JPS60257039A - Producing method for cathode-ray tube phosphor screen - Google Patents

Producing method for cathode-ray tube phosphor screen

Info

Publication number
JPS60257039A
JPS60257039A JP11345384A JP11345384A JPS60257039A JP S60257039 A JPS60257039 A JP S60257039A JP 11345384 A JP11345384 A JP 11345384A JP 11345384 A JP11345384 A JP 11345384A JP S60257039 A JPS60257039 A JP S60257039A
Authority
JP
Japan
Prior art keywords
phosphor
phosphor layer
ray tube
phosphors
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11345384A
Other languages
Japanese (ja)
Inventor
Yasuo Iwasaki
安男 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11345384A priority Critical patent/JPS60257039A/en
Publication of JPS60257039A publication Critical patent/JPS60257039A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/221Applying luminescent coatings in continuous layers
    • H01J9/224Applying luminescent coatings in continuous layers by precipitation

Abstract

PURPOSE:To form a phosphor screen which has an almost duplicated structure, by making a difference in the sedimentation velocity between two kinds of phosphors, so as to make the phosphor layer formed sedimentarily, to be unhomogeneous. CONSTITUTION:When two kinds of phosphors whose specific gravities are indicated as PA, PB and mean grain diameters are indicated as dA, dB, are mixed and laid in a sedimentation method, the sedimentation velocities of respective component phosphors are made to be different with each other, as (PA-1)dA<2>/ (PB-1)dB<2>>=3.0. In this way, a phosphor screen which has a phosphor layer of almost duplicated structure, can be formed relatively easily, and it becomes possible to produce a long-lived cathode-ray tube of high quality.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電子線による発光効率の劣化を少なくした
陰極線管の螢光面の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a fluorescent surface of a cathode ray tube that reduces deterioration of luminous efficiency due to electron beams.

〔従来技術〕[Prior art]

第1図は陰極線管の螢光面(7)の概略断面図を示すも
のである。螢光面(7)を構成するフェースプレー1)
の内側には螢光体層(2)が沈降法などの方法で形成さ
れ、その上面には高圧電極および光反射膜としてのメタ
ルバック膜(3)が形成されて螢光面(7)を作ってい
る。このような状態で螢光面(7)のメタルバック膜(
3)側内面に対向配置された電子銃(図示せず)から発
せられる電子線(4)のエネルギにより螢光体層(2)
が励起され、螢光面発光出力を得ることができる。
FIG. 1 shows a schematic cross-sectional view of a fluorescent surface (7) of a cathode ray tube. Face plate 1) constituting the fluorescent surface (7)
A phosphor layer (2) is formed on the inside of the phosphor layer (2) by a method such as a precipitation method, and a high voltage electrode and a metal back film (3) as a light reflecting film are formed on the upper surface of the phosphor layer (7). I'm making it. In this state, the metal back film (
3) The phosphor layer (2) is heated by the energy of the electron beam (4) emitted from an electron gun (not shown) placed opposite to the inner surface of the side.
is excited, and a fluorescent surface emission output can be obtained.

投写型陰極線管や光源用陰極線管などのように、#R極
線管の種類や用途によっては、この螢光面に付加される
電子線(4)のエネルギが過大なものもある。通常、螢
光体層(2)を過大なエネルギで長時間励起し続けると
、螢光体の発光効率の低下を生じる。これは不可逆な反
応であり、いったん発光効率の低下した螢光体の発光効
率は元にはもどらず、この現象を螢光体の劣化と称する
。螢光体の劣化のメカニズムについては未だ良く解明さ
れていない点が多いが、経験的には螢光体を励起する電
子線(4)の電荷量に比例して劣化が進行することがわ
かっている。また、同じ条件でも螢光体の種類によって
劣化の程度は全く異なる。すなわち電子線による劣化に
対して強い螢光体や逆に弱い螢光体が現実に存在する。
Depending on the type and purpose of #R cathode ray tubes, such as projection type cathode ray tubes and cathode ray tubes for light sources, the energy of the electron beam (4) added to the fluorescent surface may be excessive. Normally, if the phosphor layer (2) is continuously excited with excessive energy for a long time, the luminous efficiency of the phosphor decreases. This is an irreversible reaction, and once the luminous efficiency of the phosphor has decreased, it does not return to its original level, and this phenomenon is called deterioration of the phosphor. Although there are still many aspects of the deterioration mechanism of phosphors that are not well understood, it is empirically known that deterioration progresses in proportion to the amount of charge of the electron beam (4) that excites the phosphor. There is. Further, even under the same conditions, the degree of deterioration varies depending on the type of phosphor. In other words, there are actually phosphors that are resistant to deterioration by electron beams and phosphors that are weakly resistant to deterioration by electron beams.

