JPS60260875A - Scintillation camera - Google Patents

Scintillation camera

Info

Publication number
JPS60260875A
JPS60260875A JP11641084A JP11641084A JPS60260875A JP S60260875 A JPS60260875 A JP S60260875A JP 11641084 A JP11641084 A JP 11641084A JP 11641084 A JP11641084 A JP 11641084A JP S60260875 A JPS60260875 A JP S60260875A
Authority
JP
Japan
Prior art keywords
signal
energy
matrix
digital
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11641084A
Other languages
Japanese (ja)
Inventor
Masatoshi Tanaka
正敏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP11641084A priority Critical patent/JPS60260875A/en
Publication of JPS60260875A publication Critical patent/JPS60260875A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To simplify the configuration of a circuit by obtaining energy calibrated digital signals of each row and column by adding an energy signal to an AD convertor as a reference voltage signal. CONSTITUTION:The AD convertor 5 is provided with a reference voltage input terminal, and outputs a digital signal corresponding to the ratio of magnitude of inputted analog signal to the reference voltage signal. An analog matrix signal 103 is inputted as an input analog signal of the AD convertor 5, and an energy signal 102 is inputted as the reference voltage signal. As the ratio of magnitude of the analog matrix signal 103 to energy signal 102 is constant even when the magnitude of the energy signal changes provided that the position of incidence of gamma rays is fixed, a digital matrix signal 105 becomes one calibrated for energy. Thus, AD conversion and correction for energy of the matrix signal become possible only by the AD converting circuit 5, and the circuit configuration can be simplified.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、行及び列の加算信号をデジタル化し、行及
び列の信号の大きさをデジタル計算処理してr線入対位
置を決定するシンチレーションカメラに関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is a scintillation method that digitizes row and column addition signals and digitally processes the magnitudes of the row and column signals to determine the r-ray entry pair position. It's about cameras.

〔発明の背景〕[Background of the invention]

近年のエレクトロニクスの発展によって、高速かつ高精
度のAD変換器やデジタル素子が容易に入手できるよう
になってきた。これにょシ、アナログ回路による位置計
算に較べて理想的な重み計算が実現容易なデジタル回路
による位置計算方法が実用化されつつある。
With the recent development of electronics, high-speed and high-precision AD converters and digital elements have become easily available. In response to this, position calculation methods using digital circuits, which can more easily realize ideal weight calculations than position calculations using analog circuits, are being put into practical use.

このデジタル回路による位置計算方法は、基本的にはア
ナログ回路による位置計算と同じで、シンチレータ上に
規則的に配列した光電子増倍管の出力をその光電子増倍
管が属する行及び列毎にまとめて加算して行列・信号を
作り、この行列信号をAD変換器でデジタル信号(変換
して得たデジタル行列信号に重み付は計算処理を行ない
位置信号を得る本うにしている。ところが、デジタル行
列信号をそのまま重み付は計算処理すると入射γ線エネ
ルギーの高低や光電ピークの広がシによシ位置分解能が
低下する問題がある為、デジタル行列信号をエネルギー
信号で除算して正規化する必要がある。この除算は各行
列に対して必要であり、例えば光電子増倍管が61本の
シンチレーションカメラでは行列数は26である為、2
6チヤンネルもの除算回路が必要である。したがって、
従来のデジタル回路による位置計算方法では、非常に多
くの除算回路が必要にな多回路が複雑になっている問題
があった。
The position calculation method using this digital circuit is basically the same as the position calculation using an analog circuit, and the outputs of the photomultiplier tubes arranged regularly on the scintillator are summarized for each row and column to which the photomultiplier tubes belong. In this method, the matrix signal is converted into a digital signal by an AD converter (the digital matrix signal obtained by converting the matrix signal is subjected to weighting calculation processing to obtain a position signal. If the matrix signal is weighted as is, there is a problem that the position resolution will decrease due to the height of the incident gamma ray energy and the spread of the photoelectric peak, so it is necessary to normalize the digital matrix signal by dividing it by the energy signal. This division is necessary for each matrix; for example, in a scintillation camera with 61 photomultiplier tubes, the number of matrices is 26, so 2
As many as 6 channels of division circuits are required. therefore,
Conventional position calculation methods using digital circuits have the problem of requiring a large number of division circuits, making the multiple circuits complex.

