JPS60262040A - Apparatus for detecting quantity of fine particles - Google Patents

Apparatus for detecting quantity of fine particles

Info

Publication number
JPS60262040A
JPS60262040A JP11777684A JP11777684A JPS60262040A JP S60262040 A JPS60262040 A JP S60262040A JP 11777684 A JP11777684 A JP 11777684A JP 11777684 A JP11777684 A JP 11777684A JP S60262040 A JPS60262040 A JP S60262040A
Authority
JP
Japan
Prior art keywords
fluid
filter
pipe line
pipeline
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11777684A
Other languages
Japanese (ja)
Inventor
Yoshitaro Ito
伊藤 義太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11777684A priority Critical patent/JPS60262040A/en
Publication of JPS60262040A publication Critical patent/JPS60262040A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0618Investigating concentration of particle suspensions by collecting particles on a support of the filter type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To detect fine particles in a fluid with high sensitivity and high accuracy, by connecting a filter and a throttle part to one of branched pipelines while connecting a throttle part and a filter to the other branched pipeline in the reverse order and providing a differential pressure detector for detecting the pressure difference between both pipelines. CONSTITUTION:A first filter 2 for collecting fine particles in a fluid is connected to the outlet opening 1b of one of branched pipelines 1 and a first throttle part 4 for generating pressure drop in the fluid is connected thereto through a pipeline 3. A second throttle part 5 is connected to the outlet opening 1c of the other branched pipeline and a second filter 7 is connected thereto through a pipeline 6. Further, between the first pipeline 3 and the second pipeline 6, a differential pressure detector 8 for detecting the pressure difference between the pipelines 3, 6 is connected through pressure take-out pipes 9, 10 to form a bridge circuit. By this simple constitution, the quantity of fine particles in the fluid can be continuously detected within a short time with high sensitivity and high accuracy.

Description

【発明の詳細な説明】 本発明は流体中に含まれる微粒子量を検出する微粒子量
検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particulate amount detection device that detects the amount of particulates contained in a fluid.

一般に、油圧作動装置中の作動油は稼働の初期には清浄
に保たれているが、稼働後時間が経つにつれて装置内の
油圧ポンプ、モータ等から生じる摩耗粉や外部から侵入
する異物等によって徐々に汚染され、作動油中に汚染物
である微粒子が多量に浮遊する。この作動油中の微粒子
は油圧ポンプ、モータ、バルブ等の摺動部の摩耗を加速
させてこれら機器の寿命を縮めたり、あるいは可動部に
固着して機器の故障の原因となるためフィルタ等の洗浄
装置を用いて作動油の浄化再生や作動油交換等の処置を
行ない、作動油の清浄度を維持する必要がある。この作
動油の清浄度維持を効果的に行うためには装置内の作動
油の汚染状態を適確に把握することが重要である。
Generally, the hydraulic fluid in a hydraulic device is kept clean at the beginning of operation, but as time passes, it gradually becomes contaminated with wear powder generated from the hydraulic pump, motor, etc. inside the device, and foreign matter entering from the outside. This causes a large amount of fine particles, which are contaminants, to be suspended in the hydraulic fluid. Fine particles in this hydraulic oil can accelerate wear on the sliding parts of hydraulic pumps, motors, valves, etc., shortening the life of these devices, or can stick to moving parts and cause equipment failure, so filters, etc. It is necessary to maintain the cleanliness of the hydraulic oil by using a cleaning device to purify and regenerate the hydraulic oil, replace the hydraulic oil, etc. In order to effectively maintain the cleanliness of this hydraulic oil, it is important to accurately understand the state of contamination of the hydraulic oil within the device.

