JPS60260455A - Manufacture of pavement asphalt concrete and additive for reinforcing asphalt concrete - Google Patents

Manufacture of pavement asphalt concrete and additive for reinforcing asphalt concrete

Info

Publication number
JPS60260455A
JPS60260455A JP11342684A JP11342684A JPS60260455A JP S60260455 A JPS60260455 A JP S60260455A JP 11342684 A JP11342684 A JP 11342684A JP 11342684 A JP11342684 A JP 11342684A JP S60260455 A JPS60260455 A JP S60260455A
Authority
JP
Japan
Prior art keywords
asphalt
asphalt concrete
aggregate
resin
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11342684A
Other languages
Japanese (ja)
Other versions
JPH0251859B2 (en
Inventor
洋司 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANIN KENSETSU KOGYO KK
Original Assignee
SANIN KENSETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANIN KENSETSU KOGYO KK filed Critical SANIN KENSETSU KOGYO KK
Priority to JP11342684A priority Critical patent/JPS60260455A/en
Publication of JPS60260455A publication Critical patent/JPS60260455A/en
Publication of JPH0251859B2 publication Critical patent/JPH0251859B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、補強材として熱可塑性樹脂を用いる熱工式ア
スファルトコンクリートの製造方法及びアスファルトラ
ンクリートの補強用添加Hに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing thermally engineered asphalt concrete using a thermoplastic resin as a reinforcing material and to an addition H for reinforcing asphalt trunk concrete.

熱工式アスファルトコンクリ−1・は、粒度の異なる数
種類の骨材(フィラーを含む)を加熱溶融した瀝青材(
主としてストレートアスファルト)と混合して得られる
もので、コスト及び性能の点で優れているところから道
路の舗装材として広く用いられている。そしてその静的
な強度はマーシャル安定度で表され、その値が大きい程
激しい交通に耐えるとされている。そして、現在表層に
最も一般的に用いられている密粒度アスファルトコンク
リートの場合、アスファルト量が6〜6.5%(重量%
、以下間し)のときマーシャル安定度が最も高くなり、
通常700〜850Kgの値を示す。ちなみに基準値は
C交通以上の場合750以上、その他は500以−トと
されている。また、基層は通常アスファルトaが4.5
〜6%の粗粒度アスファル]・コンクリート、上層路盤
は安定化剤として3.5〜4%のアスファルトを含むも
のを用いる、安定度は基層の場合500以上、上層路盤
の場合350以上とされている。
Thermal engineered asphalt concrete 1.
It is obtained by mixing it with straight asphalt (mainly straight asphalt), and is widely used as a road paving material because of its excellent cost and performance. Its static strength is expressed by Marshall stability, and the higher the value, the better it can withstand heavy traffic. In the case of dense-grained asphalt concrete, which is currently most commonly used for the surface layer, the amount of asphalt is 6 to 6.5% (by weight).
, below), the Marshall stability is highest,
It usually shows a value of 700 to 850 kg. By the way, the standard value is 750 or higher for C traffic or higher, and 500 or higher for other traffic. In addition, the base layer usually has asphalt a of 4.5
~6% coarse-grained asphalt] Concrete and upper roadbed should contain 3.5 to 4% asphalt as a stabilizer.The stability is said to be 500 or more for the base layer and 350 or more for the upper layer roadbed. There is.

一方、アスファルトコンクリートの材料コスト中に占め
るアスファルトの割合は極めて高く、標準的な密粒度ア
スファルトコンクリートの場合50%にも及び、原油価
格の上昇に伴ってこの割合及び全体のコストは増大する
一方である。しかしアスファルト量を減らすと安定度が
低下し、例えば密粒度の場合アスファルトを4%にする
と安定度は550前後になり使用に耐えなくなる。
On the other hand, the proportion of asphalt in the material cost of asphalt concrete is extremely high, reaching 50% in the case of standard dense-grained asphalt concrete, and this proportion and overall cost are increasing as crude oil prices rise. be. However, when the amount of asphalt is reduced, the stability decreases. For example, in the case of a dense grain size, if the asphalt content is 4%, the stability becomes around 550, making it unusable.

上記に鑑み本発明者らは種々研究した、ポリ塩化ビニル
フィルムの細片を用いることにより、安定度を低下させ
ずにアスファルトの割合を低減させることに成功した(
特願昭57−225293 )。即ら、骨材と瀝青材と
を混合する際にポリ塩化ビニルフィルムの細片を対アス
ファルト0.5〜5%混合し、無機系重合開始剤史には
界面活性剤を加えるごとにより、アスファルトの割合を
3.5〜5%(密粒度アスファルトコンクリートの場合
)にしても、750以上場合によっては1,300もの
安定度を示すアスファルトコンクリートを得ることがで
きた。
In view of the above, the present inventors conducted various studies and succeeded in reducing the proportion of asphalt without reducing stability by using strips of polyvinyl chloride film (
Patent application No. 57-225293). That is, when mixing aggregate and bituminous material, strips of polyvinyl chloride film are mixed with asphalt at a ratio of 0.5 to 5%, and when an inorganic polymerization initiator is added, each time a surfactant is added, asphalt Even when the ratio of 3.5% to 5% (in the case of dense-grained asphalt concrete), asphalt concrete with a stability of 750 or higher and in some cases as high as 1,300 could be obtained.

そして、アスファルトiが4%前後の場合安定度が最も
高くなり、アスファルトが6%前後だと安定度の増加は
殆どみられない。
When the asphalt i is around 4%, the stability is highest, and when the asphalt i is around 6%, there is almost no increase in stability.

かかる事実は、アスファルト中で溶融され一部分解した
ポリ塩化ビニルフィルムの細片が無機系重合開始剤の作
用で再重合し、骨材同志とか骨材とアスファルトを結合
させるために生起されたものとIII測される。
This fact suggests that fragments of polyvinyl chloride film that have been melted and partially decomposed in asphalt are repolymerized by the action of an inorganic polymerization initiator, resulting in the formation of aggregates or aggregates and asphalt. III is measured.

