JPS60260874A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPS60260874A
JPS60260874A JP11640884A JP11640884A JPS60260874A JP S60260874 A JPS60260874 A JP S60260874A JP 11640884 A JP11640884 A JP 11640884A JP 11640884 A JP11640884 A JP 11640884A JP S60260874 A JPS60260874 A JP S60260874A
Authority
JP
Japan
Prior art keywords
signal
matrix
circuit
energy
dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11640884A
Other languages
Japanese (ja)
Inventor
Masatoshi Tanaka
正敏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP11640884A priority Critical patent/JPS60260874A/en
Publication of JPS60260874A publication Critical patent/JPS60260874A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To improve the accuracy of position detection of a scintillation camera by providing a dividing circuit between a matrix adding circuit and a position calculating circuit, and dividing a matrix signal by an energy signal. CONSTITUTION:An incident gamma ray is converted to light by a scintillator 1, and converted to an electric signal 101 by a photoelectric multiplier 2. The electric signal is added by a matrix adding circuit 3 for each matrix and becomes a matrix signal 102, and all of them are added by an adding circuit 8 and become an energy signal 106. Dividing circuits 20 of X9 channel and Y5 channel output a matrix signal 102'' obtained by dividing the matrix signal 102 by the energy signal 106. As the matrix signal 102'' is divided by the energy signal 106 by the dividing circuit 20, the magnitude as a whole becomes constant regardless of energy of incident gamma rays, statistical fluctuation in the scintillator 1 and photoelectric multiplier, and spread in magnitude of signals caused by unstable factors of the circuit.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、シンチレーションカメラに関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a scintillation camera.

〔発明の背景〕[Background of the invention]

シンチレーションカメラは、患者に投与した放射性医薬
品が放射したr線を検出して放射性医薬品の体内分布像
を得る装置であシ、臓器の機能診断に有効である為、広
く使用されている。
A scintillation camera is a device that detects r-rays emitted by a radiopharmaceutical administered to a patient to obtain an image of the distribution of the radiopharmaceutical in the body, and is widely used because it is effective in diagnosing the function of organs.

第1図に、このシンチレーションカメラの構成を示し、
動作を説明する。第1図に於いて、1はr線が入射する
とそのエネルギーに対応する量の閃光を発生するシンチ
レータ、2はシンチレータ1に光学的に結合され、入射
してきた光を電気信号101に変換する光電子増倍管で
ある。
Figure 1 shows the configuration of this scintillation camera.
Explain the operation. In Figure 1, 1 is a scintillator that generates a flash of light corresponding to the energy of R-rays when it is incident, and 2 is a photoelectron that is optically coupled to scintillator 1 and converts the incident light into an electrical signal 101. It is a multiplier tube.

第2図に、19本の光電子増倍管2をシンチレーション
に配列した例を示す。各光電子増倍管2はその配列によ
りx方向9列、Y方向5行に配属される。例えば、中心
の光電子増倍管2はX5列。
FIG. 2 shows an example in which 19 photomultiplier tubes 2 are arranged in a scintillation pattern. Each photomultiplier tube 2 is arranged in 9 columns in the x direction and 5 rows in the y direction. For example, the photomultiplier tube 2 in the center is in the X5 row.

73行に配属されることになる。第1図に於いて、3は
X方向9チヤンネル、Y方向5チヤンネルの加算器から
成る行列加算回路で、光電子増倍管2の各出力信号10
1を前記配属方法によって決まる行列毎に加算して行列
信号102を出力する。
He will be assigned to line 73. In FIG. 1, reference numeral 3 denotes a matrix addition circuit consisting of adders for 9 channels in the X direction and 5 channels in the Y direction, and each output signal 10 of the photomultiplier tube 2 is
1 is added to each matrix determined by the allocation method, and a matrix signal 102 is output.

4は入射r線のエネルギーに対して分圧比を切換えてエ
ネルギーの大小による信号の大きさの変化を一定の、範
囲内に押さえる14チヤンネルの分圧増幅回路、5は分
圧回路4からの行、列信号102′を時系列に並べたX
” 、X−、Y” 、Y−信号103を作る遅延線ミキ
シング回路、6は時系列信号103を遅延線クリッピン
グにより双極性パルス信号104にするX’、X−、Y
” 、Y−4チヤンネルの波形整形回路、7は双極性パ
ルス信号104の零交差を検出するX” 、X−、Y+
4 is a 14-channel voltage divider amplifier circuit that switches the voltage division ratio with respect to the energy of the incident R-ray to suppress changes in signal magnitude due to the energy level within a certain range; 5 is a line from the voltage divider circuit 4; , X in which column signals 102' are arranged in time series
", X-, Y", a delay line mixing circuit that produces the Y-signal 103;
", Y-4 channel waveform shaping circuit, 7 detects zero crossing of bipolar pulse signal 104", X-, Y+
.

