sandwiched between light-transmitting dielectric layers with a high refractive index. In the figure, 1 is a heat-resistant substrate, 2 is a reflective layer, 3 is a magnetic layer, 4
5.5' is a transparent high refractive index dielectric layer, 6 is a laser beam, 7 is a void layer, and 8 is a spacer.

第1図は耐熱性基板1上に反射層2、磁性層3及び保護
層4を順次積層した記録媒体である。
FIG. 1 shows a recording medium in which a reflective layer 2, a magnetic layer 3, and a protective layer 4 are sequentially laminated on a heat-resistant substrate 1.

この記録媒体にほぼ垂直方向よりレーザー光6を照射し
、記録媒体からの反射光を再生信号として例えばフオト
タ゛イオードに受光する場合、磁性層3からの反射光の
カー回転角θに、と磁性層3を透過し反射層2で反射し
再び磁性層3を透過したファラデー回転角θ1、とが重
畳することになる。カー回転角およびファラデー回転角
は磁性層3の磁化の方向によって偏光面が回転すること
に基づいているが、カー回転角とファラデー回転角では
磁化の方向が逆で偏光面の回転が逆方向となる。従って
01.のみを取り出すことが再生特性に良いことがいえ
る。第2図は磁性層3上に透光性高屈折率誘電層5を設
けたものである。ここで、透光性高屈折率誘電層5の厚
さがdl、絶対屈折率がnであり、磁性層3の屈折率k
n、、保護層4の屈折率をn、とすると、d、=λ(2
N+1)/4n (λはレーザー光の波長、10− N=0.1.2・・・・・・、n=s/”縞う−i)を
満足する場合には、透光性高屈折率誘電層5からの反射
光θに、と磁性層3からの反射光θに1が互いに相殺す
るようになる。第3図は反射層2と磁性層3の間に透光
性高屈折率誘電層5′を設けたものである。ここで、透
光性高屈折率誘電層5′の厚さがd2で磁性層3の屈折
率をn11 反射層の屈折率’fc n、とすると、d
、=λ(2N+1 ) /2n(N= 0 、1 。
When this recording medium is irradiated with a laser beam 6 in a substantially perpendicular direction and the reflected light from the recording medium is received by a photodiode, for example, as a reproduction signal, the Kerr rotation angle θ of the reflected light from the magnetic layer 3 3, reflected by the reflective layer 2, and transmitted through the magnetic layer 3 again at a Faraday rotation angle θ1. The Kerr rotation angle and Faraday rotation angle are based on the fact that the plane of polarization rotates depending on the direction of magnetization of the magnetic layer 3, but in the Kerr rotation angle and Faraday rotation angle, the direction of magnetization is opposite and the rotation of the plane of polarization is in the opposite direction. Become. Therefore 01. It can be said that extracting only this is good for reproduction characteristics. In FIG. 2, a transparent high refractive index dielectric layer 5 is provided on the magnetic layer 3. Here, the thickness of the transparent high refractive index dielectric layer 5 is dl, the absolute refractive index is n, and the refractive index of the magnetic layer 3 is k.
n,, the refractive index of the protective layer 4 is n, then d,=λ(2
N+1)/4n (λ is the wavelength of the laser beam, 10-N=0.1.2..., n=s/"stripes-i), the translucent high refractive The reflected light θ from the dielectric layer 5 and the reflected light θ from the magnetic layer 3 cancel each other out. FIG. A dielectric layer 5' is provided.Here, if the thickness of the transparent high refractive index dielectric layer 5' is d2, the refractive index of the magnetic layer 3 is n11, and the refractive index of the reflective layer 'fc n, d
,=λ(2N+1)/2n(N=0,1.

2・・・・・・、””r)を満足する場合には、θ12
とθr1は相乗することになる。
2..., ""r), θ12
and θr1 are synergistic.

こうしたことから、第4図に示したように磁性層3をサ
ンドイッチするように透光性高屈折率誘電層5 、5”
i設けると、θhとθ■、とを相殺せしめると共にθI
Iとθl、と全相乗せしめることができる。これによっ
てファラデー回転角を大きくして再生出力の向上を図る
ことができる。
For this reason, as shown in FIG.
When i is provided, θh and θ■ are canceled out, and θI
All phases I and θl can be placed on top of each other. This makes it possible to increase the Faraday rotation angle and improve reproduction output.