また本発明者らは、同様にアスファルトを4%程度にし
てパテ状ポリスチレン(発泡スチロールを/8刑で溶融
軟化したもの)及びパテ状ポリスチレンとポリ塩化ビニ
ルフィルム細片を加えることにより、2000以上もの
驚異的な安定度のものを得ることに成功した(特願昭5
8−89595)。
In addition, the present inventors similarly reduced the amount of asphalt to about 4% and added putty-like polystyrene (styrofoam melted and softened by 1/8 inch) and putty-like polystyrene and polyvinyl chloride film pieces. Succeeded in obtaining something with amazing stability.
8-89595).

本発明者は上記事実を踏まえ更に実験を続けた結果、ポ
リ塩化ビニルフィルムの細片或いはパテ状ポリスチレン
以外の熱可塑性樹脂でも同様に補強効果があることを見
いだして本発明を完成させたもので、以下本発明の詳細
な説明する。
Based on the above facts, the inventor continued to conduct further experiments, and as a result, found that thin pieces of polyvinyl chloride film or thermoplastic resins other than putty-like polystyrene had a similar reinforcing effect, and thus completed the present invention. The present invention will be described in detail below.

本発明では、ボリエ千しン、ポリプロピレン。In the present invention, Borier senshin and polypropylene are used.

ポリスチレン等の成型品とかその粉砕物、ポリエチレン
、ポリプロピレン、ポリスチレン、ポリ塩化ビニルこれ
らの共重合物等のバージン樹脂やエマルジョン或いはこ
れらの混合物が好ましく用いられる。また、発泡スチロ
ールを溶剤で溶融軟化して脱泡したパテ状ポリスチレン
を乾燥後粉砕したものも用いられる。この場合溶剤とし
てはシンナーやアセトン、リグロイン、スチレンモノマ
ー、エチルアルコールとトリクレンの混合物等が用いら
れる。
Molded products such as polystyrene, pulverized products thereof, virgin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, copolymers thereof, emulsions, or mixtures thereof are preferably used. Also used is a putty-like polystyrene obtained by melting and softening expanded polystyrene with a solvent, defoaming it, and drying and pulverizing it. In this case, as the solvent, thinner, acetone, ligroin, styrene monomer, a mixture of ethyl alcohol and trichlene, etc. are used.

ところで、不要な樹脂成型品(所謂廃プラスチック)の
処理は現在焼却か埋め立てが殆どであるが、前者は有毒
ガスの発生とか焼却炉の破損の問題があり後者は場所が
限られてきており大きな4会問題となっている。そごで
、樹脂を熱分解して有効成分を取り出したり溶融し再成
型することなどが一部で行われているが、選別や清浄化
等前処理が必要でコスト的にも十分なものではない。こ
れに対し本発明では、種々な樹脂が混在していても又農
業用廃フイルム等土砂が付着したものでもそのまま粉砕
して用いられる。しかも廃プラスチックの内8〜9割が
熱可塑性樹脂でありその内の9割までが前記例示した樹
脂で占められており、そ有効利用が図られることは大き
な利点である。
By the way, most unnecessary resin molded products (so-called waste plastics) are currently disposed of by incineration or landfill, but the former has problems such as generation of toxic gas and damage to incinerators, and the latter has limited space and is a big waste. This is a four-part problem. In some cases, resins are thermally decomposed to extract the active ingredients or melted and remolded, but this requires pretreatment such as sorting and cleaning, and is not cost-effective. do not have. On the other hand, in the present invention, even if various resins are mixed together, or even if there is dirt attached, such as agricultural waste film, it can be used by pulverizing it as it is. Moreover, 80 to 90% of waste plastics are thermoplastic resins, and up to 90% of them are the resins mentioned above, so it is a great advantage to be able to utilize them effectively.

しかして、これらの熱可塑性樹脂は、ミキサー中で加熱
アスファルトや加熱された骨材により熱分解され(加熱
アスファルトの温度は通常160〜1’70℃であるが
、240℃程度までは品質状問題はない)、アスファル
ト中に分散される。この状態で重合開始剤が添加される
と再重合がはじまり、混合物の温度が低下するにつれて
樹脂が固化し始め、舗設後は、締め固められた骨材同志
或いは骨材とアスファルト間を融着した状態で組込まれ
る。
However, these thermoplastic resins are thermally decomposed by heated asphalt or heated aggregate in a mixer (the temperature of heated asphalt is usually 160 to 1'70°C, but quality problems may occur up to about 240°C). ), dispersed in asphalt. When a polymerization initiator is added in this state, repolymerization begins, and as the temperature of the mixture decreases, the resin begins to solidify, and after paving, the compacted aggregates or aggregates and asphalt are fused together. incorporated in the state.

′その結果アスファルトコンクリートの安定度が増し、
アスファルト量が標準より少なくても標準量の場合と同
程度乃至それ以上の強度をもたらすものと思われる。尚
、別途加熱分解したものをアスファルトやミキサー中に
混入するとか、熱以外の手段例えば溶剤・酸・アルカリ
等の薬品や光、放射線等の作用で部分的乃至全体的に分
解させたものを用いてもよい。かくすると耐熱温度の高
い樹脂も用いることができる。樹脂の混入割合は、耐ア
スファルト0.5〜5%特に1〜3%が安定度向上の点
で好ましい。
'As a result, the stability of asphalt concrete increases,
It is thought that even if the amount of asphalt is less than the standard amount, it will provide the same or higher strength than the standard amount. In addition, it may be necessary to mix separately thermally decomposed materials into asphalt or mixers, or to use materials that have been partially or completely decomposed by means other than heat, such as chemicals such as solvents, acids, alkalis, light, radiation, etc. It's okay. In this way, a resin with a high heat resistance temperature can also be used. The mixing ratio of the resin is preferably 0.5 to 5%, particularly 1 to 3% for asphalt resistance, from the viewpoint of improving stability.

