JPS60263097A - Supporting structure for heat exchanger - Google Patents

Supporting structure for heat exchanger

Info

Publication number
JPS60263097A
JPS60263097A JP11830884A JP11830884A JPS60263097A JP S60263097 A JPS60263097 A JP S60263097A JP 11830884 A JP11830884 A JP 11830884A JP 11830884 A JP11830884 A JP 11830884A JP S60263097 A JPS60263097 A JP S60263097A
Authority
JP
Japan
Prior art keywords
heat exchanger
outer cylinder
outer shell
flows
support structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11830884A
Other languages
Japanese (ja)
Inventor
Masaaki Hayashi
正明 林
Toshio Ueno
上野 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11830884A priority Critical patent/JPS60263097A/en
Publication of JPS60263097A publication Critical patent/JPS60263097A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To suppress a thermal stress, applied on a connecting part between the supporting structure and a cylinder upon thermal transition, in low and reduce damage due to creep of discontinuous section of the structure by a method wherein the connecting position between the supporting structure and the outer cylinder is positioned at the lower part of the outer cylinder enveloping low-temperature primary cooling agent after exchanging heat. CONSTITUTION:The primary cooling agent, heated by a reactor and becoming high temperature as well as radio active, flows into the outer cylinder 1 through a primary inlet nozzle 2, ascends through annular flow path formed by the outer cylinder 1 and an outer shroud 21, flows into the outer shroud 21 through the inlet window 9 of the outer shroud 21 and flows down under effecting heat exchange between secondary cooling agent ascending through heat transfer tubes 11, thereafter, flows out of the heat exchanger from the primary outlet nozzle 3 of the outer cylinder 1 through an outlet window 10. The cooling agent, flowed out of the outlet window 10 of the outer shroud 21 has a low temperature sufficiently and it is lower than the creep area temperature of the material of the structure, therefore, the heat stress applied on the connecting section may be reduced and the damage due to creep may be reduced sufficiently in case the connecting section of the supporting structure 15 is set at the lower part of the outer cylinder 1, which is lower than a partitioning plate 16.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、熱交換器に係り、特に熱交換器の支持構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat exchanger, and particularly to a support structure for a heat exchanger.

〔発明の背景〕[Background of the invention]

従来例として、高速増殖炉のだて型直管式の熱交換器の
全体構造図を第2図に示す。
As a conventional example, FIG. 2 shows an overall structural diagram of a straight pipe type heat exchanger for a fast breeder reactor.

熱交換器は、支持構造部15に吊抄下げられており冷却
材の1水入ロノズル2と1次出ロノズル3を有する外胴
1と、2水入ロノズル4と2人出ロノズル5を有し上管
板6を介して前記外胴1に接続し上部プレナム13を構
成する上部鏡板20と、外胴1上部に収納され土管板6
と下管板7の間に取付けられた伝熱管管束12及び2水
入ロノズル4に接続し上管板6及び下管板7を貫通する
下降管17と下管板7に接続し下部プレナム14を形成
する下部プレナム鏡19とから成る内部構造物とにより
構成されている。23は外胴1に固定されており、外部
シュラウド21の横振れを防ぐ振れ止めである。
The heat exchanger is suspended from a support structure 15 and has an outer shell 1 having a single water-filling nozzle 2 and a primary output nozzle 3 for the coolant, and a double-water-filling nozzle 4 and a dual-output nozzle 5. An upper mirror plate 20 is connected to the outer shell 1 through the upper tube plate 6 and constitutes the upper plenum 13, and a clay pipe plate 6 is housed in the upper part of the outer shell 1.
A heat exchanger tube bundle 12 installed between the upper tube plate 6 and the lower tube plate 7, a downcomer pipe 17 connected to the two water-filled nozzles 4 and passing through the upper tube plate 6 and the lower tube plate 7, and a lower plenum 14 connected to the lower tube plate 7. The lower plenum mirror 19 forms an internal structure. A steady rest 23 is fixed to the outer shell 1 and prevents the outer shroud 21 from swinging laterally.