透光性高屈折率誘電層5,5′の厚さは、上述し1 た
d、=λ(4N+1)/4n及びd、=λ(2N+1)
/2nを満足することが望ましい。本発明は第5図及び
第6図に示したようにプレグルーブを有するものにも適
用でき、第5図はプレグルーブ付の基板1上に前述した
層′f:積層し、透光性高屈折率誘電層5と保護層40
間に空隙層7を設けたものである。第6図は保護層4が
プレグルーブを有し、反射層2と透光性高屈折率誘電層
5′の間に空隙層7を設けたものであり、レーザー光は
基板1側から照射される。
The thickness of the transparent high refractive index dielectric layers 5 and 5' is 1 as described above, d,=λ(4N+1)/4n and d,=λ(2N+1)
It is desirable to satisfy /2n. The present invention can also be applied to a substrate having a pregroove as shown in FIGS. 5 and 6. In FIG. Refractive index dielectric layer 5 and protective layer 40
A void layer 7 is provided in between. In FIG. 6, the protective layer 4 has a pregroove, and a gap layer 7 is provided between the reflective layer 2 and the transparent high refractive index dielectric layer 5', and the laser beam is irradiated from the substrate 1 side. Ru.

本発明の磁性層は、前記一般式(1)あるいは(2)の
金属酸化物磁性体からなり、それぞれの具体例としては
下記のものが挙けられる。
The magnetic layer of the present invention is made of a metal oxide magnetic material represented by the general formula (1) or (2), and specific examples thereof include the following.

(以下余白) ^ ロ ロ ロ ロ ロ ロ ロ ロ ロ Ql+C’
J F−I C4x vs cQ rs cQC4ww
cotowtoouiuit。
(Left below) ^ Ro Ro Ro Ro Ro Ro Ro Ro Ro Ql+C'
J F-I C4x vs cQrs cQC4ww
cotowtouuit.

−I へ cL> 寸 の ロ ト ω ■ ロダ 5
! タ ダ タ ダ 5!、5! ダ ダ13− ヘ ロ ロ ロ ロ ロ ロ tlQ −ロ ロ 00 ロ 閃団 −1−@ 哨 0 中 へ 14− これらの金属酸化物磁性体は、Fe@0B又はCo20
Bの他、所定の金属原子の酸化物を所定音混合粉砕し、
これを適当な形状の金型に入れて成型後、1200〜1
400℃の温度で焼結することにより作られる。
-I to cL> size roto ω ■ Roda 5
! Ta da ta da 5! , 5! Da Da 13-He Ro Ro Ro Ro Ro LotlQ -Ro Ro 00 Ro Sendan -1-@Sen 0 Medium To 14- These metal oxide magnetic materials are Fe@0B or Co20
In addition to B, oxides of predetermined metal atoms are mixed and pulverized with a predetermined sound,
After putting this into a mold of an appropriate shape and molding it,
It is made by sintering at a temperature of 400°C.

以上のような金属酸化物磁性体を用いて磁性層を形成す
るには、基板の種類にもよるが、一般に透明基板上にこ
の磁性体をターゲットとして基板温度400〜600℃
でスフ9ツタリング、真空蒸着、イオンシレーティング
等の方法で膜厚0.1〜1opm程度に付着させればよ
い。場合によっては磁性層の形成は基板温度400℃未
満で行ガうとともできる。但しこの場合は磁性層形成後
、これに400〜700℃の熱処理を、場合により磁界
を印加し々から、行なって垂直磁化させる必要がある。
In order to form a magnetic layer using the metal oxide magnetic material described above, the magnetic material is generally placed on a transparent substrate at a substrate temperature of 400 to 600°C, although it depends on the type of substrate.
The film may be deposited to a film thickness of about 0.1 to 1 opm by a method such as suffix 9 rolling, vacuum evaporation, or ion silating. In some cases, the magnetic layer can be formed at a substrate temperature of less than 400°C. However, in this case, after forming the magnetic layer, it is necessary to perform a heat treatment at 400 to 700 DEG C., sometimes with repeated application of a magnetic field, to achieve perpendicular magnetization.