従来、装置内の作動油の汚染状態を把握する方法として
は例えば検出対象の流体中に光を入射してこの光が流体
中の微粒子によって散乱減光することによりその減光量
から微粒子量を検出する方法や、検出対象の流体をフィ
ルタに通して微粒子が上記フィルタに引掛かって生ずる
流体の圧力降下から微粒子量を検出する方法などがある
。しかしながら、これらの方法はオンラインで連続的に
検出できるという利飛があるものの、前者の場合は装置
が複雑になるという欠点があり、後者の場合は検出感度
が低いという欠点があった。また、上記の方法の他に流
体中の微粒子をフィルタで捕捉してそれを秤で計量する
方法や、検出対象の流体からサンプルを少量抜き取って
ろ過し、これを顕微鏡等で計量又は分光分析して計量す
る方法などもあるが、これらの方法は検出結果が得られ
るまで時間がかかるという欠点があった。
Conventionally, as a method for ascertaining the contamination state of hydraulic oil in equipment, for example, light is incident into the fluid to be detected, and this light is scattered and attenuated by fine particles in the fluid, and the amount of fine particles is detected from the amount of light attenuation. There is a method in which the fluid to be detected is passed through a filter, and the amount of particulates is detected from the pressure drop of the fluid that occurs when the particulates are caught by the filter. However, although these methods have the advantage of being able to continuously detect on-line, the former has the disadvantage that the equipment is complicated, and the latter has the disadvantage of low detection sensitivity. In addition to the above methods, there are also methods in which particles in the fluid are captured with a filter and weighed with a scale, or a small amount of sample is extracted from the fluid to be detected, filtered, and then weighed with a microscope or subjected to spectroscopic analysis. There are also methods of measuring the amount of water using a sensor, but these methods have the disadvantage that it takes time to obtain detection results.

本発明はこのような事情にもとづいてなされたへ もの
で、その目的とするところは簡単な構成により流体中の
微粒子量を高感度および^精度で、かつ連続的に短時間
で検出できる微粒子量検出装置を提供することにある。
The present invention was made based on the above circumstances, and its purpose is to provide a method for detecting the amount of particulates in a fluid with high sensitivity and accuracy using a simple configuration, and continuously in a short period of time. The object of the present invention is to provide a detection device.

本発明は上記の目的を達成するために、検出対象流体の
入口をなす入口開口とこの入口開口より流入した流体を
三方して流出する出口開口とを有する分岐管路と、この
分岐管路の一方の出口開口に接続され分岐管路より流出
した流体中の微粒子を捕捉する第1のフィルタと、この
第1のフィルタを通過した流体に圧力降下を生じさせる
第1の絞り部と、これら第1の絞り部および第1のフィ
ルタを接続する第1の管路と、前記分岐管の他方の出口
開口に接続され分岐管路より流出した流体に圧力降下を
生じさせる第2の絞り部と、この第2の絞り部を通過し
た流体中の微粒子を捕捉する第2のフィルタと、これら
第2のフィルタおよび第2の絞り部を接続する第2の管
路と、この第2の管路と前記第1の管路との圧力差を検
出する差圧検出器と、この差圧検出器で計測された圧力
差に基づいて前記流体中の微粒子量を検出する手段とを
具備したものである。 1 以下、本発明の実施例を図面を参照して説明する。
In order to achieve the above object, the present invention provides a branch pipe line having an inlet opening that serves as an inlet for a fluid to be detected, and an outlet opening from which the fluid flowing in from the inlet opening flows out in three directions; a first filter that is connected to one outlet opening and captures particulates in the fluid flowing out from the branch pipe; a first restrictor that causes a pressure drop in the fluid that has passed through the first filter; a first conduit connecting the first constriction and the first filter; a second constriction connected to the other outlet opening of the branch pipe and causing a pressure drop in the fluid flowing out from the branch conduit; a second filter that captures particulates in the fluid that has passed through the second constriction section; a second conduit that connects the second filter and the second constriction section; It is equipped with a differential pressure detector for detecting a pressure difference with the first pipe line, and means for detecting the amount of particulates in the fluid based on the pressure difference measured by the differential pressure detector. . 1 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図は本発明の一実施例を示す微粒子量検出装置の概略構
成図で、図中1は検出対象流体の入口をなす入口開口1
aと、この入口開口1aより流入した流体を三方して流
出する出口間口1b、Icとを有する分岐管路である。
The figure is a schematic configuration diagram of a particulate amount detection device showing an embodiment of the present invention.
This is a branch pipe line having three outlet openings 1b and 1c through which the fluid flowing in through the inlet opening 1a flows out in three directions.

