JPS60260330A - Manufacture of double-side metal lined flexible printed wiring substrate - Google Patents

Manufacture of double-side metal lined flexible printed wiring substrate

Info

Publication number
JPS60260330A
JPS60260330A JP59118683A JP11868384A JPS60260330A JP S60260330 A JPS60260330 A JP S60260330A JP 59118683 A JP59118683 A JP 59118683A JP 11868384 A JP11868384 A JP 11868384A JP S60260330 A JPS60260330 A JP S60260330A
Authority
JP
Japan
Prior art keywords
double
heat
resistant resin
flexible printed
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59118683A
Other languages
Japanese (ja)
Inventor
正俊 吉田
康夫 宮寺
秀一 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP59118683A priority Critical patent/JPS60260330A/en
Publication of JPS60260330A publication Critical patent/JPS60260330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性に優れた両面金属張りフレキシブル印刷
配線基板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a double-sided metal-clad flexible printed wiring board with excellent heat resistance.

(従来の技術) 従来フレキシブル配線基板は、プラスチックフィルムと
導体である金属箔と’に一111着剤會用いて彊り合わ
せるか、金属箔上に直接溶剤に均一に溶解している耐熱
性樹脂上流延塗布し乾燥して製造されている。
(Prior art) Conventionally, flexible wiring boards are made by bonding a plastic film and a metal foil as a conductor by using an adhesive, or by applying a heat-resistant resin uniformly dissolved in a solvent directly onto the metal foil. It is manufactured by spreading and drying.

(発BAが解決しようとする問題点) 前者はプラスチックフィルムの両側に金!14箔會接着
した両面金属張りフレキシブル印刷配線基板孕製造する
ことは可能である。しかしプラスチックフィルムに耐熱
性に優れるポリイミドフィルムr使用しても接着剤か、
ポリイミドフィルムより耐熱性が劣り260〜280℃
の半田に耐えるのか限度であり耐熱性に優れる7レキシ
プル印刷配線基板が望壕れていた。
(The problem that BA is trying to solve) The former has gold on both sides of the plastic film! It is possible to manufacture a double-sided metal-clad flexible printed circuit board with 14 foils bonded together. However, even if polyimide film, which has excellent heat resistance, is used as a plastic film, it is difficult to use adhesive.
Heat resistance is inferior to polyimide film (260-280℃)
7 LexiPle printed wiring boards with excellent heat resistance have been in high demand due to their limited ability to withstand soldering.

また後者は接着剤?使用しないため耐熱性に優れたフレ
キシブル配線板が製造出来る。しかし、金属箔上vC街
脂會流延塗布する際に溶剤葡使用するため、両面金属張
シフレキシプル印刷配線基板?製造しようとしても浴剤
除去が困難であり製造することは出来ない。
Also, is the latter an adhesive? Since it is not used, flexible wiring boards with excellent heat resistance can be manufactured. However, since a solvent is used when applying VC resin on metal foil, is it possible to make a double-sided metal-clad flexible printed wiring board? Even if an attempt was made to manufacture it, it would be difficult to remove the bath agent and it would not be possible to manufacture it.

(問題点?解決するための手段) 本発明者らは、耐熱性に優れた両面金属張りフレキシブ
ル配線基板の製造方法ka々検討した結果金属箔上に耐
熱性樹脂粉末を塗装し、次いで塗装した金属箔の樹脂層
ケ向い合わせてかさね、使用した耐熱性樹脂のガラス転
移温度より高く、分解温度より低い温度に加熱したロー
ルの間勿通して熱と圧力ケかけることにより耐熱性樹脂
を溶融させて金属陥葡接着嬶せ耐熱性に優れた、両面金
属張りフレキシフル配線板が製造出来ること7見出し本
発明に至った。
(Problem? Means for solving the problem) The inventors of the present invention have investigated various methods of manufacturing a double-sided metal-clad flexible wiring board with excellent heat resistance.As a result, the inventors have developed a method of coating a heat-resistant resin powder on a metal foil, and then coating the metal foil with a heat-resistant resin powder. The resin layers of the metal foil are stacked facing each other, and the heat-resistant resin is melted by applying heat and pressure between the rolls, which are heated to a temperature higher than the glass transition temperature and lower than the decomposition temperature of the heat-resistant resin used. The present invention was made based on the finding that a double-sided metal-clad flexible wiring board with excellent heat resistance can be produced by adhering the metal lining and folding.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明で用いられる耐熱性樹脂としては、ポリイミド、
ポリエステルイミド、ポリエーテルイミド、ポリアミド
イミドなどの分子内にイミド環を待ったポリイミド系樹
脂、ポリオキサジアゾール、ポリパラバン酸、ポリヒダ
ントインなどがあけられる。
The heat-resistant resin used in the present invention includes polyimide,
Polyimide resins such as polyesterimide, polyetherimide, polyamideimide, etc., which have an imide ring in the molecule, polyoxadiazole, polyparabanic acid, polyhydantoin, etc., can be used.