ここで基板の材料としては一般ガラス、石英ガラス; 
GGG ;す1 ファイヤ;リチウムタンタレート;結
晶化透明ガラス;パイレックスガラス;表面を酸化処理
し又は処理しない単結晶シリコン; Al、0. 。
Here, the substrate material is general glass, quartz glass;
GGG; S1 Fire; Lithium tantalate; Crystallized transparent glass; Pyrex glass; Single crystal silicon with or without surface oxidation treatment; Al, 0. .

AIIOIm MgO、MgO* LiF 、YIOB
” LiF 、BeO。
AIIOIm MgO, MgO* LiF, YIOB
”LiF, BeO.

zyo、@ YIOB 、 Th01 @CaO等の透
明セラミック材;無機シリコン材(例えば東芝シリコン
社製トスガード、住友化学社製スミセラムP)等の無機
材料が使用できる。
Transparent ceramic materials such as zyo, @YIOB, Th01 @CaO; inorganic materials such as inorganic silicon materials (for example, Toshiba Silicon Co., Ltd. Toss Guard, Sumitomo Chemical Co., Ltd. Sumiceram P) can be used.

透光性高屈折率誘電層は、絶対屈折率が1.7以上の無
機透明防電材料からなる。無機透明誘電材料としては、
Ce02(2,2) 、 ZrO,(2,1) 。
The light-transmitting high refractive index dielectric layer is made of an inorganic transparent electrically shielding material having an absolute refractive index of 1.7 or more. As an inorganic transparent dielectric material,
Ce02(2,2), ZrO,(2,1).

CeFl(1,7) 、 Mg0(1,74) 、 T
ie、(2,5) 。
CeFl(1,7), Mg0(1,74), T
ie, (2,5).

At、0.(1,7) 、 Bi、O,(1,9) 、
WO,(2,0) 、 Zn8(2,1) 、 810
(2,0) 、 Sl、N、(2,3) 等が用いられ
る。()内の値は絶対屈折率を示す。透光性高屈折率誘
電層の形成法は磁性層の場合と同じく、前記材料をスパ
ッタリング、真空蒸着、イオンシレーティング等の方法
で付着させればよい。
At, 0. (1,7) , Bi, O, (1,9) ,
WO, (2,0), Zn8(2,1), 810
(2,0), Sl, N, (2,3), etc. are used. Values in parentheses indicate absolute refractive index. The light-transmitting high refractive index dielectric layer can be formed by depositing the above-mentioned material by sputtering, vacuum deposition, ion silating, or the like, as in the case of the magnetic layer.

反射層は従来と同様、Cu 、 AI 、 Ag 、 
Au 。
As before, the reflective layer is made of Cu, AI, Ag,
Au.

Ni 、 PL 、 TeOx 、 TeC、5eAs
 、 TeAs 、 TiN 。
Ni, PL, TeOx, TeC, 5eAs
, TeAs, TiN.

TaN 、 CrN 、シアニン染料、フタロシアニン
染料等で構成される。反射層の形成法も従来と全く同様
、前記材料をス)J?フッタング、真空蒸着、イオンシ
レーティング等の方法で膜厚0.02〜0.5μm程度
に付着させればよい。こうして得られる反射層は、磁性
層を透過したレーザー光を反射し、再び磁性層を透過す
ることによるファラデー効果を増大させ、透光性高屈折
率誘電層と同様、再生出力を向上させる作用を有してい
る。
It is composed of TaN, CrN, cyanine dye, phthalocyanine dye, etc. The method for forming the reflective layer is exactly the same as the conventional method, using the above materials. It may be deposited to a film thickness of about 0.02 to 0.5 μm by a method such as footing, vacuum deposition, or ion silating. The reflective layer thus obtained has the effect of increasing the Faraday effect by reflecting the laser beam that has passed through the magnetic layer and transmitting it through the magnetic layer again, thereby improving the reproduction output in the same way as the transparent high refractive index dielectric layer. have.

保睦層は従来と同様、810 、810*、 TIN 
The protective layer is the same as before, 810, 810*, TIN
.