一方、重合開始剤としては耐熱性の観点から無機系のも
のが好ましく、特にペルオクソ酸塩及び過酸化水素水が
有効に用いられる。ベルオクソ酸塩には、ペルオクソ硝
酸、ベルオクソ炭酸、ベルオクソニ硫酸、ペルオクソ硼
酸、ペルオクソ硫酸。
On the other hand, the polymerization initiator is preferably an inorganic one from the viewpoint of heat resistance, and peroxo acid salts and aqueous hydrogen peroxide are particularly effectively used. Beroxo salts include peroxonitric acid, beloxocarbonate, belooxonisulfate, peroxoboric acid, and peroxosulfate.

ペルオクソ燐酸等のアンモニウム塩、カリウム塩。Ammonium salts and potassium salts such as peroxophosphoric acid.

ナトリウム塩等がある。これらは酸化剤としての性質を
備え、このうちベルオクソニ硫酸のカリウム塩やアンモ
ニウム塩は重合開始剤として知られているが、ペルオク
ソ硼酸塩も本発明において極めて優れた効果を示す。こ
れらはアスファルト量に対して0.1〜1%程度用いら
れるが、より好ましくは0.2〜0.5%である9次に
過酸化水素水も酸化剤であるが、ベルオクソ酸塩同様重
合開始剤として作用するのか樹脂の種類や混合割合によ
っては安定度を高めることができる。ただ、過酸化水素
水は少なすぎると重合作用が十分でなく、多すぎるとア
スファルトを分解させるためか安定度は低下するので、
濃度30%のもので対アスファルト0.1〜1%、より
好まtくは0.2〜0.5%を用いる。もっとも、過酸
化水素水を加えるとアスファルトが発泡により体積増加
をきたし骨材の被覆を良好に行なう・のち安定度増加の
理由の一つと思われる。
There are sodium salts, etc. These have properties as oxidizing agents, and among these, potassium salts and ammonium salts of peroxonisulfate are known as polymerization initiators, but peroxoborates also exhibit extremely excellent effects in the present invention. These are used in an amount of about 0.1 to 1% based on the amount of asphalt, but more preferably 0.2 to 0.5%. Nine-dimensional hydrogen peroxide is also an oxidizing agent, but like the beroxo acid salt, polymerization The stability can be increased depending on the type and mixing ratio of the resin that acts as an initiator. However, if the amount of hydrogen peroxide is too small, the polymerization effect will not be sufficient, and if it is too large, the stability will decrease, probably because it decomposes the asphalt.
With a concentration of 30%, 0.1 to 1%, more preferably 0.2 to 0.5% of asphalt is used. However, when hydrogen peroxide is added, the asphalt expands in volume due to foaming, which is thought to be one of the reasons why the asphalt covers the aggregate well and later increases its stability.

尚、これらの反応系に界面活性剤を加えると安定度の向
上が見られることが多いが(籍にベルオクソ酸塩の場合
)、これは樹脂や重合開始剤がアスファルト中により均
一に分散されて、反応がより完全に行ねられるためと思
われる。、この界面活性剤はカチオン系やアニオン系の
ものでもよいが、特に好ましいのはノニオン系のもので
ある。これは、骨材がプラス、アスファルトがマイナス
に帯電していることによると思われる。そして界面活性
剤の割合は対アスファルト0.3〜4%で、特に0.5
〜2%が好ましい。
In addition, when a surfactant is added to these reaction systems, stability is often improved (in the case of beroxo acid salts), but this is because the resin and polymerization initiator are more uniformly dispersed in the asphalt. This seems to be because the reaction is more complete. This surfactant may be cationic or anionic, but nonionic surfactants are particularly preferred. This seems to be due to the fact that the aggregate is positively charged and the asphalt is negatively charged. The ratio of surfactant to asphalt is 0.3 to 4%, especially 0.5%.
~2% is preferred.

ところで、通常の表層用アスファルトコンクリート中に
占めるアスファルトの最も好ましい割合は、前述の如く
6〜6.5%である(細骨材やフィラーが少なければよ
り小さく、多ければより大きくなる)が、本発明の場合
最も好ましい割合はこの値よりは小さくなり、またこの
ことが大きな特徴でもある。即ち本発明に於けるアスフ
ァルトの好ましい割合は、密粒度アスファルトコンクリ
ートの場合3〜6%、特に3.5〜5%程度である。
By the way, the most preferable ratio of asphalt in normal surface asphalt concrete is 6 to 6.5% as mentioned above (the smaller the amount of fine aggregate or filler is, the larger it is); In the case of the invention, the most preferable ratio is smaller than this value, and this is also a major feature. That is, the preferable ratio of asphalt in the present invention is about 3 to 6%, especially about 3.5 to 5% in the case of dense-grained asphalt concrete.

これは、6%前後だと骨材の表面を被覆するアスファル
1へが必要十分量な為熱可塑性樹脂が十分な補強作用を
発揮できず、−カルなすぎるとバインダー作用が不十分
になり脆く且つ安定度が悪くなる。そして、4〜5%の
場合従来品の6%の場合は勿論、樹脂の種類や重合開始
剤の組合せによっては従来公知のゴム系等の補強用添加
剤を用いたものと同等程度の安定度のものが得られる。
This is because if it is around 6%, the thermoplastic resin will not be able to exert sufficient reinforcing action because the amount of asphalt 1 that covers the surface of the aggregate will be insufficient, and if it is too cal, the binder action will be insufficient and it will become brittle. Moreover, stability deteriorates. In the case of 4 to 5%, of course the conventional product of 6%, depending on the type of resin and the combination of polymerization initiators, the stability is equivalent to that of conventional products using reinforcing additives such as rubber-based additives. You can get the following.

尚本発明により得られるアスファルトコンクリ−1・は
、フロー値も基準値(20〜40 1/100cm )
内にある。
The asphalt concrete 1 obtained by the present invention also has a flow value of the standard value (20 to 40 1/100 cm).
It's within.