さらに、外胴1と外部シュラウド21との間には熱交換
前と熱交換後の1次冷却材を仕切る仕切板16が設けら
れている。
Furthermore, a partition plate 16 is provided between the outer shell 1 and the outer shroud 21 to partition the primary coolant before and after heat exchange.

また、外部シュラウド21においては、1次冷却材を流
入出するための入口窓9及び出口窓10が設けられてい
る。
Furthermore, the outer shroud 21 is provided with an inlet window 9 and an outlet window 10 through which the primary coolant flows in and out.

上記のように構成された熱交換器では、原子炉により加
熱され、高温放射化した1次冷却材は、1水入ロノズル
2から外胴1内に流入し、外胴1と外腎?ヘラウド21
より形成される環状流路部゛を上昇し、外部シュラウド
21の入口窓9から外部シュラウド21内に流入し、管
束部の伝熱管11内を上昇する2次冷却材と熱交換しな
がら下降した後、出口窓10を通じて、外胴1の1人出
ロノズル3から熱交換器外に流出する。
In the heat exchanger configured as described above, the primary coolant heated by the nuclear reactor and activated at high temperature flows into the outer shell 1 from the single water-containing nozzle 2, and flows between the outer shell 1 and the outer kidney. Heraud 21
The coolant ascends through the annular flow path section formed by the cooling material, flows into the outer shroud 21 through the inlet window 9 of the outer shroud 21, and descends while exchanging heat with the secondary coolant rising within the heat transfer tubes 11 in the tube bundle section. Thereafter, it flows out of the heat exchanger from the single-port nozzle 3 of the outer shell 1 through the outlet window 10.

一方、2次冷却材は、2医大ロノズル4より熱交換器内
に流入し、下降管18内を下降しF部グレナム14にて
反転した後、伝熱管11内に流入し1次冷却材と熱交換
しながら上昇し、上部プレナム13を経て2人出ロノズ
ル5がら熱交換器外に流出する。
On the other hand, the secondary coolant flows into the heat exchanger from the second medical school nozzle 4, descends in the downcomer pipe 18, is reversed at the F section glenum 14, and then flows into the heat transfer tube 11 and becomes the primary coolant. It rises while exchanging heat, passes through the upper plenum 13, and flows out of the heat exchanger through the two-man nozzle 5.

このような熱交換器においては、万一、1人出口側の配
管にて、冷却材漏洩事故が発生した場合にも、炉心の冷
却材液位が下降して炉心が露出することがないように、
熱交換器の真下には、漏洩した冷却材を貯えるガードベ
ッセル32を設けである。
In such a heat exchanger, even if a coolant leakage accident occurs in the piping on the single person exit side, the coolant level in the core does not drop and the core is exposed. To,
A guard vessel 32 is provided directly below the heat exchanger to store leaked coolant.

熱交換器の支持構造15を直接、ガードベッセル32に
接続する構造は、耐震上、不利であるため、第2図に示
すように吊下げ型の支持構造15を採用している。
Since a structure in which the support structure 15 of the heat exchanger is directly connected to the guard vessel 32 is disadvantageous in terms of earthquake resistance, a hanging type support structure 15 is adopted as shown in FIG. 2.

従来、メンテナンス性を考慮して、第2図の如く、外胴
1上部に支持構造15を接続する構造であるため、丁度
、外胴1内部を、構造材クリープ温度領域の高温である
1次冷却材が流れており、熱過渡時の熱応力及びクリー
プ損傷評価等の強度評価が非常に厳しいものとなってい
る。
Conventionally, in consideration of maintainability, the support structure 15 is connected to the upper part of the outer shell 1 as shown in FIG. Coolant is flowing, making strength evaluations such as thermal stress during thermal transients and creep damage evaluation extremely difficult.