この分岐管路1の一方の出口開口1bには分岐管路1よ
り流出した流体中の微粒子を捕捉する第1のフィルタ2
が接続されている。この第1のフィルタ2には第1の管
路3を介して第1の絞り部4が接続され、上記フィルタ
2を通過した流体に圧力時下i生じさせる塾 ようになっている。また、上記分岐管1の他方の゛ 出
口開口1Cには分岐管路1より流出した流体に圧力降下
を生じさせる第2の絞り部5が接続されている。この第
2の絞り部5には第2の管路6を介して第2のフィルタ
7が接続され、上記絞り部5を通過した流体中の微粒子
を捕捉するようになっている。そして、上記第1の管路
3と第2の管路6との間にはこれら管路3.6間の圧力
差を検出する差圧検出器8が圧力取出管9,10を介し
て接続され、ブリッジ回路を形成している。
A first filter 2 is provided at one outlet opening 1b of the branch pipe 1 to capture particulates in the fluid flowing out from the branch pipe 1.
is connected. A first constriction section 4 is connected to the first filter 2 via a first conduit 3, and is configured to cause the fluid that has passed through the filter 2 to generate a pressure drop. Further, a second constriction portion 5 is connected to the other outlet opening 1C of the branch pipe 1 to cause a pressure drop in the fluid flowing out from the branch pipe 1. A second filter 7 is connected to the second constriction section 5 via a second conduit 6, and is configured to capture particulates in the fluid that has passed through the constriction section 5. A differential pressure detector 8 for detecting the pressure difference between these pipes 3 and 6 is connected between the first pipe line 3 and the second pipe line 6 via pressure extraction pipes 9 and 10. and form a bridge circuit.

上記第1および第2のフィルタ2,7は例えばハウジン
グ内に多孔物質又は金属、有機質等の繊維状物質で形成
されたろ過エレメントを有し、このろ過エレメントで流
体中の微粒子を捕捉するよ ゛うに構成されている。ま
た、上記第1および第2の絞り部4.5は例えばチョー
ク、矛リフイス等が用いられ、これ−ら絞り部4,5の
開口面積は流体中の微粒子サイズに比べて上方大きく、
微粒子が開口部に引掛かって圧力降下が変化しないよう
になっている。すなわち、これらフィルタ2.7及び絞
り部4.5の各圧力降下は微粒子を含まない清浄な検出
対象流体が通流する時のみブリッジ回路が平衡状態とな
るように設定されている。また、上記差圧検出器8は例
えばスプール弁、ダイヤフラム、ブルドン管、ビントン
等を用いた0通常の差圧検出機構が用いられ、検出した
差圧を電気信号に変換して出力するように構成されてい
る。
The first and second filters 2 and 7 have, for example, a filtration element formed of a porous material or a fibrous material such as metal or organic material in the housing, and this filtration element traps fine particles in the fluid. It is composed of Further, the first and second constricting portions 4.5 are made of, for example, chalk or a sharpener, and the opening areas of these constricting portions 4, 5 are larger upwardly than the size of the fine particles in the fluid.
Particulates are trapped in the opening to prevent pressure drop from changing. That is, the respective pressure drops of the filter 2.7 and the restrictor 4.5 are set so that the bridge circuit is in an equilibrium state only when a clean fluid to be detected that does not contain particulates flows through it. Further, the differential pressure detector 8 uses a normal differential pressure detection mechanism using, for example, a spool valve, diaphragm, Bourdon tube, Vinton, etc., and is configured to convert the detected differential pressure into an electrical signal and output it. has been done.

なお、図中11は第1の絞り部4及び第2のオリフィス
7より流出した流体を合流して流出する戻り管で、検出
対象流体の出口をなすものである。
In the figure, reference numeral 11 denotes a return pipe through which the fluids flowing out from the first throttle section 4 and the second orifice 7 are combined and flowed out, and serves as an outlet for the fluid to be detected.