一方、基層及び路盤(上層riti盤)の場合は骨材の
粒度が大きいことからアスファルトの最適な割合は表層
の場合より少なくなる。即ち基層は前述の如くアスファ
ルト量4,5〜6%の粗粒度アスファルトコンクリート
で構成され、上層路盤は安定処理剤として3.5〜4%
程度のアスファルトルトを混入したものを一般に用いて
いる。ところが本発明の場合アスファルト量が2〜3%
でもこれらの基準を十分満足するものが得られる。基層
及び路盤は表層に比べて使用量も多くアスファルトの減
量は極めて大きな経済的効果をもたらす。尚、本発明に
より得られるアスファルトコンクリートで各層(表層、
基層、路盤)を全て構成してもよく、従来のアスファル
トコンクリートと組み合わせて用いてもよい。特に表層
の場′合上下の二層に別けて上層に本発明品を用いても
よい。
On the other hand, in the case of the base layer and roadbed (upper layer), the optimum proportion of asphalt is smaller than in the case of the surface layer because the particle size of the aggregate is large. That is, as mentioned above, the base layer is composed of coarse-grained asphalt concrete with an asphalt content of 4.5 to 6%, and the upper subgrade is composed of 3.5 to 4% as a stabilizing agent.
A mixture of asphalt tort is generally used. However, in the case of the present invention, the amount of asphalt is 2 to 3%.
However, you can get something that fully satisfies these criteria. The amount of asphalt used in the base layer and roadbed is larger than that in the surface layer, and reducing the amount of asphalt has an extremely large economic effect. In addition, each layer (surface layer,
(base layer, roadbed) may be used, or it may be used in combination with conventional asphalt concrete. In particular, in the case of the surface layer, the product of the present invention may be used in the upper layer and the upper layer.

ところで、現在アスファルトコンクリートは殆どハツチ
式で製造されており、与熱した骨材やフィラーを加熱装
置のあるミキサー中へ投入して攪拌乾燥した後、所定量
のアスファルトを注入し更に攪拌を続けてアスファルト
コンクリートを作る。
By the way, most asphalt concrete is currently manufactured using the hatch method, in which heated aggregates and fillers are put into a mixer equipped with a heating device, stirred and dried, and then a predetermined amount of asphalt is injected and stirring is continued. Make asphalt concrete.

そこで本発明では、樹脂成分を予めアスファルト中に溶
融させておくか骨材やアスファルトとともにミキサー中
へ投入して溶融させる。重合開始剤や界面活性剤はアス
ファルト注入時乃至注入後に投入するとよい。ただ、樹
脂や重合開始剤・界面活性剤は全体に対する割合が極め
て小さく正確に計量する必要がある。エマルジョン樹脂
や過酸化水素水等液体の場合はポンプ注入により計量が
確実に行なわれるが、粉末や粉砕物の場合には一々計量
しなければならず操作が煩雑になる。
Therefore, in the present invention, the resin component is melted in asphalt in advance, or it is put into a mixer together with aggregate and asphalt and melted. The polymerization initiator and surfactant are preferably added during or after asphalt injection. However, the proportion of resin, polymerization initiator, and surfactant in the total is extremely small, and it is necessary to measure them accurately. In the case of liquids such as emulsion resins and hydrogen peroxide solutions, metering can be carried out reliably by pump injection, but in the case of powders and pulverized materials, they must be measured one by one, making the operation complicated.

そこで、ワンバッチ〔例えばアスファルトコンクリート
1トン〕に必要な樹脂や重合開始剤・界面活性剤の所定
量〔例えばアスファルト4%として、樹脂800g (
対アスファルト2%)、重合開始剤100g (対アス
ファルト0.25%)、界面活性剤400g (対アス
ファルト1%)]をよく混合し゛ζ補強用添加材として
まとめて袋詰めしておき、アスファルト注入時にミキサ
ー中に散布投入するようにしておくと、取り扱いが至便
で正確な混合割合のものが簡単に得られる。この補強用
添加材は、アスファルトコンクリートの種類、要求され
る安定度、骨材の種類や粒度分布、アスファルトの種類
(プレーンアスファルトや変性アスファルト)やグレー
ト等に応じて、(8脂や重合開始剤の種類や割合更には
界面活性剤の種類や割合を種々選択することが必要であ
る。
Therefore, the predetermined amount of resin, polymerization initiator, and surfactant required for one batch (for example, 1 ton of asphalt concrete) [for example, assuming 4% asphalt, 800 g of resin (
2% of asphalt), 100 g of polymerization initiator (0.25% of asphalt), and 400 g of surfactant (1% of asphalt) were mixed well and packed together in a bag as a ζ reinforcing additive, and injected into asphalt. By sprinkling the mixture into the mixer from time to time, it is convenient to handle and it is easy to obtain the correct mixing ratio. This reinforcing additive is determined depending on the type of asphalt concrete, the required stability, the type and particle size distribution of aggregate, the type of asphalt (plain asphalt or modified asphalt), grate, etc. It is necessary to select various types and ratios of surfactants and surfactants.

次ぎに、本発明を実施例により更に詳細に説明する。尚
、%はm1%を示す。
Next, the present invention will be explained in more detail with reference to Examples. Note that % indicates m1%.

実施例1 骨材として、与熱した5−13(JIS A 5001
)の砕石35Kg、 S −5(砕石) 25Kg、ス
クリーニングス19Kg、砂12Kg、石粉5Kg−を
夫々ミキサーに投入し170℃に保って10秒間空練り
する(密粒度配合)。次いで、170℃に加熱したスト
レートアスファルト(針入度69) 4Kg (骨材と
アスファルトの合計量に対して4%)と、1〜2mm角
のボエチレン製農業用廃フィルムの細片80g(対アス
ファルト2%)、ベルオクソ硼酸ナトリウム10g(文
1アスファルト0.25%)をミキサー中に投入し、5
0秒間攪拌して100.09Kgの加熱アスファルト混
合物を得た。この混合物を用い常法によりテストピース
を作成し、得た測定結果を表−1に示す(■)。
Example 1 Heated 5-13 (JIS A 5001
), 35 kg of crushed stone, 25 kg of S-5 (crushed stone), 19 kg of screening, 12 kg of sand, and 5 kg of stone powder were respectively put into a mixer, kept at 170°C, and mixed for 10 seconds (dense particle size blend). Next, 4 kg of straight asphalt (penetration 69) heated to 170°C (4% of the total amount of aggregate and asphalt) and 80 g of strips of Boethylene agricultural waste film of 1 to 2 mm square (against asphalt) were added. 2%), 10g of sodium belloxoborate (Bun 1 asphalt 0.25%) was put into a mixer, and
After stirring for 0 seconds, 100.09 kg of heated asphalt mixture was obtained. A test piece was prepared using this mixture in a conventional manner, and the measurement results obtained are shown in Table 1 (■).