なお、この種の装置として関連するものに1実用新案出
願公開昭和57年第160585号が挙げられる。
Incidentally, a related device of this type is 1 Utility Model Application Publication No. 160585 of 1982.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、支持構造の胴接合部に熱過渡時に加わ
る熱応力を低く抑えるとともに、構造不連続部のクリー
プ損傷を低減することを可能としだ熱交換器を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat exchanger that is capable of suppressing thermal stress applied to a shell joint of a support structure during thermal transients, and reducing creep damage at structural discontinuities.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、熱交換器の支持構造と外胴との接合部
の熱過渡時発生応力及びクリープ損傷を低減するために
、支持構造の外胴接合部位を熱交換前の高温1次冷却材
を内包する外胴上部から熱交換後の低温1次冷却材を内
包する外胴下部に移したことにある。
A feature of the present invention is that in order to reduce stress generated during thermal transients and creep damage at the joint between the support structure and the outer shell of the heat exchanger, the joint portion of the outer shell of the support structure is subjected to high-temperature primary cooling before heat exchange. The reason is that the low-temperature primary coolant after heat exchange is transferred from the upper part of the outer shell, which contains the material, to the lower part of the outer shell, which contains the low-temperature primary coolant.

〔発明の実施例〕[Embodiments of the invention]

本発明の第1実施例を第2図に基づいて説明する。 A first embodiment of the present invention will be described based on FIG.

支持構造15と外胴1の接合部を仕切板16より下の外
胴1下部に設けた。
A joint between the support structure 15 and the outer shell 1 is provided at the lower part of the outer shell 1 below the partition plate 16.

原子炉の冷却材の1医大口側配管2aは支持構造15の
胴体に設けられた貫通部22を利用して1火入ロノズル
2に接続される。
The first medical school entrance side pipe 2a for the coolant of the nuclear reactor is connected to the first injection nozzle 2 using a penetration part 22 provided in the body of the support structure 15.

外胴1と外部シュラウド21よし形成され@環状流路部
においては、仕切板16を境として上部に熱交換前の高
温1次冷却材が、下部に熱交換後の低温1次冷却材が流
れている。
In the annular flow path formed by the outer shell 1 and the outer shroud 21, the high temperature primary coolant before heat exchange flows in the upper part with the partition plate 16 as the boundary, and the low temperature primary coolant after heat exchange flows in the lower part. ing.

外部シュラウド21に設けられた出口窓10より流出し
た冷却材は、十分に低温であり1構造材のクリープ領域
温度を下回る。このために低温1次冷却材と接する外胴
部位に支持構造15の接合部を設定すると、との接合部
位への熱応力が低減するのみではなく、クリープ槁傷が
十分に小さくなるため、構造不連続部強度の信頼性が大
いに高まる。
The coolant flowing out of the exit window 10 in the outer shroud 21 is sufficiently cold to be below the creep region temperature of one structural member. For this reason, if the joint part of the support structure 15 is set at the part of the outer shell that is in contact with the low-temperature primary coolant, not only will the thermal stress on the joint part be reduced, but the creep damage will be sufficiently small, and the structural The reliability of the discontinuity strength is greatly increased.

次に、本発明の第2実施例を第3図から第8図までの各
図に基づいて説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 3 to 8.

熱交換器の支持構造15と外胴1の接合部を、低温であ
る外胴1下部に移行し、さらに、支持構造15胴体と外
胴1の間に耐W構造24を設けた。
The joint between the support structure 15 of the heat exchanger and the outer shell 1 is moved to the lower part of the outer shell 1 where the temperature is low, and a W-proof structure 24 is further provided between the support structure 15 and the outer shell 1.

第4図、第5図に耐震構造24の第1の例を示す、第4
図、第5図はピン構造を有する耐震構造である。支持構
造15胴体部と外胴1とに支持用突起25を固定設置し
、その間の支持棒26をピン25a、25b接合する。
4 and 5 show the first example of the earthquake-resistant structure 24.
Figure 5 shows an earthquake-resistant structure with a pin structure. A support protrusion 25 is fixedly installed on the body portion of the support structure 15 and the outer body 1, and a support rod 26 therebetween is joined with pins 25a and 25b.