また、製造速度を極端に遅くすればポリイミド系樹脂の
プレポリマー?使用することも可能である。
Also, if the production speed is extremely slow, will it become a prepolymer of polyimide resin? It is also possible to use

上記記載の耐熱性樹脂で、ガラス転移温度と窒素雰囲気
中での熱分解温度との差が60℃以上あるのが製造する
際の作業中が大きくなることから好ましい。
In the above-described heat-resistant resin, it is preferable that the difference between the glass transition temperature and the thermal decomposition temperature in a nitrogen atmosphere is 60° C. or more because the difference during production becomes large.

また、本発明で用いられる金属箔としては銅、アルミニ
ュウムなど、通常フレキシブル配線基板に使用される金
属箔が使用出来る。
Further, as the metal foil used in the present invention, metal foils such as copper and aluminum that are normally used for flexible wiring boards can be used.

金属箔上に、耐熱性樹脂粉末に!装する方法としては、
静電スプレーによる方法、静電流動浸漬槽による方法、
などがあるか、本発明にお 作いてはどのような塗装方
法荀用いてもよい。
Heat-resistant resin powder on metal foil! As for how to equip it,
Method using electrostatic spray, method using electrostatic dynamic immersion bath,
Any coating method may be used in accordance with the present invention.

また、金属箔上に塗装する耐熱性樹脂粉末の粒径は通常
100μm以下のものが好ましい。
Further, the particle size of the heat-resistant resin powder coated on the metal foil is usually preferably 100 μm or less.

塗装した耐熱性樹脂粉末の厚みは、使用粉末の粒径、接
着させる時の圧力や温度により異なってくるが、通常5
0〜150μmの厚さで製造される。
The thickness of the coated heat-resistant resin powder varies depending on the particle size of the powder used and the pressure and temperature during adhesion, but it is usually 5.
Manufactured with a thickness of 0 to 150 μm.

なお熱分等温には真を理工■展示差熱天秤TGD−30
0ケ用い窒素雰囲気中、昇温速度5”C/minで測定
し、接線法によってめた温度である。
In addition, the true science and technology for thermal isotherm ■Display differential thermal balance TGD-30
The temperature was measured in a nitrogen atmosphere at a temperature increase rate of 5''C/min, and was determined by the tangential method.

さらにガラス転移温度は真空理工N装態機械試験器TM
A−1500に用い引張りモード、昇温速度10℃/m
inで測定した。
Furthermore, the glass transition temperature is determined by the Vacuum Riko N System Mechanical Tester TM.
Used for A-1500 in tension mode, heating rate 10℃/m
Measured in.

金属箔r接着させる温度はデ用する耐熱性樹脂のガラス
転移温度より高く分解温度より低い温度であればよいが
ガラス転移温度より40℃以上高いのが接着性の面から
好ましい。
The temperature at which the metal foil r is bonded may be higher than the glass transition temperature of the heat-resistant resin used and lower than the decomposition temperature, but it is preferably 40° C. or more higher than the glass transition temperature from the viewpoint of adhesion.

ガラス転移温度より低い場合f′i接漸せず7レキシプ
ル印刷配線基板r製造することは出来ない。また、分解
温度より高いと樹脂が分解するため特性の劣ったフレキ
シブル配線基板しか製造出来ない0最悪の場合には、フ
レキシブル印刷配線基板の形状r保つことができない。
If it is lower than the glass transition temperature, f'i will not gradually increase and it will not be possible to manufacture a 7-lexiple printed wiring board r. Further, if the temperature is higher than the decomposition temperature, the resin decomposes, so that only flexible wiring boards with inferior characteristics can be manufactured.In the worst case, the shape of the flexible printed wiring board cannot be maintained.

金属箔を接着させる際の圧力は、接着する温度、使用す
る耐熱性樹脂により変ってくる〃s1通常1〜1000
kg/an’の範囲で使用される。
The pressure when bonding metal foil varies depending on the bonding temperature and the heat-resistant resin used. s1 Usually 1 to 1000
kg/an'.