第1図において、電子線(4)がアルミニウム(Al’
)の蒸着膜であるメタルバック膜(3)を透過して螢光
体M(2)に進入するとき、メタルバック膜(3)に而
している部分の螢光体粒子は加速された強力な電子線エ
ネルギをもろに受けるが、これより深い部分に在る螢光
体粒子にあたる電子線は散乱電子や透過電子が多く、受
ける電子線エネルギは深さとともに小さくなる。このた
め、螢光体の劣化は螢光体# (2)の内、通常メタル
バック膜(3)に近い部分はど速く進行する。
In FIG. 1, the electron beam (4) is
) When the phosphor particles pass through the metal back film (3), which is a vapor-deposited film, and enter the phosphor M (2), the phosphor particles in the part of the metal back film (3) are accelerated and powerful. However, the electron beam that hits phosphor particles located deeper than this consists of many scattered electrons and transmitted electrons, and the received electron beam energy decreases with depth. Therefore, deterioration of the phosphor progresses faster in the portion of the phosphor # (2) that is normally closer to the metal back film (3).

以上のような経験的な劣化の知識がら、螢光面の電子線
による劣化を小さくする方法として、第2図のような螢
光面構造が提案されている。すなわち、この場合の螢光
面(7)は電子線劣化の少ない螢光体層(6)と電子線
劣化の多い螢光体層(5)の2春構造の螢光体層を有し
ている。実例を緑色発光の投写型陰極線管にとると、(
5)の螢光体層としては輝度は非常に明るいが、電子線
劣化に少し雌点の有るLa006 : ’[’b(ラン
タン・オキシ・クロライド:テルビウム)螢光体が、ま
た(6)の螢光体層としては電子線劣化は非常に少ない
が、輝度が少し足りないY3Al5O12: Tb(Y
AG :テルビウム)螢光体が最適であると考えられる
。螢光面(7)のメタルバック膜(3)側に電子線劣化
の少ないY3Al5O12:’I’b螢光体を配すると
ともに、この螢光体の輝度性能を補うために電子線の劣
化を生じにくい部分に輝度性能が優れたLa、OO6:
 Tbを配して両者の欠点を補いつつ両方の長所を引き
出そうとするものである。
Based on the above-mentioned empirical knowledge of deterioration, a phosphor surface structure as shown in FIG. 2 has been proposed as a method of reducing the deterioration of the phosphor surface due to electron beams. That is, the phosphor surface (7) in this case has a phosphor layer with a two-spring structure, consisting of a phosphor layer (6) that is less likely to be degraded by electron beams and a phosphor layer (5) that is more likely to be degraded by electron beams. There is. Taking a green-emitting projection cathode ray tube as an example, (
La006: '['b (lanthanum oxy chloride: terbium) phosphor layer is very bright as a phosphor layer in 5), but has some drawbacks in electron beam degradation. Y3Al5O12:Tb(Y
AG (terbium) fluorescer is considered to be optimal. A Y3Al5O12:'I'b phosphor with less deterioration due to electron beams is placed on the metal back film (3) side of the phosphor surface (7), and a Y3Al5O12:'I'b phosphor with less deterioration due to electron beams is arranged to compensate for the brightness performance of this phosphor. La, OO6 with excellent brightness performance in areas where it is difficult to produce:
By disposing Tb, it is intended to compensate for the drawbacks of both while bringing out the advantages of both.