ピン接合であるので、メンテナンス時に邪魔になる場合
には取りはずし可能である。
Since it is a pin connection, it can be removed if it becomes a hindrance during maintenance.

第6図、第7図に基づいて耐震構造24の第2の例を以
下に示す。
A second example of the earthquake-resistant structure 24 is shown below based on FIGS. 6 and 7.

この第2の例は、支持構造15に塩9付いた二叉形状の
ブラケット15aで外胴1に取り付いたブラケット15
bをすき間tが生じるようにはさんだ構造であって、外
胴1の熱膨張等による半径方向の変位はt寸法分だけ逃
すけれども周方向の変位は拘束する構造となっている。
This second example is a bifurcated bracket 15a with salt 9 attached to the support structure 15, and a bracket 15 attached to the outer shell 1.
The structure is such that the outer shell 1 is sandwiched with a gap t, and displacement in the radial direction due to thermal expansion of the outer shell 1 is allowed to escape by the dimension t, but displacement in the circumferential direction is restrained.

第8図に基づいて耐震構造24の第3の例を以下に示す
A third example of the earthquake-resistant structure 24 is shown below based on FIG.

ピン27a、27bで外胴1と支持構造15間に水平に
取り付いたダンパ27け熱膨張等ゆっくりした変位を許
すが地震力のよう愈急激な変位は許さない構造となって
いる。ダンパ27としては公知のオイルダンパーシリン
ダー装置が利用できる。
The damper 27 installed horizontally between the outer shell 1 and the support structure 15 using pins 27a and 27b has a structure that allows slow displacement such as thermal expansion, but does not allow sudden displacement such as that caused by earthquake force. As the damper 27, a known oil damper cylinder device can be used.

ダンパ27は通常、かなり大型であるので、外1Ili
11と支持構造15鴫体の間に収まらない場合があ抄う
る。その場合には、支持構造15に突起部28を設けて
ダンパ27を収納する。高速増殖炉の原子炉IC!!屋
内は空間に制限があるため、支持構造15全体を大型化
する仁とができないので、支持構造15に部分的に突起
部28を設けることとし、その突起部内空間はメンテナ
ンス時に十分、ダンパ27の取りはずしか可能力隙間を
有するものである。
Since the damper 27 is usually quite large, the outside 1Ili
11 and the support structure 15 may not fit. In that case, the support structure 15 is provided with a protrusion 28 to accommodate the damper 27. Fast breeder reactor IC! ! Due to space limitations indoors, it is not possible to increase the size of the entire support structure 15. Therefore, the support structure 15 is partially provided with projections 28, and the space inside the projections is sufficient for maintenance and for damper 27. It has a force gap that allows it to be removed.

以上に示したようないずれかの耐震構造を設けることに
より、熱交換器の外胴1と、外胴1よりも板厚も半径も
大きな支持構造15胴体を連結することができ熱交換器
全体としての剛性が連結構造で高まるため、従来外胴1
中央部に設置され建屋に接続していた耐震サボー)f省
略することができる。父、剛性を高める為に、耐震構造
24の外胴1への接続部位高さは、上管板6と同一かそ
れに近い高さとしである。
By providing one of the seismic structures shown above, it is possible to connect the outer shell 1 of the heat exchanger with the support structure 15 whose plate thickness and radius are larger than that of the outer shell 1. Since the rigidity of the outer shell is increased by the connected structure, the conventional outer shell 1
The seismic sabot installed in the center and connected to the building can be omitted. In order to increase rigidity, the height of the connection part of the earthquake-resistant structure 24 to the outer shell 1 is set to be the same as or close to the height of the upper tube plate 6.

きらに第9図に基づいて本発明の第3実施例を以下に説
明する。
A third embodiment of the present invention will be described below with reference to FIG.

熱交換器の支持構造15と外胴1との接合部を下管板7
の振れ止め23の高さ位置の外胴1部位に設置した。
The joint between the support structure 15 of the heat exchanger and the outer shell 1 is connected to the lower tube plate 7.
It was installed in one part of the outer body at the height of the steady rest 23.