〔発明の目的〕[Purpose of the invention]

本発明は、回路構成の簡素化を図ったデジタル位置計算
型シンチレーションカメラを提供することにある。
An object of the present invention is to provide a digital position calculation type scintillation camera with a simplified circuit configuration.

〔発明の概要〕[Summary of the invention]

本発明は、AD変換器の基準電圧信号としてエネルギー
信号を加えること、AD変換と正規化をAD変換器のみ
で行なうことで、回路構成の簡素化を実現するものであ
る。
The present invention simplifies the circuit configuration by adding an energy signal as a reference voltage signal of the AD converter and performing AD conversion and normalization only by the AD converter.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によシ説明する。第1
・図に於いて、シンチレータ1にγ線が入射するとその
エネルギーに比例した光が発生し、シンチレータlに光
学的に結合した光電子増倍管2で電気信号になる。この
光電子増倍管2の出力信号101は、シンチレータ1上
の発光点に近い光電子増倍管のもの程大きく、また全て
の出力信号101の和は入射γ線エネルギーに比例する
An embodiment of the present invention will be explained below with reference to FIG. 1st
- In the figure, when a γ-ray enters a scintillator 1, light proportional to its energy is generated, which is converted into an electrical signal by a photomultiplier tube 2 optically coupled to the scintillator 1. The output signal 101 of the photomultiplier tube 2 is larger as the photomultiplier tube is closer to the light emitting point on the scintillator 1, and the sum of all output signals 101 is proportional to the incident γ-ray energy.

加算回路3は全ての出力信号101を加算してエネルギ
ー信号102を作る。
Adder circuit 3 adds all output signals 101 to produce energy signal 102 .

第2図に19本の光電子増倍管を六角稠密配列した例を
示す。この場合、X方向及びY方向の行列数は各々9,
5となる。行列加算回路4は、この場合14チヤンネル
の加算回路で構成されることになり、14個の行列信号
103を出力する。
FIG. 2 shows an example in which 19 photomultiplier tubes are arranged in a hexagonal dense arrangement. In this case, the number of rows and columns in the X direction and Y direction is 9, respectively.
It becomes 5. In this case, the matrix addition circuit 4 is composed of a 14-channel addition circuit, and outputs 14 matrix signals 103.

AD変換回路5も、14チヤンネルのAD変換器で構成
され、各々のAD変換器はデジタル行列信号105を出
力する。光電子増倍管の配列は、この例で示す六角稠密
配列だけに限定されず、規則性があれば良い。また、行
列の設定もXYの直交座標だけでなく斜交座標でも良く
、光電子増倍管の数も19本のみ限定されない。
The AD conversion circuit 5 also includes 14 channels of AD converters, and each AD converter outputs a digital matrix signal 105. The arrangement of photomultiplier tubes is not limited to the hexagonal close-packed arrangement shown in this example, and any regularity is sufficient. Further, the matrix may be set not only in the XY orthogonal coordinates but also in the oblique coordinates, and the number of photomultiplier tubes is not limited to 19.

一方、エネルギー信号102もAD変換回路6でデジタ
ル信号104となる。このデジタルのエネルギー信号1
04はエネルギー弁別回路8で目的とするエネルギーの
γ線であるか否かの判定を受け、目的とするエネルギー
のγ線であれば、収集信号U108を出力する。
On the other hand, the energy signal 102 also becomes a digital signal 104 in the AD conversion circuit 6. This digital energy signal 1
04 is judged by the energy discrimination circuit 8 whether or not it is a gamma ray of the target energy, and if it is a gamma ray of the target energy, it outputs a collection signal U108.