Y″44チヤンネルロクロス検出回路である。This is a Y″44 channel low cross detection circuit.

一方、第1図に於いて、8は光電子増倍管2の出力信号
10f−を全て加算して入射r線のエネルギーに対応す
るエネルギー信号106を作る加算回路、9はエネルギ
ー信号106の大きさから入射してきたr線が目的とす
るエネルギーを持つか否かを判定する波高分析回路1,
10は波高分析回路からの判定信号107によシ輝度変
調信号UN8108と位置計算制御信号109を出力す
る制御回路、11は位置計算制御信号109と前記ゼロ
クロス検出回路7からの零交差信号105との時間差を
電圧に変換するx” 、x−、y“、Y−4チヤンネル
の時間−電圧変換回路、1′2は時間−電圧変換回路1
1からのX” 、X−、Y” 、Y−信号110に対し
てX+からX−を、Y+からY−を引算して位置信号X
111とY112を作る引算回路である。
On the other hand, in FIG. 1, 8 is an addition circuit that adds all the output signals 10f- of the photomultiplier tube 2 to generate an energy signal 106 corresponding to the energy of the incident r-ray, and 9 is the magnitude of the energy signal 106. a pulse height analysis circuit 1 for determining whether or not the r-ray incident from the source has the desired energy;
10 is a control circuit that outputs the brightness modulation signal UN8108 and the position calculation control signal 109 according to the determination signal 107 from the wave height analysis circuit; 11 is a control circuit that outputs the position calculation control signal 109 and the zero crossing signal 105 from the zero cross detection circuit 7; 1'2 is a time-voltage conversion circuit 1 with x'', x-, y'', and Y-4 channels that converts the time difference into voltage.
The position signal X is obtained by subtracting X- from X+ and Y- from Y+ for the
This is a subtraction circuit that creates 111 and Y112.

以上に説明した従来のシンチレーションカメラに於いて
、分圧増幅回路4を行列加算回路3と遅延線ミキシング
回路5の間に置く理由は、入射したr線のエネルギーの
大小によってゼロクロス検出回路7での零交差検出精度
が変化するのを防ぐ為と、遅延線ミキシング回路5以降
の位置計算回路系に入線r線のエネルギーの大小によら
ず一定の範囲の大きさを持つ折々す信号102′を入力
することによシ位置計算回路系内のノイズによって位置
検出精度(分解能)が低下することを防ぐ為である。後
者の理由は、入射r線のエネルギーが小さい場合に重要
であり、ノイズの影響を受け易すい小さな行列信号10
2をエネルギーが大きい場合の信号の大きさと同等にす
ることによりノイズの影響を最小限に押さえている。し
かし、前者の理由に対しては、従来の分圧増幅回路4は
不充分である。すなわち、分圧増幅回路4は使用する入
射r線エネルギー範囲を数段階に分ける分圧比を持つが
、通常は4〜10段程度であシ、行列信号102′の大
きさを完全に一定にできない。また、一定のr線エネル
ギーに対してシンチレータ1の発光量や光電子増倍管2
の出力信号101の大きさは統計的なばらつきや回路の
不安定要因で10から15係程度の広がりを持つが、従
来の分圧増幅回路4ではこの広がシを補正することがで
きなかった。
In the conventional scintillation camera described above, the reason why the voltage dividing amplifier circuit 4 is placed between the matrix addition circuit 3 and the delay line mixing circuit 5 is that the zero cross detection circuit 7 is In order to prevent the zero crossing detection accuracy from changing, a signal 102' having a constant range of magnitude is input from time to time to the position calculation circuit system after the delay line mixing circuit 5, regardless of the magnitude of the energy of the incoming r-line. This is to prevent the position detection accuracy (resolution) from deteriorating due to noise in the position calculation circuit system. The latter reason is important when the energy of the incident r-rays is small, and small matrix signals 10 that are susceptible to noise
The influence of noise is minimized by making 2 equal to the signal size when the energy is large. However, for the former reason, the conventional voltage dividing amplifier circuit 4 is insufficient. That is, although the voltage division amplifier circuit 4 has a voltage division ratio that divides the range of incident r-ray energy used into several stages, it is usually about 4 to 10 stages, and the magnitude of the matrix signal 102' cannot be made completely constant. . In addition, the amount of light emitted by the scintillator 1 and the photomultiplier tube 2 for a constant r-ray energy
The magnitude of the output signal 101 has a spread of about 10 to 15 factors due to statistical variations and circuit instability factors, but the conventional voltage dividing amplifier circuit 4 could not correct this spread. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、入射r線のエネルギーの大小やシンチ
レータおよび光電子増倍管による信号の大きさの広がり
に対して、一定の大きさの行列信号を後段の位置計算回
路系へ供給することによシ位置検出精度のすぐれたシン
チレーションカメラを提供することにある。
The purpose of the present invention is to supply a matrix signal of a constant size to the position calculation circuit system in the subsequent stage, regardless of the magnitude of the energy of incident R-rays or the spread of the signal magnitude due to the scintillator and photomultiplier tube. An object of the present invention is to provide a scintillation camera with excellent position detection accuracy.