この構造により、下管板7にて発生する振れ力による接
合部のモーメント力を低減することができ、耐震強度が
増す。
With this structure, the moment force at the joint due to the swinging force generated in the lower tube plate 7 can be reduced, and the seismic strength is increased.

また、外胴1接合部及び、振れ止め23を一体鍛造によ
り製造することにより、熱交換器のコスト及び製造性が
向上する。
In addition, by manufacturing the joint portion of the outer shell 1 and the steady rest 23 by integral forging, the cost and manufacturability of the heat exchanger are improved.

第10図に示す本発明の第4の実施例では先の第3実施
例を一部変更したもので、その変更点は、支持構造15
胴体にマンホール29を設置した点にある。
The fourth embodiment of the present invention shown in FIG. 10 is a partial modification of the previous third embodiment, and the modification is
This is because a manhole 29 has been installed in the fuselage.

空間的な制約があり、支持構造15を余り大型化できな
いため、支持構造15胴体と外胴1の開の隙間は、どう
しても小さく抑えられるが、マンホール29が有ると製
作9組立時及びメンテナンス時の前述隙間での作業を容
易に実施できる。
Due to space constraints, it is not possible to make the support structure 15 too large, so the gap between the support structure 15 body and the outer body 1 can be kept small. Work in the aforementioned gap can be easily carried out.

第11図に示す本発明のM5実施例は以下の通りである
The M5 embodiment of the invention shown in FIG. 11 is as follows.

一般に高速増殖炉用熱交換器構造材としては、オーステ
ナイト系ステンレス鋼が用いられる。オーステナイト系
ステンレス鋼を用いることにより、十分な強度を得るこ
とができるが、本発明の様に支持構造m15胴体の全長
を大きく取る場合には全体を高価なオーステナイト系ス
テンレス鋼で構成することは望ましくない。そこで、支
持構造部15に異材溶接継手部30を設け、この継手部
30よりフランジ8側を全て案価な炭素鋼とすることに
より、トータルコストを従来の構造より低く抑えること
ができる。この例では、支持構造15接合部に内接する
1次冷却材温度を、従来例より十分に低減することによ
り、支持構造部15に発生する熱応力を十分に低く抑え
て、構造材として、一部、炭素鋼を導入するこkを可能
としたものである。
Generally, austenitic stainless steel is used as a structural material for a heat exchanger for a fast breeder reactor. Sufficient strength can be obtained by using austenitic stainless steel, but when the overall length of the support structure M15 fuselage is large as in the present invention, it is desirable to construct the entire body from expensive austenitic stainless steel. do not have. Therefore, by providing a dissimilar metal welding joint part 30 in the support structure part 15 and making the entire part on the side of the flange 8 from this joint part 30 to be made of inexpensive carbon steel, the total cost can be kept lower than that of the conventional structure. In this example, by sufficiently lowering the temperature of the primary coolant inscribed in the joint portion of the support structure 15 compared to the conventional example, the thermal stress generated in the support structure 15 is suppressed to a sufficiently low level, so that it can be used as a structural material. This made it possible to introduce carbon steel.

第12図に示す本発明の第6実施例は以下の通りである
The sixth embodiment of the present invention shown in FIG. 12 is as follows.

従来よりも1底入ロノズル2と仕切板16とを上方に移
動設置することにより、支持構造15の材料を最小限に
抑える。
By moving and installing the one-bottom nozzle 2 and the partition plate 16 higher than before, the material for the support structure 15 is minimized.

第13図に示す本発明の第7実施例は以下の通りである
The seventh embodiment of the present invention shown in FIG. 13 is as follows.