81N 、 TaN 、アクリル樹脂、ポリウレタン樹
脂、ポリカーゼネート樹脂、ポリエーテルスルホン樹脂
、ポリアミド樹脂、エポキシ樹脂等で構成される。保護
層の形成法も従来と同様であり、樹脂の場合は塗布法で
、その他の場合は真空蒸着、スパッタリング、イオンブ
レーティング等の方法で対象面に膜厚約0.1〜10μ
m程度に付着させることにより形成される。
It is composed of 81N, TaN, acrylic resin, polyurethane resin, polycarbonate resin, polyether sulfone resin, polyamide resin, epoxy resin, etc. The method of forming the protective layer is the same as before, and in the case of resin, a coating method is used, and in the case of other methods, a film thickness of approximately 0.1 to 10 μm is applied to the target surface using methods such as vacuum evaporation, sputtering, and ion blasting.
It is formed by adhering to about m.

効果 本発明によれば、磁性層に酸化劣化の恐れがなく、シか
も光磁気記録媒体用材料として適正17− なキュリ一温度及び保磁力を有する金属酸化物磁性体を
使用すると同時に、該磁性層を透光性高屈折率誘電層で
挾んでいるため、磁気光学特性の経時劣化が々く、記録
感度も高い。その上、ファラデー効果の向上により十分
々再生出力を得ることができる。
Effects According to the present invention, there is no fear of oxidative deterioration in the magnetic layer, and a metal oxide magnetic material having a Curie temperature and coercive force suitable for use as a material for magneto-optical recording media is used, and at the same time, the magnetic layer is free from oxidative deterioration. Since the layers are sandwiched between light-transmitting dielectric layers with a high refractive index, the magneto-optical properties tend to deteriorate over time and the recording sensitivity is high. Furthermore, sufficient reproduction output can be obtained due to the improvement of the Faraday effect.

実施例1 耐熱性石英基板上に、反射層として膜厚5ooXo*g
を蒸着法にて付着した。この上にスパッタリング法にて
透光性高屈折率@電層810を膜厚1aooX付着し、
さらに基板温度400〜700℃に維持しつつ前記Nl
l〜rVk116の磁性体をス・瘤ツタリング法にて膜
厚aooX付着して磁性層を形成し、この上にポリメチ
ルメタクリレート保睦板を接合して光磁気記録媒体を得
た。
Example 1 A film thickness of 5ooXo*g as a reflective layer on a heat-resistant quartz substrate
was attached by vapor deposition. On top of this, a transparent high refractive index @electrolayer 810 was deposited with a thickness of 1aooX by sputtering method,
Further, while maintaining the substrate temperature at 400 to 700°C, the Nl
A magnetic layer of l to rVk116 was deposited to a film thickness of aooX using the star bulging method to form a magnetic layer, and a polymethyl methacrylate retaining plate was bonded thereon to obtain a magneto-optical recording medium.

実施例2 Ni電鋳ガイドトラック付基板上に、反射層として膜厚
1oooXのAIを蒸着法にて付着した。
Example 2 On a substrate with Ni electroformed guide tracks, an AI layer having a thickness of 100X was deposited as a reflective layer by vapor deposition.

この上にスパッタリング法にてCeO,km厚18− 1000X付着し、次に前記Nnl〜N11116の磁
性体を膜厚5000に付着して磁性層を形成し、さらに
Ce01に膜厚toooX付着し、これをスペーサーを
介してポリメチルメタクリレート保護基板と接合して光
磁気記録媒体を得た。
On top of this, CeO was deposited to a thickness of 18-1000X by sputtering, and then the magnetic material of Nnl to N11116 was deposited to a thickness of 5000mm to form a magnetic layer, and then CeO1 was deposited to a thickness of 1000X. was bonded to a polymethyl methacrylate protective substrate via a spacer to obtain a magneto-optical recording medium.

実施例3 ノ々イコールガラス基板上にスパッタリング法にてSI
O□を膜I学toooX付着し、次に前記N[11〜N
[116の磁性体を膜厚5000X付着し、この上にT
10.を膜厚1000に付着して記録体を得た。
Example 3 SI was deposited on a non-equal glass substrate by sputtering method.
O □ is attached to the film too
[A magnetic material of 116 was deposited to a thickness of 5000X, and a T
10. was deposited to a film thickness of 1000 to obtain a recording medium.

他方、インジェクション法によって得られたガイドラッ
ク付ポリメチルメタクリレート基板上に反射層として膜
厚1000XのCu f蒸着法によって付着した。この
反射層付プレグルーブプラスチック基板の反射層側と前
記記録体の透光性高屈折率@電層TIO,側とをスペー
サーを介して接合し光磁気記録媒体を得た。
On the other hand, a reflective layer was deposited on a polymethyl methacrylate substrate with a guide rack obtained by the injection method to a thickness of 1000× by the Cu f evaporation method. The reflective layer side of this pregroove plastic substrate with a reflective layer was joined to the translucent high refractive index @electrolayer TIO side of the recording medium via a spacer to obtain a magneto-optical recording medium.