このような2春構造の螢光体層を実際に螢光面に形成す
る方法を第8図により説明する。まず(イ)のごとく、
陰極線管の真空外囲器となるガラスバルブ(8)の内面
を良く洗浄した後、ガラスバルブ(8)の一部を構成し
、内面1′r、螢光体層が形成されるフェースプレート
(1)部を下向きにして置き、ガラスパルプ(8)内に
酢酸バリウムなどの電解質溶液(9)を一定電注入する
。つぎに(→のごとり、電子線劣化を生じ易い螢光体0
ηを水ガラスの水溶液によく分散させた第1サスペンシ
ョン液0.0を前記(イ)の電解質溶液(9)が入って
いるガラスバルブ(8)内に注入する。その後、(ハ)
のごとく、しばらく静置すると、電子線劣化を生じ易い
螢光体0υは徐々に沈降してガラスバルブ(8)のフェ
ースプレー) (1)に堆積し、フェースプレート(1
)との間で硅酸重合を行う。に)のごとく沈降がほぼ完
了したら、(ホ)のごとく、電子線劣化を生じ難い螢光
体(至)を水ガラスの水溶液によく分散させた第2サス
ペンシヨン液α埠ヲ徐々にガラスバルブ(8)内に注入
する。その後、(へ)のごとく、しばらく静置すると、
電子線劣化を生じにくい螢光体(2)は前記形成された
電子線劣化の多い螢光体層(5)上に徐々に沈降し堆積
する。仕)のごとく沈降がほぼ完了した後、分散液を排
出すると、(ト)のごとく、ガラスパルプ(3)のフェ
ースプレート(1)の内面に第2図で示したような2層
構造の螢光体層が形成できる。
A method for actually forming a phosphor layer with such a two-spring structure on a phosphor surface will be explained with reference to FIG. First, as in (b),
After thoroughly cleaning the inner surface of the glass bulb (8), which serves as the vacuum envelope of the cathode ray tube, the inner surface 1'r, which constitutes a part of the glass bulb (8), and the face plate (on which the phosphor layer is formed) are removed. 1) Place the part face down and inject an electrolyte solution (9) such as barium acetate into the glass pulp (8) at a constant current. Next, as shown in (→), the phosphor 0
A first suspension liquid 0.0 in which η is well dispersed in an aqueous water glass solution is injected into the glass bulb (8) containing the electrolyte solution (9) of (a). After that, (c)
When left standing for a while, the phosphor 0υ, which is susceptible to electron beam deterioration, gradually settles and accumulates on the face plate (1) of the glass bulb (8),
) to carry out silicic acid polymerization. When the sedimentation is almost complete as shown in (e), gradually add the second suspension liquid α, which is a water glass aqueous solution containing a phosphor that does not easily deteriorate with electron beams, well dispersed in the glass bulb as shown in (e). (8) Inject inside. After that, as shown in (f), if you leave it for a while,
The phosphor (2), which is less susceptible to electron beam deterioration, gradually settles and deposits on the formed phosphor layer (5), which is more susceptible to electron beam deterioration. When the dispersion is discharged after the sedimentation is almost completed as shown in (G), a two-layer structure of fireflies as shown in Figure 2 is formed on the inner surface of the face plate (1) of the glass pulp (3), as shown in (G). A light layer can be formed.

このような方法による2層構造の螢光体層の形成は、工
程が非常に長くて、煩雑な上に、第1層目の螢光体層が
形成された上から第2の螢光体層のサヌベンジョン液を
注入するために、この注入時に第1層目の螢光体層にム
ラを生じ易い欠点を有する。
Forming a phosphor layer with a two-layer structure by such a method requires a very long and complicated process. Since the Sanubvention solution for each layer is injected, there is a drawback that unevenness tends to occur in the first phosphor layer during this injection.

〔発明の概要〕[Summary of the invention]

この発明は2層構造の螢光体層の形成時に生じる工程の
煩雑さや、螢光面にムラを生じ易いという問題に鑑みな
されたものであり、従来の1M構造の螢光体層の形成と
ほぼ同じ手間で2層構造に近い螢光面の形成ができ、し
かもムラも全く生じない螢光面の!gll造方法を提供
するものである。
This invention was developed in view of the complexity of the process that occurs when forming a phosphor layer with a two-layer structure, and the problem that unevenness tends to occur on the phosphor surface. A fluorescent surface with almost a two-layer structure can be formed with almost the same amount of effort, and there is no unevenness at all! This provides a method for manufacturing GLL.

〔発明の実施例〕[Embodiments of the invention]

この発明では2層構造の螢光体層を形成するときに従来
のように螢光体層を各々別に沈降塗布するのではなく、
最初から2種類の螢光体を混合して沈降塗布するもので
あり、両方の螢光体の沈降速度に差を与えて、沈降形成
された螢光体層を不均質にして2層tM造に近い螢光面
を形成せんとするものである。螢光体のように平均粒子
径が数μm〜20μm 程度の微小粒子の場合、液体中
での沈降速度は8TOKE8の式で与えられる。すなわ
ち 18 η V:沈降速度 p:粒子の比重 po:液体の比重η:
液体の粘性抵抗 g二重力の加速度 d:粒子径 となる。したがってA、B2種類の螢光体を混合して沈
降法により螢光面を塗着する場合、各成分螢光体の沈降
速度V A I V B に差を与えれば、不均質で2
層構造の螢光面に近い螢光体層を形成できる。
In this invention, when forming a two-layered phosphor layer, instead of depositing and coating each phosphor layer separately as in the conventional method,
Two types of phosphors are mixed from the beginning and applied by precipitation, and the sedimentation speed of both phosphors is differentiated to make the phosphor layer formed by precipitation non-uniform, resulting in a two-layer TM structure. The aim is to form a fluorescent surface close to . In the case of microparticles with an average particle size of several μm to 20 μm, such as fluorescent materials, the sedimentation velocity in a liquid is given by the formula 8TOKE8. That is, 18 η V: Sedimentation velocity p: Specific gravity of particles po: Specific gravity of liquid η:
Viscosity resistance of liquid g Acceleration of double force d: Particle size. Therefore, when two types of phosphors A and B are mixed and a fluorescent surface is coated by the sedimentation method, if the sedimentation speed V A I V B of each component phosphor is different, it will be non-uniform and 2
A phosphor layer can be formed close to the phosphor surface of the layered structure.