第3図に、AD変換回路5の1チャンネル分の詳細を示
す。AD変換器51は基準電圧入力端子を有するもので
、基準電圧信号に対する入力アナログ信号の大きさの比
に対応するデジタル信号を出力する。例えば10ビツト
のAD変換器では、基準電圧信号が1ボルトで、入力ア
ナログ信号が0、5 F?″ルトであれば、デジタル出
力信号は、210X(0,5/1) −512となる。
FIG. 3 shows details of one channel of the AD conversion circuit 5. The AD converter 51 has a reference voltage input terminal, and outputs a digital signal corresponding to the magnitude ratio of the input analog signal to the reference voltage signal. For example, in a 10-bit AD converter, the reference voltage signal is 1 volt, and the input analog signal is 0, 5 F? If it is default, the digital output signal will be 210X(0,5/1)-512.

本実施例では、AD変換器51の入力アナログ信号と゛
してアナログ行列信号103が入力し、基準電圧信号と
してエネルギー信号102が入力する。γ線の入射位置
が一定であれば、アナログ行列信号103とエネルギー
信号102の大きさの比は、エネルギー信号の大きさが
変化しても一定であるから、デジタル行列信号105は
エネルギーに対して較正されたものになる。このデジタ
ル行列信号105は、入射γ線エネルギーの大きさによ
って変化しないので、デジタル位置計算回路7は、各デ
ジタル行列信号の大きさを計算処理してγ線入射位置を
決定し、位置信号X107とY2O2を出力する。こ・
の位置信号X106.Y2O2は前記収集信号U108
と共に、第1図に記載されていないデータ収集部に収集
され、R1体内分布像を形成する。
In this embodiment, an analog matrix signal 103 is input as an input analog signal to the AD converter 51, and an energy signal 102 is input as a reference voltage signal. If the incident position of the γ-ray is constant, the ratio of the magnitude of the analog matrix signal 103 to the energy signal 102 is constant even if the magnitude of the energy signal changes, so the digital matrix signal 105 is It becomes calibrated. Since this digital matrix signal 105 does not change depending on the magnitude of the incident gamma ray energy, the digital position calculation circuit 7 calculates the magnitude of each digital matrix signal to determine the gamma ray incident position, and calculates the magnitude of the incident gamma ray energy. Output Y2O2. child·
position signal X106. Y2O2 is the collected signal U108
At the same time, the data are collected by a data collection unit not shown in FIG. 1 to form an R1 biodistribution image.

なお、アナログ行列信号103は、各行列についてのみ
加算したものであるので、全ての光電子増倍管出力10
1を加算したエネルギー信号102より小さいので、エ
ネルギー信号102よシ大きくならない範囲で、アナロ
グ行列信号103に一定の利得を加える様にしても良い
Note that the analog matrix signal 103 is the sum of only each matrix, so all the photomultiplier tube outputs 10
Since it is smaller than the energy signal 102 obtained by adding 1, a certain gain may be added to the analog matrix signal 103 as long as it does not become larger than the energy signal 102.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、AD変換回路のみで、行列信号のAD
変換とエネルギーに対する較正が可能となり、回路構成
の簡素化を実現できる。
According to the present invention, only the AD conversion circuit can perform AD conversion of matrix signals.
Calibration for conversion and energy becomes possible, and the circuit configuration can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるデジタル位置計算の一実施例のブ
ロック図、第2図は光電子増倍管の配列に対する行列の
設定図、第3図は第1図のAD変換回路の1チャンネル
分のAD変換器の詳細を示すブロック図でちる。 1・・・シンチレータ、2・・・光電子増倍管、3・・
・加算回路、4・・・行列加算回路、5,6・・・AD
変換回路、7・・・デジタル位置計算回路、8・・・エ
ネルギー弁別回路、51・・・AD変換器、103・・
・アナログ行列信号、102・・・エネルギー信号、1
05・・・デジタル行列信号。 代理人 弁理士 高橋明夫4 ( (1−; 〕 1巨己1 (x)
Fig. 1 is a block diagram of an embodiment of digital position calculation according to the present invention, Fig. 2 is a diagram of matrix settings for the photomultiplier tube arrangement, and Fig. 3 is a block diagram of one channel of the AD conversion circuit of Fig. 1. This is a block diagram showing details of the AD converter. 1...Scintillator, 2...Photomultiplier tube, 3...
・Addition circuit, 4...Matrix addition circuit, 5, 6...AD
Conversion circuit, 7... Digital position calculation circuit, 8... Energy discrimination circuit, 51... AD converter, 103...
・Analog matrix signal, 102...Energy signal, 1
05...Digital matrix signal. Agent Patent Attorney Akio Takahashi 4 ( (1-; ) 1 Giant 1 (x)