〔発明の概要〕[Summary of the invention]

従来のシンチレーションカメラで行列加算回路□と位置
計算回路系の間に入れている分圧増幅回路の代りに本発
明では、行列信号をエネルギー信号で除算する除算回路
を入れることにょシ、上記問題点を解決するものである
In the present invention, instead of the partial voltage amplifier circuit inserted between the matrix addition circuit □ and the position calculation circuit system in the conventional scintillation camera, a division circuit that divides the matrix signal by the energy signal is inserted, which solves the above problems. This is to solve the problem.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図にょシ説明する。第1
図の従来例と同じ部分には同一符号を付し詳細な説明を
省略する。
An embodiment of the present invention will be described below with reference to FIG. 1st
The same parts as in the conventional example in the figure are given the same reference numerals and detailed explanations will be omitted.

第3図に於いて、入射r線はシンチレータ1で光に変換
され、光電子増倍管2で電気信号101になる。電気信
号101は行列加算回路3で行列毎に加算され行列信号
102になり、また加算回路8で全て加算されてエネル
ギー信号106になる。X9チヤンネル、X5チヤンネ
ルの除算回路20は行列信号102をエネルギー信号1
06で除算した行列信号102“を出力する。以下、遅
延線ミキシング回路5以降の位置計算系と波高分析回路
9と制御回路10は第1図の従来例と同一の処理を行な
い位置信号X111とY112および輝度変調信号UN
B 108を出力する。
In FIG. 3, an incident r-ray is converted into light by a scintillator 1, and converted into an electric signal 101 by a photomultiplier tube 2. The electric signals 101 are added matrix by matrix in the matrix addition circuit 3 to become a matrix signal 102, and all are added in the addition circuit 8 to become an energy signal 106. The division circuits 20 of the X9 channel and the X5 channel convert the matrix signal 102 into the energy signal 1.
The matrix signal 102'' divided by Y112 and brightness modulation signal UN
Output B 108.

行列信号102“は除算回路20によシエネルギー信号
106で除算されるので、入射r線のエネルギーや、シ
ンチレータ1および光電子増倍管での統計的なゆらぎと
回路の不安定要因によって生じる信号の大きさの広がシ
によらず全体的な大きさが一定になる。X9列、Y5行
の行列信号102“はr線の入射位置により相互の大き
さが変化するのみであシ、位置の情報のみを有すること
になる。この結果、後段の位置計算回路系での位置検出
精度(分解能)を著しく改善することができる。
Since the matrix signal 102'' is divided by the energy signal 106 by the division circuit 20, the energy of the incident R-ray, the statistical fluctuations in the scintillator 1 and the photomultiplier tube, and the signal caused by instability factors of the circuit are calculated. The overall size remains constant regardless of the size spread.The matrix signals 102'' in the X9 column and Y5 row only change in mutual size depending on the incident position of the r-ray. It will have only information. As a result, the position detection accuracy (resolution) in the subsequent position calculation circuit system can be significantly improved.