また上記配合のものに、■固体状の非イオン界面活性剤
「エマルゲンJ (ST−7、花王■!I!I)10g
 (対アスファルト0.25%)を加えたもの、■ポリ
エチレン細片を対アスファルト4%加えたもの、01%
加えたもの及び■ポリエチレン細片を対アスファルト4
%とベルオクソ硼酸ナトリウムを対アスファルト0.5
%を混入した加熱アスファル]・混合物を夫々作製した
。これらの混合物を用い常法によりテストピースを作成
し、得た測定結果を同様に表−■に示す。
In addition, in addition to the above formulation, 10 g of solid nonionic surfactant "Emulgen J (ST-7, Kao ■!I!I)
(0.25% to asphalt), ■ Added polyethylene strips to 4% of asphalt, 01%
Added and ■Polyethylene strips to asphalt 4
% and sodium beloxoborate vs. asphalt 0.5
% of heated asphalt] and mixtures were prepared respectively. Test pieces were prepared using these mixtures in a conventional manner, and the measurement results obtained are also shown in Table 2.

実施例 2゜ ミキサー中で実施例1と同し割合の骨材96Kgを実施
例]と同様に攪拌与熱し、次いで実施例1と同様に加熱
したストレートアスファルト4Kgと、袋詰めにしであ
るポリ塩化ビニルフィルムの細片(1〜2IIIIIl
角)80g(対アスファルト2%)とベルオクソ硼酸ナ
トリウムlog(?lアスファルト0.25%)及び界
面活性剤rエマルゲン」40H(対アスファルト1%)
の混合物を袋から出してミキサー中に没入し、60秒杆
攪拌して100.13Kgの加熱アスファルト混合物を
得る。
Example 2 In a mixer, 96 kg of aggregate in the same proportion as in Example 1 was stirred and heated in the same manner as in Example], then 4 kg of straight asphalt heated in the same manner as in Example 1, and polychloride which was packed in a bag. Strips of vinyl film (1-2III
square) 80g (2% to asphalt), sodium beroxoborate log (?l asphalt 0.25%) and surfactant r Emulgen' 40H (total asphalt 1%)
The mixture was taken out of the bag, placed in a mixer, and stirred with a rod for 60 seconds to obtain 100.13 kg of heated asphalt mixture.

同様にテストピースを作製して、測定結果を表−1に示
す。
A test piece was prepared in the same manner, and the measurement results are shown in Table 1.

比較例 1゜ ペルオクソ硼酸ナトリウム(重合開始剤)を用いず他は
実施例1■と同様にして加熱アスファルト混合物を得た
。測定結果を表−1に示す。
Comparative Example 1゜A heated asphalt mixture was obtained in the same manner as in Example 1■, except that sodium peroxoborate (polymerization initiator) was not used. The measurement results are shown in Table-1.

比較例 2゜ 実施例1と同じ割合の骨材<96Kg)に、実施例1と
同様に加熱したストレートアスファルト4Kgを混入し
て攪拌混合して100Kgの加熱アスファルト混合物を
得た。測定結果を表−1に示す。
Comparative Example 2 4 kg of straight asphalt heated in the same manner as in Example 1 was mixed into aggregate (<96 kg in the same ratio as in Example 1) and stirred and mixed to obtain 100 kg of heated asphalt mixture. The measurement results are shown in Table-1.

比較例 3゜ 骨材として、与熱した5−13砕石35Kg、S−5砕
石25Kg、スクリーニングス19Kg、砂12Kg。
Comparative Example 3 As aggregates, 35 kg of heated 5-13 crushed stone, 25 kg of S-5 crushed stone, 19 kg of screenings, and 12 kg of sand were used.

石粉5Kgを夫々ミキサーに投入し、170”cに保っ
たまま10秒間空練りする。170’lll:に加熱し
たストレートアスファルト6.13Kg (骨材とアス
ファルト量に対して6%)と30%過酸化水素水15.
3g (対アスファルト0.25%)をミキサーに注入
して50秒間攪拌し、102.1453Kgの″加熱ア
スファルト混合物を得る。同様に測定結果を表−一1に
示す。
Put 5 kg of stone powder into a mixer and dry knead for 10 seconds while maintaining the temperature at 170'c. Hydrogen oxide water15.
3g (0.25% of asphalt) was poured into a mixer and stirred for 50 seconds to obtain 102.1453Kg of heated asphalt mixture.Similarly, the measurement results are shown in Table 1-1.

比較例 4゜ 比較例3と同じ量と割合の骨材(941[g)に、同じ
量のストレートアスファルト(6Kg)を用い同様の操
作を施して100K、の加熱混合物を得た。同様に測定
結果を表−1に示す。
Comparative Example 4 A heated mixture of 100 K was obtained by performing the same operation using the same amount and proportion of aggregate (941 [g) as in Comparative Example 3 and the same amount of straight asphalt (6 Kg). Similarly, the measurement results are shown in Table-1.