熱交換器の支持構造15を仕切板16よりも下方の外胴
1部位から建屋床に直接、設置したものである。1人出
ロノズル3は外胴1の横に設けて、支持構造24と干渉
しないようにしである。さらに、1人出口側配管31上
部が逆U字形でその頂部に外気注入口331に備えるサ
イホンブレーク構造34とし、漏洩検出と同時に配管内
に外気注入口33より管31外のガスを導入することに
より炉容器から熱交換器への冷却材のサイホン現象によ
る流動を防止することができ、ガードベッセル32は不
要となる。外気注入口33としては管31円と管31外
とを通じる′電動弁が利用できる。
The heat exchanger support structure 15 is installed directly on the building floor from one part of the outer shell below the partition plate 16. The one-person nozzle 3 is provided beside the outer shell 1 so as not to interfere with the support structure 24. Furthermore, the upper part of the single-person exit side piping 31 is in an inverted U-shape, and a siphon break structure 34 is provided at the top for the outside air inlet 331, and gas from outside the tube 31 is introduced into the piping from the outside air inlet 33 at the same time as leak detection. This makes it possible to prevent the coolant from flowing from the furnace vessel to the heat exchanger due to the siphon effect, and the guard vessel 32 becomes unnecessary. As the outside air inlet 33, an electric valve that connects the pipe 31 and the outside of the pipe 31 can be used.

これにより、熱交換器を下側より支持する構造を採用す
ることができる。
This makes it possible to adopt a structure in which the heat exchanger is supported from below.

耐震性を向上させるために、外胴1上部には、耐旙構造
24を設置する。
In order to improve earthquake resistance, an earthquake-resistant structure 24 is installed on the upper part of the outer shell 1.

以上の各実施例はいずれも被冷却流体(1次冷却材)が
高速増殖炉の冷却材でりるが、高速増殖形の原子炉以外
の冷却材や、原子炉以外に使用される流体であっても良
い。
In each of the above embodiments, the fluid to be cooled (primary coolant) is a coolant for a fast breeder reactor, but it may also be a coolant for something other than a fast breeder reactor or a fluid used for something other than a nuclear reactor. It's okay to have one.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱交換器において、支持礪造と胴の接
合部に熱過渡時、発生する熱応力を低く抑えるとともに
、博造不遅続部のクリープ損傷を低減できるので、構造
不連続部強度の信頼性を大いに向上させる効果がある。
According to the present invention, in a heat exchanger, it is possible to suppress the thermal stress that occurs at the joint between the supporting structure and the shell during thermal transients, and also to reduce creep damage in the Hakuzo non-delayed connection part, so that structural discontinuity is achieved. This has the effect of greatly improving the reliability of part strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例による熱交換器の縦断面図
、第2図は従来の熱交換器の縦断面図、第3図は不発明
の第2実施例による熱交換器の縦断面図、第4図は第3
図の耐震構造部の第1の例を示す平面図、第5図は第4
図の立面図、第6図は第3図の耐震構造部の第2の例を
示す平面図、第7図は第6図の立面図、第8図は第3図
の耐震構造部の第3の例を示す立面図、第9図は本発明
の第3実施例による熱交換器の縦断面図、第10図は本
発明の第4実施例による熱交換器の縦断面図、第11図
は本発明の第5実施例による熱交換器の縦断面図、第1
2図は本発明の第6実施例による熱交換器の縦断面図、
第13図は本発明の第7実施例による熱交換器の縦断面
図である。 1・・・外胴、2・・・1底入ロノズル、6・・・上管
板、7・・・下管板、8・・・フランジ、15・・・支
持構造、16・・・仕切板、21・・・外部シュラウド
、23・・・振れ止め部、24・・・耐震構造、26・
・・支持棒、27・・・ダンパ、28・・・突起部、2
9・・・マンホール、30・・・異材継手部、31・・
・1犬山口側配管。 代理人 弁理士 高橋明夫 $ Jロ ー4 第11 図
FIG. 1 is a longitudinal sectional view of a heat exchanger according to a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a conventional heat exchanger, and FIG. 3 is a longitudinal sectional view of a heat exchanger according to a second embodiment of the invention. Longitudinal cross-sectional view, Figure 4 is the 3rd
Figure 5 is a plan view showing the first example of the earthquake-resistant structure shown in Figure 4.
Figure 6 is a plan view showing the second example of the earthquake-resistant structure shown in Figure 3, Figure 7 is an elevation view of Figure 6, and Figure 8 is the earthquake-resistant structure shown in Figure 3. FIG. 9 is a vertical cross-sectional view of a heat exchanger according to a third embodiment of the present invention, and FIG. 10 is a vertical cross-sectional view of a heat exchanger according to a fourth embodiment of the present invention. , FIG. 11 is a vertical sectional view of a heat exchanger according to a fifth embodiment of the present invention, and FIG.
2 is a vertical sectional view of a heat exchanger according to a sixth embodiment of the present invention,
FIG. 13 is a longitudinal sectional view of a heat exchanger according to a seventh embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Outer body, 2... 1 bottom nozzle, 6... Upper tube plate, 7... Lower tube plate, 8... Flange, 15... Support structure, 16... Partition Plate, 21... External shroud, 23... Steady rest part, 24... Earthquake resistant structure, 26.
...Support rod, 27...Damper, 28...Protrusion, 2
9... Manhole, 30... Dissimilar material joint, 31...
・1 Inu Yamaguchi side piping. Agent Patent Attorney Akio Takahashi $ J Law 4 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 1、被冷却流体を冷却前に受け入れる隙間と冷却後に受
け入れる隙間とを外胴を前記外胴内構遺物との間に備え
、前記外胴を前記外胴に取り付いた支持構造にて支持す
る熱交換器において、前記冷却後に受け入れる隙間に面
する前記外胴部位に前記支持構造を取り付けたことを特
徴としだ熱交換器の支持構造。
1. The outer shell is provided with a gap for receiving the fluid to be cooled before cooling and a gap for receiving the fluid after cooling between the outer shell and the inner structure of the outer shell, and the outer shell is supported by a support structure attached to the outer shell. A support structure for a heat exchanger, characterized in that the support structure is attached to the outer body portion facing the gap that receives the cooling after cooling.
JP11830884A 1984-06-11 1984-06-11 Supporting structure for heat exchanger Pending JPS60263097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11830884A JPS60263097A (en) 1984-06-11 1984-06-11 Supporting structure for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11830884A JPS60263097A (en) 1984-06-11 1984-06-11 Supporting structure for heat exchanger