次にこのように構成された本実施例の作用を説明する。Next, the operation of this embodiment configured as described above will be explained.

まず、フィルタ2,7の初期圧力降下(ろ過ニレメンh
 (ζ微粒子が引掛かっていない清浄な状態)庖それぞ
れPy B e P y l) N絞り部4.5の圧力
降下をPo、PRbとする妻、平衡状態を得る条件は PPa”” PRb ・・・(1) P、b−P□ ・・・(2) となる。そして、上記(1)及び(2)式を流体の流れ
抵抗を用いて表わすと下記の如くなる。
First, the initial pressure drop of filters 2 and 7 (filtering
(Py B e P y l) (Py B e P y l) (Py B e P y l) The conditions for achieving an equilibrium state are PPa"" PRb...・(1) P, b-P□ ...(2) It becomes. When the above equations (1) and (2) are expressed using fluid flow resistance, the results are as follows.

ここで、Zya a Zpbはフィルタ2.7の初期流
れ抵抗を示し、Zia * Zibは絞り部4.5の流
れ抵抗、Q、、Qbはそれぞれ管路3.6側を流れる流
体の流量である。
Here, Zya a Zpb indicates the initial flow resistance of the filter 2.7, Zia * Zib is the flow resistance of the constriction part 4.5, and Q, , Qb are the flow rates of the fluid flowing on the pipe line 3.6 side, respectively. .

分流してフィルタ2及び絞り部4からなる流路と絞り部
5及びフィルタ7からなる流路の2つの流路を通って戻
り管11から流出する。このとき検の流れ抵抗はZra
 w Zyb −7aa −7Rbの平衡条件を満たし
、ブリッジ回路は平衡状態となる。そして、このとき管
路3.6111には圧力差が生じず、Qa / Q b
 ” 1となるので差圧検出器8は差圧信号を出力しな
い。
The water is divided and flows out from the return pipe 11 through two flow paths: a flow path consisting of the filter 2 and the constriction section 4 and a flow path consisting of the constriction section 5 and the filter 7. At this time, the flow resistance of the test is Zra
The equilibrium condition of w Zyb -7aa -7Rb is satisfied, and the bridge circuit is in an equilibrium state. At this time, no pressure difference occurs in the pipe line 3.6111, and Qa / Q b
"1, so the differential pressure detector 8 does not output a differential pressure signal.

一方、検出対象の流体が微粒子を含んでいる場合はフィ
ルタ2.7に微粒子が捕捉されて富き止め作用が生じ、
フィルタ2,7の圧力降下が増大する。これに対して絞
り部4.5の圧力降下は微粒子を含んでいる場合でも不
変であるから、管路3の流体圧力は平衡状態のときより
下がり、管路I8が検出して圧力差に応じた差圧信号を
出力す する。そして、この差圧検出器8より出力され
た差圧信号のアナログ量を例えばメータ等で表示するこ
とにより流体中に含まれる微粒子の割合いを検出するこ
とができる。
On the other hand, if the fluid to be detected contains particulates, the particulates are captured by the filter 2.7 and an enrichment prevention effect occurs.
The pressure drop across filters 2, 7 increases. On the other hand, since the pressure drop in the constriction section 4.5 remains unchanged even when it contains fine particles, the fluid pressure in the conduit 3 is lower than in the equilibrium state, and the conduit I8 detects and responds to the pressure difference. Outputs a differential pressure signal. By displaying the analog value of the differential pressure signal output from the differential pressure detector 8 using, for example, a meter, it is possible to detect the proportion of particulates contained in the fluid.