また、この行列信号をエネルギー信号で除算する方法は
、近年検討されつつある高速デジタル位置計算回路によ
るシンチレーションカメラにも有効である。デジタル位
置計算方式のシンチレーションカメラでは、行列信号1
02をAD変換回路でデジタル信号に変換して高速デジ
タル位置計算回路で位置を決定する。この場合、AD変
換回路の前に除算回路を入れれば、AD変換回路のデジ
タル化精度(ビット数)や高速デジタル位置計算回路の
回路量を大幅に減らすことができる。また、このデジタ
ル位置計算方式のシンチレーションカメラでは、AD変
換回路に除算機能を持たせることができる。一般に市販
されているAD変換器は1個のアナログ信号端子と複数
個のデジタル信号端子と基準電圧入力端子を持つ。内部
に基準電圧源を持つタイプでも、内部で接続せず基準電
圧出力端子を設けて外部配線で接続する様にして回路設
計の自由度を大きくしているものが多い。AD変換器は
、この基準電圧入力端子の電圧を基準としてアナログ信
号をデジタル信号に変換す“る。そどで、基準電圧入力
端子に前記エネルギー信号106を入力し、これを基準
にしてアナログ入力端子に入力した行列信号102をデ
ジタル化する様にすれば、実質的に行列信号102をエ
ネルギー信号106で除算してからAD変換するのと同
じ効果が得られる。このAD変換回路の1チャンネル分
を第4図に示す。第4図に於いて21はAD変換器で、
そのアナログ入力端子に行列信号102のひとつが入力
し、基準電圧入力端子にはエネルギー信号106が入力
すム。AD変換器21のデジタル行列信号102”は入
射r線エネルギー等に影響されない位置情報のみを有す
る信号となり、後段の高速デジタル位置計算回路に人力
する。
Furthermore, this method of dividing the matrix signal by the energy signal is also effective for scintillation cameras using high-speed digital position calculation circuits, which are being studied in recent years. In a scintillation camera using a digital position calculation method, the matrix signal 1
02 is converted into a digital signal by an AD conversion circuit, and the position is determined by a high-speed digital position calculation circuit. In this case, by inserting a division circuit before the AD conversion circuit, the digitization precision (number of bits) of the AD conversion circuit and the amount of circuitry of the high-speed digital position calculation circuit can be significantly reduced. Furthermore, in this digital position calculation type scintillation camera, the AD conversion circuit can be provided with a division function. Generally, commercially available AD converters have one analog signal terminal, a plurality of digital signal terminals, and a reference voltage input terminal. Even for types that have an internal reference voltage source, many have a reference voltage output terminal that is not connected internally and is connected via external wiring, increasing the degree of freedom in circuit design. The AD converter converts an analog signal into a digital signal using the voltage at this reference voltage input terminal as a reference.Then, the energy signal 106 is input to the reference voltage input terminal, and the analog input signal is converted using this as a reference. By digitizing the matrix signal 102 input to the terminal, you can essentially obtain the same effect as dividing the matrix signal 102 by the energy signal 106 and then AD converting it.One channel of this AD conversion circuit is shown in Fig. 4. In Fig. 4, 21 is an AD converter;
One of the matrix signals 102 is input to the analog input terminal, and an energy signal 106 is input to the reference voltage input terminal. The digital matrix signal 102'' of the AD converter 21 becomes a signal having only position information that is not affected by incident r-ray energy, etc., and is manually input to a high-speed digital position calculation circuit at the subsequent stage.