゛ 次に以上のようにして得られた光磁気記録媒体を一
方向に磁化させ、ついでこの磁気の方向とは逆の外部磁
界0.5にエルステッドを印加しながら、出力20 m
Wの半導体レーザーでIMHzのパルスで照射して磁気
反転せしめ、記録を行なったところ、いずれも微小ピッ
トが記録された。次にレーザー出力2mWf、照射して
媒体の記録ビットよりの反射光を検光子全通してアパラ
シアフォトダイオードにて受光したところ、信号が再生
された。
゛ Next, the magneto-optical recording medium obtained as described above was magnetized in one direction, and then an output of 20 m was applied while applying an external magnetic field of 0.5 oersted in the opposite direction to the magnetic direction.
When recording was performed by irradiating with a W semiconductor laser with an IMHz pulse to cause magnetic reversal, minute pits were recorded in each case. Next, the medium was irradiated with a laser output of 2 mWf, and the reflected light from the recorded bits of the medium was passed through the analyzer and received by the Apparasia photodiode, and a signal was reproduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は光磁気記録媒体の概略断面図を示し、
このうち第4図〜第6図が本発明に係るものを示す。 1・・・耐熱性基板 2・・・反射層 3・・・磁性層 4・・・保睦層 5.5′・・・透光性高屈折率誘電層
1 to 6 show schematic cross-sectional views of magneto-optical recording media,
Among these, FIG. 4 to FIG. 6 show what is related to the present invention. 1... Heat-resistant substrate 2... Reflective layer 3... Magnetic layer 4... Retention layer 5.5'... Transparent high refractive index dielectric layer

Claims (1)

【特許請求の範囲】 1、耐熱性基板上に、磁性層と反射層を有する光磁気記
録媒体において、前記磁性層が一般式 %式%)) (但しMe = Ba 、 Pb 、 Srの少なくと
も1種以上、M工= Ga 、 AI 、 Mn 、 
Crの少なくとも1種以上、Mz= Be 、 Ta 
、 Ti 、 Zn 。 8n 、 Ge 、 In 、 Bi 、 Y 、 T
b 、 Yb 、 Sm 、 V 。 Gd 、 Dy 、 Ho 、 Er 、 Eu 、 
Yb 、 Pr 、 Co 。 Mg、B、Mo、W、Os、Pt、Ag、Au、Pd。 Ru 、 Rh 、 Re 、 Ir 、 8b 、 
Tm 、 Pm 、 Thの少なくとも1種以上を示し
、m、nはそれぞれM工とMUのイオン価H% K +
 )’はそれぞれM工とM■の置換原子数を示し、A 
* X + )’はそれぞれ5≦A≦6゜0 (x≦L
O+0<y≦0.5 の範囲内にある。) で示される金属酸化物磁性体からなり、該磁性層が絶対
屈折率1.7以上の透光性高屈折率誘電層に挾まれてい
ることを特徴とする光磁気記録媒体。 2、耐熱性基板上に、磁性層と反射層を有する光磁気記
録媒体において、前記磁性層が一般式 %式% なくとも1種以上を示し、X+yはC。 及びMの置換原子数、nはMのイオン価数を示し、x、
yは0 (x≦0.8゜0、2 (y (1,oの範囲
内にある。)で示される金属酸化物磁性体から々す、該
磁性層が絶対屈折率1.7以上の透光性高屈折率誘電層
に挾まれていることを特徴とする光磁気記録媒体。
[Claims] 1. In a magneto-optical recording medium having a magnetic layer and a reflective layer on a heat-resistant substrate, the magnetic layer has the general formula %) (where Me = at least 1 of Ba, Pb, and Sr). More than species, M engineering = Ga, AI, Mn,
At least one kind of Cr, Mz=Be, Ta
, Ti, Zn. 8n, Ge, In, Bi, Y, T
b, Yb, Sm, V. Gd, Dy, Ho, Er, Eu,
Yb, Pr, Co. Mg, B, Mo, W, Os, Pt, Ag, Au, Pd. Ru, Rh, Re, Ir, 8b,
Represents at least one of Tm, Pm, and Th, m and n are the ionic valences of M and MU, H% K +
)' indicate the number of substituted atoms of M and M, respectively, and A
*X + )' is 5≦A≦6゜0 (x≦L
It is within the range of O+0<y≦0.5. 1. A magneto-optical recording medium comprising a metal oxide magnetic material represented by: 2. In a magneto-optical recording medium having a magnetic layer and a reflective layer on a heat-resistant substrate, the magnetic layer exhibits at least one type of the general formula %, and X+y is C. and the number of substituted atoms of M, n indicates the ion valence of M, x,
y is a metal oxide magnetic material represented by 0 (x≦0.8°0,2 (y (within the range of 1, o)), and the magnetic layer has an absolute refractive index of 1.7 or more. A magneto-optical recording medium characterized by being sandwiched between transparent high refractive index dielectric layers.
JP59119635A 1984-06-11 1984-06-11 Magneto-optical recording medium Expired - Lifetime JPH0664762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119635A JPH0664762B2 (en) 1984-06-11 1984-06-11 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119635A JPH0664762B2 (en) 1984-06-11 1984-06-11 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS60263357A true JPS60263357A (en) 1985-12-26
JPH0664762B2 JPH0664762B2 (en) 1994-08-22