また、圧力は接着する温度が高いほど低く、接着する温
度が低いはと高い圧力ケ使用する。
Also, the higher the bonding temperature, the lower the pressure, and the lower the bonding temperature, the higher the pressure used.

以下実施例および比較例を示す。Examples and comparative examples are shown below.

実施例1 (ポリイミド樹脂粉末の製造方法) 3.3’、4.4’−ヘア”)”フェノンテトラカルボ
ン酸ジ無水物(BTDA)32.2g(0,1モル)、
4.4′ジアミノジフエニルエーテル(DPE)20、
0 g (o、 iモル)および60℃に加熱したp−
クロルフェノール680gk、温度計、攪拌機、窒素導
入管ヶ備えた四ツ目フラスコに入れた後窒素ガスr流し
ながら約1時間で160℃まで昇温しモノマー會均−に
浴解させた。160℃で2時間反応させた後70″Gま
で冷却しポリイミドワニス會得た。
Example 1 (Production method of polyimide resin powder) 32.2 g (0.1 mol) of 3.3', 4.4'-hair'') phenonetetracarboxylic dianhydride (BTDA),
4.4'diaminodiphenyl ether (DPE) 20,
0 g (o, i mol) and p- heated to 60 °C
The mixture was placed in a four-eye flask equipped with 680 gk of chlorophenol, a thermometer, a stirrer, and a nitrogen inlet tube, and the temperature was raised to 160° C. in about 1 hour while flowing nitrogen gas to uniformly dissolve the monomers. After reacting at 160° C. for 2 hours, the mixture was cooled to 70″G to obtain a polyimide varnish.

得られたポリイミドワニスケホモジナイザ−(日本精機
製作所製)で為速攪拌している21の水−メタノール混
合物(混合比1/1N量比)に添加し樹脂上析出させた
。ろ過によ12(脂r分離した。分離した樹脂勿水−メ
タノール混合物で3回洗浄した後減圧下で乾燥し粉末状
のポリイミドを得た。得られたポリイミド2分別し粒径
50 ttm以下のものケフレキシブル配線基板の製造
に使用した。(ガラス転移温庇は280℃であった。) (7レキシプル配#基板のM過方法) 厚さ65μmの圧延銅箔上に静電スプレー法で約60 
limの厚みにポリイミドの粉末全塗装した。
The obtained polyimide varnish was added to a water-methanol mixture (mixing ratio 1/1N) of 21 which was being stirred at high speed using a Niske homogenizer (manufactured by Nippon Seiki Seisakusho), and was allowed to precipitate on the resin. 12 (fat r) was separated by filtration. The separated resin was washed three times with a water-methanol mixture and then dried under reduced pressure to obtain a powdery polyimide. It was used to manufacture a monoke flexible wiring board. (Glass transition temperature was 280°C.) (M-transition method for 7 lexiple wiring boards) Approximately 65 μm thick rolled copper foil was coated by electrostatic spraying 60
The entire rim thickness was coated with polyimide powder.

次にポリイミド粉末耐塗装した銅箔2枚r街脂層葡向い
合わせて積ね650℃に加熱したロールの間に1m/m
inの速朋で通し厚み約100μmの両面銅箔のフレキ
シブル配線基板ケ製造した。
Next, two pieces of copper foil coated with polyimide powder were stacked face-to-face and 1m/m apart between rolls heated to 650°C.
A flexible wiring board made of double-sided copper foil with a thickness of approximately 100 μm was manufactured at Inn's Toho.

製造したフレキシブル配線基板について印刷配線基とし
ての特性2表1に示す。 ”実施例2 DDE會4.4’−(mアミノンエノキシ)ジフェニル
スルホン4 A 2 g (0,1モル)に代えた他は
実施例1と同様にして両面銅箔のフレキシブル配線基叛
勿製造した。
Characteristics of the manufactured flexible wiring board as a printed wiring board are shown in Table 2. Example 2 A double-sided copper foil flexible wiring board was fabricated in the same manner as in Example 1, except that DDE 4.4'-(aminoneenoxy)diphenylsulfone 4A 2 g (0.1 mol) was used. Manufactured.

製造したフレキシブル印刷配線基板の特性會表1に示す
Table 1 shows the characteristics of the manufactured flexible printed wiring board.