実施例 3゜ ミキサー中で実施例1と同じ割合の骨材96Kgを実施
例1と同様に攪拌与熱し、次いで実施例1と同様に加熱
したストレー1−アスファルト4Kgと、袋詰めにしで
あるポリプロピレン成型品の粉砕物80g(対アスファ
ルト2%)とベルオクソ硼酸ナトリウムLog (対ア
スファルl−0,25%)の混合物を袋から出してミキ
サー中に投入し、50秒間攪拌して100.0!lJK
gの加熱アスファルト混合物を得た(■)。
Example 3 In a mixer, 96 kg of aggregate in the same proportion as in Example 1 was stirred and heated in the same manner as in Example 1, and then 4 kg of straight 1-asphalt heated in the same manner as in Example 1 and polypropylene packed in bags were added. A mixture of 80 g of crushed molded product (2% to asphalt) and sodium beloxoborate Log (0.25% to asphalt) was taken out of the bag, put into a mixer, stirred for 50 seconds, and the result was 100.0! lJK
g of heated asphalt mixture was obtained (■).

また、実施例1と同様の割合の骨材と、加熱アスファル
ト、ポリプロピレン成型品の粉砕物表−1 及びペルオクソ硼酸ナトリウムを夫々表−1の割合で混
合して加熱アスファルト混合物を得る(■〜■)。各測
定結果を表−1に、示す。
In addition, a heated asphalt mixture is obtained by mixing aggregate in the same proportion as in Example 1, heated asphalt, pulverized polypropylene molded product Table-1, and sodium peroxoborate in the proportions shown in Table-1, respectively (■ to ■ ). The results of each measurement are shown in Table-1.

実施例 4゜ 実施例1と同じ割合の骨材95Kgとアスファル) 5
Kgに、ポリ塩化ビニルフィルム細片と発泡スチロール
粉末及びポリプロピレンフィルム細片の等景況合物10
0g (対アスファルト2%)、−合間始剤としてペル
オクソ硼酸ナトリウムと30%過酸化水素水を夫々12
.5g (対アスファル)0.25%)を混入し実施例
と同様に処理して加熱アスファルト混合物を得る。
Example 4゜95Kg of aggregate and asphal in the same proportion as Example 1) 5
kg, an equal composition of polyvinyl chloride film strips, styrofoam powder and polypropylene film strips 10
0g (2% based on asphalt), 12% each of sodium peroxoborate and 30% hydrogen peroxide as intermediate initiators.
.. 5g (0.25% based on asphalt)) and treated in the same manner as in the example to obtain a heated asphalt mixture.

実施例 5゜ 実施例1と同じ割合の骨材96Kgとアスファルト4K
gに、ポリ塩化ビニル細片と発泡スチロール粉末及びポ
リ、プロピレンフィルム細片の等景況合物80g(対ア
スファルト2%)、重合開始剤としてペルオクソ硼酸ナ
トリウム10g(対アスファル)0.25%)と30%
過酸化水素水20g(対アスファルト0.5%)を夫々
混入し実施例■と同様に処理して加熱アスファルト混合
物を得る。
Example 5゜96Kg of aggregate and 4K of asphalt in the same proportion as Example 1
g, 80 g (2% to asphalt) of an equal compound of polyvinyl chloride strips, expanded polystyrene powder, and polypropylene film strips (2% to asphalt), 10 g (0.25% to asphalt) of sodium peroxoborate as a polymerization initiator, and 30 g %
20 g of hydrogen peroxide solution (0.5% based on asphalt) was mixed in each and treated in the same manner as in Example 2 to obtain a heated asphalt mixture.

実施例 6゜ 樹脂成分として、ポリ塩化ビニルのバージン樹脂粉末(
鐘淵化学工業0菊製、重合度700)を用い、他は実施
例1■と同様にして加熱アスファルト混合物を得る。
Example 6゜As a resin component, virgin resin powder of polyvinyl chloride (
A heated asphalt mixture was obtained in the same manner as in Example 1 (2), except that the same procedure as in Example 1 (2) was used, manufactured by Kanekabuchi Kagaku Kogyo 0 Kiku (polymerization degree 700).

実施例 7゜ 樹脂成分として、ポリ塩化ビニルエマルジョン(商品名
GE 351、有効成分50%)を用い、他は実施例1
■と同様にして加熱アスファルト混合物を得る。
Example 7: Polyvinyl chloride emulsion (trade name GE 351, active ingredient 50%) was used as the resin component, and the rest was as in Example 1.
A heated asphalt mixture is obtained in the same manner as in (2).

実施例 8゜ 実施例1と同じ割合の骨材96Kgに、アスファルト4
Kgと、パテ状ポリスチレン(IKgの発泡ポリスチレ
ンを適当に砕き、11のラッカーシンナー(トルエンを
50%程度含有)に浸して軟化溶融させ、へらでよく混
練したもの〕を分塊乾燥して粉砕ししたもの800g(
対アスファルト20%)、及びペルオクソ硼酸ナトリウ
ム10g(対アスファル)0.25%)を加え実施例1
と同様にして加熱アスファルト混合物を得る。
Example 8゜To 96 kg of aggregate in the same proportion as in Example 1, asphalt 4
Kg and putty-like polystyrene (IKg of foamed polystyrene was crushed appropriately, soaked in lacquer thinner No. 11 (containing about 50% toluene) to soften and melt, and kneaded well with a spatula) was dried in blocks and crushed. 800g (
Example 1 by adding 10g of sodium peroxoborate (0.25% to asphalt)
A heated asphalt mixture is obtained in the same manner as above.

実施例 9゜ 粗粒度配合の骨+J’C3−20の砕石20%、S −
13の砕石31%、S−5の砕石22%、S、C11%
、砂11、石粉5%〕に、アスファルトを4%(切材と
アスファルトの合計量に対して)、対アスファルト2%
のポリプロピレン成型品粉砕物及び対アスファルト0.
25%のペルオクソ硼酸すI・リウムを実施例1と同様
に処理して加熱アスファルト混合物を得る。
Example 9゜coarse particle blended bone + 20% J'C3-20 crushed stone, S -
13 crushed stone 31%, S-5 crushed stone 22%, S, C 11%
, sand 11, stone powder 5%], asphalt 4% (based on the total amount of cut wood and asphalt), and asphalt 2%
Pulverized polypropylene molded product and asphalt 0.
25% I.Lium peroxoborate is treated in the same manner as in Example 1 to obtain a heated asphalt mixture.