Family

ID=14766325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119635A Expired - Lifetime JPH0664762B2 (en) 1984-06-11 1984-06-11 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0664762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132407A (en) * 1984-07-23 1986-02-15 Murata Mfg Co Ltd Magnetic recording material
JPS63122036A (en) * 1986-11-12 1988-05-26 Hitachi Ltd Magneto-optical recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945644A (en) * 1982-09-07 1984-03-14 Ricoh Co Ltd Photomagnetic recording medium
JPS60124901A (en) * 1983-12-12 1985-07-04 Ricoh Co Ltd Metal oxide magnetic material and magnetic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945644A (en) * 1982-09-07 1984-03-14 Ricoh Co Ltd Photomagnetic recording medium
JPS60124901A (en) * 1983-12-12 1985-07-04 Ricoh Co Ltd Metal oxide magnetic material and magnetic film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132407A (en) * 1984-07-23 1986-02-15 Murata Mfg Co Ltd Magnetic recording material
JPS63122036A (en) * 1986-11-12 1988-05-26 Hitachi Ltd Magneto-optical recording medium

Also Published As

Publication number Publication date
JPH0664762B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
EP0376375A1 (en) Method of thermomagnetic recording of information and optical read-out of the stored information, and also a recording element suitable for use in this method
US4788095A (en) Metal oxide magnetic substance and a magnetic film consisting thereof and their uses
JPS60263357A (en) Photomagnetic recording medium
JPS6189606A (en) Metal oxide magnetic substance and magnetic film
JPS60124901A (en) Metal oxide magnetic material and magnetic film
JPH02265051A (en) Optical recording medium
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JP2729962B2 (en) Magneto-optical recording medium
JPH08180497A (en) Reproducing method for magneto-optical recording medium and magneto-optical recording medium
JPH0664761B2 (en) Magneto-optical recording medium
JPH0576763B2 (en)
JPS60211904A (en) Magnetic substance and magnetic film of metal oxide
JPS60158604A (en) Metal oxide magnetic substance and magnetic film
JPS60220909A (en) Metal oxide magnetic body and magnetic film
JP2582059B2 (en) Magneto-optical recording medium
JPS60164302A (en) Magnetic material and magnetic film of metal oxide
JPS60214506A (en) Metal-oxide magnetic body and magnetic film
JPH06349137A (en) Amorphous or quasi-amorphous film structure for optical or magneto-optical data storage medium, optical data storage device and its manufacture
JPS60211903A (en) Magnetic substance and magnetic film for photomagnetic recording medium
JPS6189605A (en) Metal oxide magnetic substance and magnetic film
JPS60164303A (en) Magnetic material and magnetic film of metal oxide
JPS60120503A (en) Metallic oxide magnetic material and magnetic film
JPS6177627A (en) Metallic oxide magnetic material and magnetic film
JPS60151223A (en) Magnetic body of metallic oxide and magnetic film
JPS60124902A (en) Metal oxide magnetic material and magnetic film