比較例1 市販のポリアミド酸ワニスpyre ’ML”(Dup
ont製商品名)老厚み65μmの圧延銅箔上に流延塗
布し80℃減圧下で4時間乾燥し俗媒全除去した。
Comparative Example 1 Commercially available polyamic acid varnish pyre 'ML'' (Dup
(trade name, manufactured by Ont) was cast and coated on a rolled copper foil with a thickness of 65 μm, and dried at 80° C. for 4 hours under reduced pressure to remove all common solvents.

次に樹脂塗塗布した銅箔2枚r樹脂層〒向い合わせて積
ね350℃に加熱したロールの間〒1 m / mi 
11の速度で通し両面銅箔の7レキシブル配線基板荀裂
遺した所、ふくれに生じ、試験に供することのできるフ
レキシブル印刷配置基 !板は得られなかった。
Next, two sheets of copper foil coated with resin and a resin layer were stacked facing each other and placed between rolls heated to 350°C at 1 m/mi.
7 Flexible wiring board made of double-sided copper foil passed through at a speed of 11. Blisters occur in the places where the parts remain, and the flexible printing arrangement base can be used for testing! No board was obtained.

比較例2 厚み25μmのポリイミドフィルム(カプトンHDup
ont製萌品名)と65μmの圧延鋼箔と?エポキシ糸
接着剤)1−2766(日本ボスチック製商品名)1用
いて接着して厚み約100μmの両面鋼箔のフレキシブ
ル印細1配線基板會作成した。
Comparative Example 2 Polyimide film with a thickness of 25 μm (Kapton HDup
ont product name) and 65μm rolled steel foil? A flexible printed wiring board made of double-sided steel foil with a thickness of approximately 100 μm was prepared by adhering using epoxy thread adhesive 1-2766 (trade name, manufactured by Nippon Bostic Co., Ltd.).

製造したフレキシブル印刷配線基数の特性〒表1に示す
Characteristics of the manufactured flexible printed wiring board are shown in Table 1.

試験方法 (1)半田耐熱性 JIS C−6481に準拠し試料會315℃の半田浴
中に6a秒浸漬したのち取り出し「7クレJなど゛の外
観?観察した。
Test Method (1) Soldering Heat Resistance In accordance with JIS C-6481, the sample was immersed in a solder bath at 315°C for 6 seconds, then taken out and observed for appearance as ``7 cle J''.

(2ン 引き/fiがし強さ JIS C−6481に準拠し幅1(1mmの試料の1
80°ハクリr引張り速度50mm/minで測定した
◇ (5〕 表面抵抗 JIS C−6481に準拠して測定した0 (4)絶縁破壊電圧 JIS C−2120に準拠して測定した。
(2 tensile/fi peel strength based on JIS C-6481, width 1 (1 mm sample)
◇ (5) Surface resistance Measured in accordance with JIS C-6481 0 (4) Dielectric breakdown voltage Measured in accordance with JIS C-2120.

(発明の効果) 前述したような製造方法會とることによf)耐熱性に優
れた両面金属張クフレキシブル印刷基特許庁長官殿 1.事件の表示 ′昭和59年特許願第118683号 2、発明の名称 両面金属張りフレキシブル印刷配線基板の製造方法3、
補正をする者 事件との関俤 特許出願人 名 称 (445)日立化成工業株式会社4、代 理 
人 5、補正の対象 明細書の発明の詳細な説明のs、。
(Effects of the invention) By adopting the manufacturing method as described above, f) a double-sided metal-clad flexible printing base with excellent heat resistance; Dear Commissioner of the Japan Patent Office, 1. Indication of the case 'Patent Application No. 118683 of 1982 2, Title of invention Method for manufacturing double-sided metal-clad flexible printed wiring board 3,
Relationship with the case of the person making the amendment Name of patent applicant (445) Hitachi Chemical Co., Ltd. 4, Agent
Person 5, s of the detailed description of the invention in the specification subject to amendment.

6、補正の内容 明細書第9頁下から4行目のI−(s 15−”C5o
 )」をl’−(515℃30秒)」と補正する。
6. I-(s 15-”C5o on page 9, line 4 from the bottom of the statement of contents of the amendment)
)" is corrected to "l'-(515°C 30 seconds)".