このように本実施例によれば、2個のフィルタ2.7と
2個の絞り部4.5および1個の差圧検出器8とを用い
てブリッジ回路を形成し、これに流れる流体が清浄なと
きは平衡状態となるように、また流体中に微粒子がある
場合は平衡状態が崩れるようにしたので、これを差圧検
出器8で検出することにより流体中の微粒子量を^感度
および高精度で、かつ連続的に短時間で検出できる。な
お、上記実施例では第1の絞り部4と第2のフィルタ7
の出口をY形の戻り管11にて接続し、これら絞り部4
及びフィルタ7より流出する流体を合流させるようにし
たが、本発明によれば合流させずに戻り管を2本の管路
としても同様の効果が得られる。また、本発明によれば
上記絞り部4.5及び又はフィルタ2.7のいずれか一
方もしくは両方に圧力降下を手動で加減できる可変絞り
機構を付加してもよい。このようにすれば絞り部4.5
及びフィルタ2.7の圧力降下の誤差を吸収できるので
平衡状態の調整が容易となる。
In this way, according to the present embodiment, a bridge circuit is formed using two filters 2.7, two throttle sections 4.5, and one differential pressure detector 8, and the fluid flowing through the bridge circuit is When the fluid is clean, it is in an equilibrium state, and when there are particles in the fluid, the equilibrium state is disrupted.By detecting this with the differential pressure detector 8, the amount of particles in the fluid can be determined by sensitivity and It can be detected with high precision and continuously in a short time. Note that in the above embodiment, the first aperture section 4 and the second filter 7
The outlet of the
Although the fluids flowing out from the filter 7 and the filter 7 are made to join together, according to the present invention, the same effect can be obtained even if the return pipe is made into two pipes without making them join. Further, according to the present invention, a variable throttle mechanism may be added to either or both of the throttle section 4.5 and/or the filter 2.7, which can manually adjust the pressure drop. In this way, the aperture part 4.5
Since the error in the pressure drop of the filter 2.7 can be absorbed, the equilibrium state can be easily adjusted.