Publications (1)

Publication Number Publication Date
JPS60263097A true JPS60263097A (en) 1985-12-26

Family

ID=14733464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11830884A Pending JPS60263097A (en) 1984-06-11 1984-06-11 Supporting structure for heat exchanger

Country Status (1)

Country Link
JP (1) JPS60263097A (en)

Similar Documents

Publication Publication Date Title
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
JPS60263097A (en) Supporting structure for heat exchanger
JPS61112888A (en) High-temperature double piping
JPS61791A (en) Fast neutron reactor
JPS61180894A (en) Heat exchanger of high-speed bleeder reactor
JP3207627B2 (en) Steam generator with built-in electromagnetic pump
JPS61237992A (en) Intermediate heat exchanger
JP2809700B2 (en) Core structure for fast breeder reactor
JP2539405B2 (en) Liquid metal cooling heat exchanger
JPH0512798Y2 (en)
JPH03102288A (en) Tank fast breeder
JPH07248389A (en) Fast reactor
JPS60169094A (en) Heat exchanger
JPS5912956B2 (en) 2.
JPS61268994A (en) Intermediate heat exchanger
JPS6089795A (en) Fast breeder reactor
JPH0473079B2 (en)
JPS61210993A (en) Heat exchanger for removing decay heat of core
JPS6080788A (en) Fbr nuclear reactor structure
JPH0366640B2 (en)
JPH0579156B2 (en)
JPS62268997A (en) Intermediate heat exchanger
JPS63225196A (en) Nuclear power plant
JPH0275801A (en) Steam generator
JPS61272692A (en) Fast breeder