150−150-

Claims (1)

【特許請求の範囲】 1、金属箔上に耐熱性樹脂粉末上塗装し、次い・ で塗
装した金属箔の樹脂#髪向い合わせてかさね、使用した
耐熱性樹脂のガラス転移温腿より高く分解温度より低い
温匿に加熱したロールの間會通して熱と圧力tかけるこ
とにより耐熱性樹脂ケ溶融させて金属箔r接着させるこ
と全特徴とする両面金属張りフレキシブル印刷配線基板
の製造方法。 2、耐熱性樹脂のガラス転移温度よ!74 Q ”C以
上高い温度で耐熱性樹脂を溶融し金属箔勿檄着させるこ
とを特徴とする特許請求範囲第1項に記載の両面金属張
りフレキシブル印刷配線基板の製造方法。 3、耐熱性樹脂がポリイミドであること全特徴とする特
許請求範囲第1項又は第2項記載り両面金属張りフレキ
シブル印刷配線基板の製造方法。
[Claims] 1. Heat-resistant resin powder is coated on the metal foil, and then the resin # of the metal foil is coated with #hairs, stacked facing each other, and the glass transition temperature is higher than that of the heat-resistant resin used. A method for manufacturing a double-sided metal-clad flexible printed circuit board, characterized in that heat-resistant resin is melted and metal foil is bonded by applying heat and pressure between rolls heated to a temperature lower than temperature. 2. Glass transition temperature of heat-resistant resin! A method for manufacturing a double-sided metal-clad flexible printed wiring board according to claim 1, characterized in that the heat-resistant resin is melted at a temperature higher than 74 Q "C and then the metal foil is attached. 3. Heat-resistant resin 3. A method for manufacturing a double-sided metal-clad flexible printed wiring board as claimed in claim 1 or 2, characterized in that the material is polyimide.
JP59118683A 1984-06-08 1984-06-08 Manufacture of double-side metal lined flexible printed wiring substrate Pending JPS60260330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118683A JPS60260330A (en) 1984-06-08 1984-06-08 Manufacture of double-side metal lined flexible printed wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118683A JPS60260330A (en) 1984-06-08 1984-06-08 Manufacture of double-side metal lined flexible printed wiring substrate

Publications (1)

Publication Number Publication Date
JPS60260330A true JPS60260330A (en) 1985-12-23

Family

ID=14742610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118683A Pending JPS60260330A (en) 1984-06-08 1984-06-08 Manufacture of double-side metal lined flexible printed wiring substrate

Country Status (1)

Country Link
JP (1) JPS60260330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281495A (en) * 1988-09-19 1990-03-22 Mitsui Toatsu Chem Inc Flexible double-sided metal-foil laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281495A (en) * 1988-09-19 1990-03-22 Mitsui Toatsu Chem Inc Flexible double-sided metal-foil laminated sheet

Similar Documents

Publication Publication Date Title
US6548180B2 (en) Aromatic polyimide film and film laminate
JPS61111359A (en) Polyamic acid solution composition and polyimide film
JPH0231516B2 (en)
JP3102622B2 (en) Metal foil laminated polyimide film
JP3067127B2 (en) Polyimide film laminated with metal foil
JP4193797B2 (en) Novel polyimide copolymer and its metal laminate
JPH02168694A (en) Flexible laminate and manufacture thereof
JP2009182073A (en) Multilayer substrate
CN108099304A (en) A kind of two layers of gum-free double side flexible copper coated board and preparation method thereof
JPH0719939B2 (en) Flexible double-sided metal foil laminate
JPS60260330A (en) Manufacture of double-side metal lined flexible printed wiring substrate
JP2729063B2 (en) Method of manufacturing flexible metal foil laminate
JP2938227B2 (en) Polyamic acid resin
JP2002322276A (en) New thermoplastic polyimide resin
JP3805546B2 (en) Manufacturing method of heat-resistant bonding sheet
JP2002114848A (en) New thermoplastic polyimide resin and flexible metal foil-clad laminate
JP2653582B2 (en) Polyimide film having a polyamic acid layer on the surface having openings and flexible printed circuit board or circuit board using the same
JPS61227040A (en) Substrate for printed circuit
JP2612118B2 (en) Method for manufacturing substrate for double-sided flexible printed circuit
JPH09193292A (en) Flexible copperclad laminate
JP2653583B2 (en) Polyimide film having a polyamic acid layer on its surface and substrate for flexible printed circuit using the same
JP2977958B2 (en) Polyamic acid resin for flexible printed circuit boards
JP2708505B2 (en) Flexible metal foil laminate
JP2002210903A (en) Bonding sheet
JP2000119607A (en) Preparation of bonding sheet and flexible copper-covered laminate using same