以上の説明から明らかなように本発明によれば、検出対
象流体の入口をなす入口開口とこの入口開口より流入し
た流体を三方して流出する出口開口とを有する分岐管路
と、この分岐管路の一方の出口開口に接続され分岐管路
より流出した流体中の微粒子を捕捉する第1のフィルタ
と、この第1のフィルタを通過した流体に圧力降下を生
じさせる第1の絞り部と、これら第1の絞り部および第
1のフィルタを接続する第1の管路と、前記分岐管の他
方の出口開口に接続され分岐管路より流出した流体に圧
力降下を生じさせる第2の絞り部と、この第2の絞り部
を通過した流体中の微粒子を捕捉する第2のフィルタと
、これら第2のフィルタおよび第2の絞り部を接続する
第2の管路と、この第2の管路ど前記第1の管路との圧
力差を検出する差圧検出器と、この差圧検出器で計測さ
れた圧力差゛に基づいて前記流体中の微粒子量を検出す
る手段とを具備したので、簡単な構成により流体中の微
粒子量を高感度および高精度で、かつ連続的に短時間で
検出できる微粒子量検出装置を提供できる。
As is clear from the above description, according to the present invention, there is provided a branch pipe having an inlet opening that serves as an inlet for a fluid to be detected, and an outlet opening through which the fluid flowing in from the inlet opening flows out in three directions; a first filter that is connected to one outlet opening of the channel and captures particulates in the fluid flowing out from the branch pipe; and a first constriction that causes a pressure drop in the fluid that has passed through the first filter; A first conduit that connects these first constrictions and the first filter, and a second constriction that is connected to the other outlet opening of the branch pipe and causes a pressure drop in the fluid flowing out from the branch conduit. a second filter that captures particulates in the fluid that has passed through the second constriction section; a second pipe line that connects these second filters and the second constriction section; A differential pressure detector for detecting a pressure difference between the fluid passage and the first pipeline, and a means for detecting the amount of particulates in the fluid based on the pressure difference measured by the differential pressure detector. Therefore, it is possible to provide a particulate amount detection device that can continuously detect the amount of particulates in a fluid in a short time with high sensitivity and precision using a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す微粒子量検出装置の概略構
成図である。 1・・・分岐管、2.7・・・フィルタ、4,5・・・
絞り部、8・・・差圧検出器。 出願人復代理人 弁理士 鈴江武彦 手続補正書 昭和 99.12.井3 日 特許庁長官 志 賀 学 殿 ・ 1、事件の表示 特願昭59−117776号 2、発明の名称 微粒子量検出装置 3、補正をする者 事件との関係 特許出願人 (620)三菱重工業 株式会社 4、復代理人 ゛ 東京都港区虎ノ門1丁目26番5号 第17森ビル7、
補正の内容 (1)明細書第7頁第12行目の (2)明細書第7頁第16行目の「である。」の次に下
記の文章を加入する。 記 以上は本ブリッジ回路の平衡条件の一般式であるが、こ
こでZp・a =’Zpb=ZRa = ZRbとした
場合、即ちフィルタ2と7は同じものを、また絞り郁4
と5は同じものを用い、かつこれらフィルタと絞り部の
流れ抵抗を等しくした場合、これは上記平衡条件を満足
する。 (3)明細書第7頁第17行目の「平衡条件」を「ブリ
ッジ回路」と訂正する。 (4)明細書第8頁第4〜6行目の[各フィルタ〜を満
たし、」を削除する。 (5)明細書第8頁第7〜8行目の「圧力差が〜ので」
を「圧力差がないので」と訂正する。 (6)明細書第8頁第17〜18行目の[平衡状態〜生
じ、jを「平衡状態が崩れ」と訂正する。
The figure is a schematic configuration diagram of a particulate amount detection device showing an embodiment of the present invention. 1... Branch pipe, 2.7... Filter, 4, 5...
Throttle section, 8... Differential pressure detector. Applicant Sub-Attorney Patent Attorney Takehiko Suzue Procedural Amendment Showa 1999.12. Mr. Manabu Shiga, Commissioner of the Japan Patent Office 1. Indication of the case Japanese Patent Application No. 59-117776 2. Name of the invention Particulate amount detection device 3. Person making the amendment Relationship with the case Patent applicant (620) Mitsubishi Heavy Industries Co., Ltd. 4, sub-agent ゛17 Mori Building 7, 1-26-5 Toranomon, Minato-ku, Tokyo.
Contents of the amendment: (1) The following sentence will be added next to "is." on page 7, line 12 of the specification. (2) On page 7, line 16 of the specification. The above is a general formula for the equilibrium condition of this bridge circuit. Here, if Zp・a = 'Zpb = ZRa = ZRb, that is, filters 2 and 7 are the same, and filter 4 is
and 5 are the same, and if the flow resistances of these filters and the restrictor are made equal, this satisfies the above equilibrium condition. (3) "Equilibrium condition" on page 7, line 17 of the specification is corrected to "bridge circuit." (4) Delete "[each filter...]" from lines 4 to 6 on page 8 of the specification. (5) “Because the pressure difference is...” on page 8 of the specification, lines 7-8
Correct it to ``Because there is no pressure difference.'' (6) On page 8 of the specification, lines 17 and 18, [equilibrium state ~ occurs, j is corrected to read "equilibrium state collapses."

Claims (1)