比較例 5゜ 実施例10と同じく粗粒度配合の骨材に、アスファルト
のみを合計量にり・1して5%混入して加熱アスファル
ト混合物を得る。
Comparative Example 5゜As in Example 10, 5% of asphalt alone was mixed into the coarse-grained aggregate to obtain a heated asphalt mixture.

実施例 10゜ 上層路盤用配合の骨材(S−20の砕石33%、5−1
3の砕石16%、S−5の砕石14%、S、C19%、
砂15、石粉3%〕に、アスファルトを3%(骨材とア
スファルトの合計量に対して)、対表−2 表−3 アスファルト2%のポリプロピレン成型品粉砕物及び対
アスファルト0.25%のベルオクソ硼酸ナトリウムを
実施例1と同様に処理して加熱アスファルト混合物を得
る。
Example 10° Aggregate blend for upper roadbed (S-20 crushed stone 33%, 5-1
3 crushed stone 16%, S-5 crushed stone 14%, S, C 19%,
15% sand, 3% stone powder] and 3% asphalt (based on the total amount of aggregate and asphalt) Sodium beroxoborate is treated in the same manner as in Example 1 to obtain a heated asphalt mixture.

比較例 6゜ 実施例10と同じ配合の骨材に、アスファルトを4%混
入して加熱アスファルト混合物を得る。
Comparative Example 6゜4% of asphalt was mixed into the aggregate having the same composition as in Example 10 to obtain a heated asphalt mixture.

上記の各実施例4〜10及び各比較例5・6の測定結果
を表−2に示す。
The measurement results of Examples 4 to 10 and Comparative Examples 5 and 6 are shown in Table 2.

以上の結果から、本発明により得られる熱工式アスファ
ルトコンクリートはマーシャル安定度試験において優れ
た値を示すことがわかる。特に密粒度アスファルトコン
クリートの場合アスファルト量を6%から4%に減らし
ても(コスト的に約17%減となる)、6%における基
準値を完全に隅たし、樹脂5重合開始剤更には界面活性
剤の組合せによっては通常の6%のものの4割前後も同
士することがある。また粗粒度・安定処理の場合も夫々
従来の標準割合よりアスファルトmを対全体で1〜2%
減らしても十分な実用強度のものがiシ1られ、アスフ
ァルトの有効利用、アスファルトコンクリートのコスト
ダウン及び強度アンプの面で極めて大きな貢献をなすも
のである。 。
From the above results, it can be seen that the thermally engineered asphalt concrete obtained by the present invention exhibits excellent values in the Marshall stability test. In particular, in the case of dense-grained asphalt concrete, even if the amount of asphalt is reduced from 6% to 4% (reducing the cost by about 17%), the standard value at 6% is completely met, and the resin 5 polymerization initiator and Depending on the combination of surfactants, the ratio may be around 40% compared to the usual 6%. In addition, in the case of coarse particle size/stabilization treatment, asphalt m is 1 to 2% of the total compared to the conventional standard ratio.
Even if reduced, a material with sufficient practical strength has been created, making an extremely large contribution in terms of effective use of asphalt, cost reduction of asphalt concrete, and strength amplifier. .

一方、樹脂についてはバージン樹脂の粉末、ペレットや
エマルジョンは勿論のこと、不要樹゛脂成型品いわゆる
廃プラスチックとかその粉砕物も有効に用いられ、その
ことが本発明の大きな特徴でもある。また重合開始剤や
界面活性剤はアスファルトに対して極僅か添加するだけ
でよく、且つ特殊な装置や技術も不要で従来装置がその
まま用い、られ、製造コストも殆どかわらないものであ
る。
On the other hand, regarding the resin, not only virgin resin powder, pellets, and emulsion, but also unnecessary resin molded products, so-called waste plastics, and pulverized products thereof can be effectively used, which is a major feature of the present invention. In addition, only a small amount of polymerization initiator and surfactant need be added to the asphalt, and no special equipment or techniques are required; conventional equipment can be used as is, and the production cost remains almost the same.

更に、アスファルトコンクリートの種類に応じて1バツ
チに必要な樹脂粉末や粉砕物1重合開始剤。
Furthermore, depending on the type of asphalt concrete, one batch of resin powder or pulverized polymerization initiator is required.

界面活性剤を所定割合配合して分包しておくと、使用に
際して計量する手間もいらず正確に混入でき極めて便利
である。
If the surfactant is mixed in a predetermined proportion and packaged in separate packages, it is extremely convenient to mix the surfactant accurately without having to measure it before use.