〔発明の効果〕 本発明によれば、位置計算回路系に入力する行列信号を
入射r線のエネルギーや、シンチレータおよび光電子増
倍管での統計的なゆらぎと回路の不安定要因により生じ
る信号の大きさの広がりによらず一定にでき、シンチレ
ーションカメラの位置検出精度を向上させる効果がある
[Effects of the Invention] According to the present invention, the matrix signal input to the position calculation circuit system is controlled by the energy of incident r-rays, statistical fluctuations in the scintillator and photomultiplier tube, and signal instability caused by circuit instability factors. It can be kept constant regardless of the size spread, and has the effect of improving the position detection accuracy of the scintillation camera.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のシンチレーションカメラの構成例、第
2図はシンチレータ1上への光電子増倍管2の配列図、
第3図は本発明の実施例のシンチレーションカメラの構
成図、第4図はデジタフ9位置計算型シソチレーション
カメラに於けるAD変換回路の一部詳細図である。 1・・・シンチレータ、2・・・光電子増倍管、3・・
・行列加算回路、4・・・分圧増幅回路、5・・・遅延
線ミキシング回路、6・・・波形整形回路、7・・・ゼ
ロクロス検出回路、8・・・加算回路、9・・・波高分
析回路、10・・・制御回路、11・・・時間−電圧変
換回路、12・・・引算回路、20・・・除算回路、2
1・・・AD変換器。 代理人 弁理士 高橋明夫
FIG. 1 is an example of the configuration of a conventional scintillation camera, and FIG. 2 is an arrangement diagram of a photomultiplier tube 2 on a scintillator 1.
FIG. 3 is a block diagram of a scintillation camera according to an embodiment of the present invention, and FIG. 4 is a partially detailed diagram of an AD conversion circuit in a digital 9-position calculation type scintillation camera. 1...Scintillator, 2...Photomultiplier tube, 3...
- Matrix addition circuit, 4... Voltage amplification circuit, 5... Delay line mixing circuit, 6... Waveform shaping circuit, 7... Zero cross detection circuit, 8... Addition circuit, 9... Wave height analysis circuit, 10... Control circuit, 11... Time-voltage conversion circuit, 12... Subtraction circuit, 20... Division circuit, 2
1...AD converter. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] 1、シンチレータと、このシンチレータ上に規則的に配
列された複数個の光電子増倍管と、全ての光電子増倍管
の出力を加算してエネルギー信号を作る加算回路と、こ
れら光電子増倍管の出力をその配属される行および列毎
にまとめて加算する複数個の行列加算回路と、これら行
列加算回路の行列信号の相対的な大きさの差からrff
iJ入射位置信号を作る位置計算回路から成るシンチレ
ーションカメラに於いて、前記行列加算回路と位置計算
回路の間に置かれ、行列信号を前記エネルギー信号で除
算する除算回路を設けたことを特徴とするシンチレーシ
ョンカメラ。
1. A scintillator, a plurality of photomultiplier tubes regularly arranged on the scintillator, an adding circuit that adds the outputs of all the photomultiplier tubes to create an energy signal, and a The rff is determined from the difference in the relative magnitude of the matrix signals of multiple matrix adder circuits that collectively add the outputs for each row and column to which they are assigned, and the matrix signals of these matrix adder circuits.
A scintillation camera comprising a position calculation circuit that generates an iJ incident position signal, characterized in that a division circuit is provided between the matrix addition circuit and the position calculation circuit, and divides the matrix signal by the energy signal. scintillation camera.
JP11640884A 1984-06-08 1984-06-08 Scintillation camera Pending JPS60260874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11640884A JPS60260874A (en) 1984-06-08 1984-06-08 Scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11640884A JPS60260874A (en) 1984-06-08 1984-06-08 Scintillation camera

Publications (1)

Publication Number Publication Date
JPS60260874A true JPS60260874A (en) 1985-12-24

Family

ID=14686316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11640884A Pending JPS60260874A (en) 1984-06-08 1984-06-08 Scintillation camera

Country Status (1)

Country Link
JP (1) JPS60260874A (en)

Similar Documents

Publication Publication Date Title
CA1277447C (en) Scintillation camera
GB1568381A (en) Device for detecting radiation and including an automatic control system
US5371362A (en) Nuclear detection process with base potential correction and correspnding apparatus (particularly a gamma-camera)
JPH0572555B2 (en)
US4100413A (en) Radiation imaging apparatus with improved accuracy
US4900931A (en) Device for locating nuclear radiation and radiation image formation device incorporating such a locating device
JPS60260874A (en) Scintillation camera
US5034905A (en) Divider circuit using analog-digital converter
GB2135451A (en) Radiation measuring device comprising a scintillator and a photodetector
US4969095A (en) Scintillation camera having computer control of electrical signals indicating scintillations
US4434369A (en) Radiographic camera
JPH07294649A (en) Scintillation camera
JPS62102739A (en) X-ray tomographic apparatus
JPS5892973A (en) Radiation detector for emission ct apparatus
GB1325907A (en) Scintillation camera device
JP3065625B2 (en) Radiation detector
JPH0543426Y2 (en)
JPH0457987B2 (en)
JPH04170225A (en) A/d converter
JPS59137874A (en) A/d conversion circuit for scintillation camera
JPS60260875A (en) Scintillation camera
JPH0619445B2 (en) Gamma camera device
US6297490B1 (en) Method and apparatus for determining the centre photodetector in a digital scintillation camera
CA2273763C (en) Method and apparatus for determining the centre photodetector in a digital scintillation camera
JPS6044633B2 (en) scintillation camera