【特許請求の範囲】[Claims] 検出対象流体の入口をなす入口開口とこの入口開口より
流入した流体を二分して流出する出口開口とを有する分
岐管路と、この分岐管路の一方の、 出口開口に接続さ
れ分岐管路1より流出した流体中の微粒子を捕捉する第
1のフィルタと、この第1のフィルタを通過した流体に
圧力降下を生じさせる第1の絞り部と、これら第1の絞
り部および第1のフィルタを接続する第1の管路と、前
記分岐管の他方の出口開口に接続され分、枝管路より流
出した流体に圧力降下を生じさせる第2の絞り部と、こ
の第2の絞り部を通過した流体中の微粒子を捕捉する第
2のフィルタと、これら第2のフィルタおよび第2の絞
り部を接続する第2の管路と、この第2の管路と前記第
1の管路との圧力差を検出する差圧検出器と、この差圧
検出器で計測された圧力差に基づいて前記流体中の微粒
子量を検出する手段どを具儒したことを特徴とする微粒
子量検出装置。
A branch pipe line having an inlet opening that serves as an inlet for a fluid to be detected, and an outlet opening that divides the fluid flowing in from the inlet opening into two and flows out, and a branch pipe line 1 that is connected to the outlet opening of one of the branch pipes. a first filter that captures particulates in the fluid that has flowed out; a first constriction that causes a pressure drop in the fluid that has passed through the first filter; a first pipe line to be connected, a second constriction part connected to the other outlet opening of the branch pipe and causing a pressure drop in the fluid flowing out from the branch pipe; and a fluid passing through the second constriction part. a second filter that captures particulates in the fluid; a second pipe line that connects the second filter and the second constriction section; and a second pipe line that connects the second pipe line and the first pipe line. A particulate amount detection device comprising: a differential pressure detector for detecting a pressure difference; and means for detecting the amount of particulates in the fluid based on the pressure difference measured by the differential pressure detector.
JP11777684A 1984-06-08 1984-06-08 Apparatus for detecting quantity of fine particles Pending JPS60262040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11777684A JPS60262040A (en) 1984-06-08 1984-06-08 Apparatus for detecting quantity of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11777684A JPS60262040A (en) 1984-06-08 1984-06-08 Apparatus for detecting quantity of fine particles

Publications (1)

Publication Number Publication Date
JPS60262040A true JPS60262040A (en) 1985-12-25

Family

ID=14720037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11777684A Pending JPS60262040A (en) 1984-06-08 1984-06-08 Apparatus for detecting quantity of fine particles

Country Status (1)

Country Link
JP (1) JPS60262040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429734A (en) * 1987-07-24 1989-01-31 Canon Kk Particle analyzer
EP0408758A1 (en) * 1988-12-23 1991-01-23 Kabushiki Kaisha Komatsu Seisakusho Apparatus for indicating contamination degree in a hydraulic circuit and determining method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429734A (en) * 1987-07-24 1989-01-31 Canon Kk Particle analyzer
JPH0587779B2 (en) * 1987-07-24 1993-12-17 Canon Kk
EP0408758A1 (en) * 1988-12-23 1991-01-23 Kabushiki Kaisha Komatsu Seisakusho Apparatus for indicating contamination degree in a hydraulic circuit and determining method therefor
US5239861A (en) * 1988-12-23 1993-08-31 Kabushiki Kaisha Komatsu Seisakusho Device for indicating contamination degree of hydraulic circuit and method of judging the contamination degree

Similar Documents

Publication Publication Date Title
US6614242B2 (en) Method and device for oil-in-water measurement
CA1130604A (en) Oil-in-water method and detector
US3400575A (en) Contaminant sampling apparatus and method
JPH05503150A (en) flow monitor
US3787122A (en) Light scattering particle analyzer
JPS6270731A (en) Apparatus for measuring impurities in pure water
US4786473A (en) Apparatus for measuring impurities in pure water
US3499315A (en) Contamination determination in a fluid system
US6966994B2 (en) Contamination control for engines
EP0046740A2 (en) A method and device for testing filters
WO2015162043A2 (en) Hydraulic installation and method of operating such an installation
CN110118717A (en) The liquid channel system and its application method and flow cytometer of flow cytometer
JPS60262040A (en) Apparatus for detecting quantity of fine particles
CN107466364A (en) The equipment counted to particle
US3915570A (en) Optical fluid contamination and change monitor method and apparatus
US5376163A (en) Filter system
US6474144B1 (en) Determining the level of particulate contamination in a fluid power system
TWM592966U (en) Water quality monitoring system
AU729963B2 (en) Evaluation of particulate contaminants
US3709614A (en) Detector apparatus for particulate contaminants in a fluid utilizing parallel flow paths
US6248243B1 (en) Solids monitoring filter meter
CN210109069U (en) Gas pretreatment device with mixing instrument and gas detection device
CN210109070U (en) Gas pretreatment device with reverse pumping function and gas detection device
RU2545320C1 (en) Method of determination of content of pollution in fuel supplied to rocket unit tank during tests
CN219608868U (en) Online multi-gas detection device