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂の粉末、ペレット、エマルジョン或い
は熱可塑性樹脂成型品又はその粉砕物更にはこれらの混
合物(ポリ塩化ビニル用脂の粉砕物単体、パテ状ポリス
チレン単体及び両者の混合物を除く)を部分的乃至全体
的に分解するための工程を、骨材と瀝青材との混合中或
いは混合前に行わせ、混合物中の上記分解した樹脂を同
じく混合物中に混入した無機系重合開始剤によって再重
合させ、この再重合した樹脂と瀝青材を骨材のバインダ
ーとすることを特徴とする舗装用アスファルトコンクリ
−1−の製造方法。 。 2、無機系重合開始剤としてペルオクソ酸塩を用い、更
に界面活性剤を加えるものである特許請求の範囲第1項
記載の舗装用アスファルトコンクリートの製造方法。 3、密粒度アスファルトコンクリートにおいて、対全体
に対しアスファルトを3.5〜5.0重量%用いるもの
である特許請求の範囲第1項又は第2項記載の舗装用ア
スファルトコンクリートの製造方法。 4、熱可塑性樹脂粉本乃至粉砕物とベルオクソ酸塩を主
成分とするアスファルトコイクリート補強用添加材。 5、 ノ冊オン界面活性剤を加えてなる特許請求の範囲
第4項記載のアスファルトコンクリ−、ト補強用添加材
[Claims] 1. Thermoplastic resin powders, pellets, emulsions, thermoplastic resin molded products, or pulverized products thereof, as well as mixtures thereof (pulverized polyvinyl chloride fat alone, putty-like polystyrene alone, and combinations of both) A process for partially or completely decomposing the aggregate (excluding mixtures) is carried out during or before mixing the aggregate and bituminous material, and the decomposed resin in the mixture is used to decompose the inorganic resin mixed in the mixture as well. 1. A method for producing asphalt concrete for paving, which comprises repolymerizing with a polymerization initiator and using the repolymerized resin and bituminous material as a binder for aggregate. . 2. The method for producing asphalt concrete for paving according to claim 1, wherein a peroxo acid salt is used as an inorganic polymerization initiator, and a surfactant is further added. 3. The method for producing asphalt concrete for pavement according to claim 1 or 2, wherein in the dense-grained asphalt concrete, 3.5 to 5.0% by weight of asphalt is used based on the total weight of the asphalt concrete. 4. An additive for reinforcing asphalt coiclete whose main components are thermoplastic resin powder or pulverized material and beroxo acid salt. 5. The additive material for reinforcing asphalt concrete according to claim 4, which contains a surfactant.
JP11342684A 1984-06-01 1984-06-01 Manufacture of pavement asphalt concrete and additive for reinforcing asphalt concrete Granted JPS60260455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11342684A JPS60260455A (en) 1984-06-01 1984-06-01 Manufacture of pavement asphalt concrete and additive for reinforcing asphalt concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11342684A JPS60260455A (en) 1984-06-01 1984-06-01 Manufacture of pavement asphalt concrete and additive for reinforcing asphalt concrete

Publications (2)

Publication Number Publication Date
JPS60260455A true JPS60260455A (en) 1985-12-23
JPH0251859B2 JPH0251859B2 (en) 1990-11-08

Family

ID=14611930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11342684A Granted JPS60260455A (en) 1984-06-01 1984-06-01 Manufacture of pavement asphalt concrete and additive for reinforcing asphalt concrete

Country Status (1)

Country Link
JP (1) JPS60260455A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189478A (en) * 1987-01-30 1988-08-05 Natl House Ind Co Ltd Putty material
US5116420A (en) * 1990-09-07 1992-05-26 Schneider John F Homogeneous composition of cementitious and tar components and process for forming shaped articles therefrom
US5225358A (en) * 1991-06-06 1993-07-06 Lsi Logic Corporation Method of forming late isolation with polishing
US5248625A (en) * 1991-06-06 1993-09-28 Lsi Logic Corporation Techniques for forming isolation structures
US5298110A (en) * 1991-06-06 1994-03-29 Lsi Logic Corporation Trench planarization techniques
WO1994025678A1 (en) * 1993-05-03 1994-11-10 Enviropaver Inc. Composite block and process for manufacturing
US5874327A (en) * 1991-08-26 1999-02-23 Lsi Logic Corporation Fabricating a semiconductor device using precursor CMOS semiconductor substrate of a given configuration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189478A (en) * 1987-01-30 1988-08-05 Natl House Ind Co Ltd Putty material
US5116420A (en) * 1990-09-07 1992-05-26 Schneider John F Homogeneous composition of cementitious and tar components and process for forming shaped articles therefrom
US5225358A (en) * 1991-06-06 1993-07-06 Lsi Logic Corporation Method of forming late isolation with polishing
US5248625A (en) * 1991-06-06 1993-09-28 Lsi Logic Corporation Techniques for forming isolation structures
US5298110A (en) * 1991-06-06 1994-03-29 Lsi Logic Corporation Trench planarization techniques
US5312770A (en) * 1991-06-06 1994-05-17 Lsi Logic Corporation Techniques for forming isolation structures
US5471091A (en) * 1991-06-06 1995-11-28 Lsi Logic Corporation Techniques for via formation and filling
US5874327A (en) * 1991-08-26 1999-02-23 Lsi Logic Corporation Fabricating a semiconductor device using precursor CMOS semiconductor substrate of a given configuration
WO1994025678A1 (en) * 1993-05-03 1994-11-10 Enviropaver Inc. Composite block and process for manufacturing

Also Published As

Publication number Publication date
JPH0251859B2 (en) 1990-11-08

Similar Documents

Publication Publication Date Title
US5811477A (en) Method for preparing improved asphalt emulsion compositions
EP1877492B1 (en) Modified asphalt binder material using crosslinked crumb rubber and method of manufacturing a modified asphalt binder
US6706787B1 (en) Method for preparing asphalt/polymer emulsion-rubber paving composition
WO2014168477A1 (en) Mastic composition for asphalt mixtures and process for making such a mastic composition
DE1569234B2 (en)
Takal Advances in technology of asphalt paving materials containing used tire rubber
JPS60260455A (en) Manufacture of pavement asphalt concrete and additive for reinforcing asphalt concrete
US3849355A (en) Aggregate composition containing synthetic thermoplastic resin pellets or fragments
DE4025102C2 (en)
US3953390A (en) Process for preparing a composition for the surface of roads, airport runways and like surfaces and the products obtained
DE60105125T2 (en) Method and device for producing a bituminous mixed material and method for producing a road surface therewith
JPS6251321B2 (en)
JPH0116436B2 (en)
JPS62281B2 (en)
US2876126A (en) Process of mixing fine aggregates with asphalt
JP2000044305A (en) Method for reclaiming and reutilizing scrapped poly(vinyl chloride)-based resins and other refuse
JPS6251322B2 (en)
US1740212A (en) Bituminous composition and the manufacture thereof
US2086581A (en) Method for producing bituminous paving mixtures and product thereof
US4617201A (en) Method for producing a synthetic material-containing powder
JPS6047403B2 (en) Method for modifying asphalt pavement materials
JP2000198933A (en) Asphalt paving material for cold laying
JP2005154574A (en) Effectual utilization method of waste frp
JPS6221744B2 (en)
JPS58219260A (en) Emulsion composition for adding to regenerated paving material