Claims (1)

【特許請求の範囲】[Claims] 1、シンチレータと、このシンチレータ上に規則性を持
って配列された複数隼の光電子増倍管と、全ての光電子
増倍管の出力を加算してエネルギー信号を作る加算回路
と、これら光電子増倍管の出力をその光電子増倍管が属
する行及び列毎にまとめて加算する複数個の行列加算器
と、これら行列加算器の各行及び行のアナログ加算信号
を基準電圧信号との比に対応させてデジタル信号に変換
する複数個のAD変換器と、これらAD変換器からの各
回及び列のデジタル信号の大きさを計算処理して前記シ
ンチレータに入射したγ線の入射位置を決定するデジタ
ル位置計算回路とからなるシンチレーションカメラに於
いて、前記AD変換器に基準電圧信号として前記エネル
ギー信号を加えてエネルギー較正された各行及び列のデ
ジタル信号を得るように構成したことを特徴とするシン
チレーションカメラ。
1. A scintillator, a plurality of photomultiplier tubes arranged regularly on the scintillator, an adding circuit that adds the outputs of all the photomultiplier tubes to create an energy signal, and these photomultipliers. A plurality of matrix adders that collectively add the outputs of the tubes for each row and column to which the photomultiplier tubes belong, and analog addition signals for each row and column of these matrix adders are made to correspond to the ratio of the reference voltage signal. a plurality of AD converters for converting into digital signals; and a digital position calculation for determining the incident position of the γ-rays incident on the scintillator by calculating the magnitude of the digital signals of each time and column from these AD converters. 1. A scintillation camera comprising a circuit, characterized in that the energy signal is added to the AD converter as a reference voltage signal to obtain energy-calibrated digital signals for each row and column.
JP11641084A 1984-06-08 1984-06-08 Scintillation camera Pending JPS60260875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11641084A JPS60260875A (en) 1984-06-08 1984-06-08 Scintillation camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11641084A JPS60260875A (en) 1984-06-08 1984-06-08 Scintillation camera

Publications (1)

Publication Number Publication Date
JPS60260875A true JPS60260875A (en) 1985-12-24

Family

ID=14686371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11641084A Pending JPS60260875A (en) 1984-06-08 1984-06-08 Scintillation camera

Country Status (1)

Country Link
JP (1) JPS60260875A (en)

Similar Documents

Publication Publication Date Title
Popov et al. Analog readout system with charge division type output
CN114127588A (en) Signal reading circuit, signal reading device, and signal reading method for photodetection element
JPS60260875A (en) Scintillation camera
US7495201B2 (en) Charge multiplexed array of solid-state photosensitive detectors
JPH03102226A (en) Photomultiplier tube
JP3778659B2 (en) Radiation position detector
Pani et al. Recent advances and future perspectives of position sensitive PMT
JPH07294649A (en) Scintillation camera
CN109613586B (en) Resistance network position reading circuit with compensation resistor and method
JP2686034B2 (en) Radiation position detector
JPS5920965B2 (en) Photometering device with multiple light-receiving elements
US3691379A (en) Scintillation camera device
US5545898A (en) Scintillation camera position calculation with uniform resolution using variance injection
JP2569463B2 (en) Photomultiplier tube amplification stabilization device
JP2540863B2 (en) Ring type ECT device
JP3908973B2 (en) Position detection device
JPS5876788A (en) Scintillation camera
JPS5892976A (en) Scintilation camera
JPS61102579A (en) Detecting device for radiation source position
JP3065625B2 (en) Radiation detector
KR20240050618A (en) Multiplexing circuit for multi-channel radiation detectors
JP2504045B2 (en) Ring type ECT device
Yonggang et al. Electronics for monolithic scintillator PET detector modules based on neural network position estimators
JPS63148186A (en) Light or radiation incidence position detector
JPH03107787A (en) Gamma camera device