具体的な螢光面の形成方法としては、まず第4図(I)
)のごとく、陰極線管の真空外囲器となるガラスバルブ
(8)の内面を良く洗浄した後、ガラスバルブ(8)の
一部を購成し、内面に螢光体層が形成されるフェースプ
レート(1)を下向きにして置き、ガラスバルブ(8)
内に酢酸バリウムなどの電解質溶液(9)を一定量注入
する。つぎに(Qのごとく、A螢光体すなわち電子線劣
化を生じ易い螢光体αηとB螢光体すなわち電子線劣化
を生じにくい螢光体0葎の各々定電を水ガラスの水溶液
に良く分散させたサスペンション液0→を前記ψ)の電
解質溶液が入っているガラスバルブ(8)内に注入する
。その後、@)のごとく、しばらく静置すると沈降速度
の異なる両方の螢光体は徐々に不均質な状態で沈降して
ガラスバルブ(8)のフェースプレー) (1)に堆積
し、フェースプレート(1)との間で硅酸重合を行う。
As for the specific method of forming a fluorescent surface, first, see Figure 4 (I).
), after thoroughly cleaning the inner surface of the glass bulb (8) that serves as the vacuum envelope of the cathode ray tube, a part of the glass bulb (8) is purchased and the face on which the phosphor layer is formed on the inner surface is purchased. Place the plate (1) face down and place the glass bulb (8)
A certain amount of an electrolyte solution (9) such as barium acetate is injected into the chamber. Next, (as shown in Q, the constant voltage of the A phosphor, which is a phosphor αη that easily causes electron beam deterioration, and the B phosphor, which is a phosphor that does not easily cause electron beam deterioration, 0) is set to a good value in an aqueous solution of water glass. The dispersed suspension liquid 0→ is injected into the glass bulb (8) containing the electrolyte solution of ψ). After that, as shown in @), when the two phosphors are allowed to stand still for a while, the two phosphors, which have different sedimentation speeds, gradually settle in a non-uniform state and are deposited on the face plate (1) of the glass bulb (8). 1) Perform silicic acid polymerization with.

(S)のごとく、はぼ完全に沈降が完了した段階では、
完全に2つの螢光体層が分離して形成されないまでも、
電子線劣化がより多い螢光体層αQと電子線劣化がより
少ない螢光体層αQとが各々連続的に変化しながら2J
ill造に近い状態で形成される。この後、CI’)の
ごとく、分散液を排出すると、ガラスバルブ(8)の内
面に2層構造に近い螢光体層Qのおよび0・が形成され
る。
As shown in (S), at the stage when the sedimentation is almost completely completed,
Even if the two phosphor layers are not completely separated,
The phosphor layer αQ, which has more electron beam deterioration, and the phosphor layer αQ, which has less electron beam deterioration, each change continuously for 2J.
It is formed in a state close to that of an ill-built structure. Thereafter, as shown in CI'), when the dispersion is discharged, phosphor layers Q and 0 having a nearly two-layer structure are formed on the inner surface of the glass bulb (8).

また、2種類の螢光体粒子の沈降速度VA・VBにどの
くらいの差を与えれば形成された螢光面の螢光体層が2
N構造に近くなるかを、種々の比重、平均粒径の螢光体
の混合螢光体について実験を行ったところ、少なくとも
一方を他方の8倍の速さにすれば良いことがわかった。
Also, how much difference should be given to the sedimentation speeds VA and VB of two types of phosphor particles to make the phosphor layer on the phosphor surface 2.
Experiments were conducted on a mixture of phosphors with various specific gravity and average particle size to determine whether the speed would be close to the N structure, and it was found that at least one of the phosphors should be made 8 times faster than the other.

つまりVム/VB≧8.0 すなわち となる。In other words, Vmu/VB≧8.0, that is becomes.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、2層構造に近い螢光
体層を持った螢光面を比較的容易に形成でき、このこと
を利用して電子線による螢光体の劣化を少なくした螢光
面の製造が従来とあまり差のない簡単な製造工程ででき
るようになる。この結果、長寿命で高品位な陰極線管を
提供することが可能となるものである。
As described above, according to the present invention, a phosphor surface having a phosphor layer close to a two-layer structure can be formed relatively easily, and this can be used to reduce deterioration of the phosphor due to electron beams. This makes it possible to manufacture a fluorescent surface using a simple manufacturing process that is not much different from conventional methods. As a result, it is possible to provide a cathode ray tube with a long life and high quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は陰極線管の螢光面の概略断面図、第2図は2層
構造の螢光体層を有する陰扼14’A ’E:の螢光面
の概略断面図、第8図(イ)〜(イ)は2層(11−迦
の螢光体層を実際に螢光面に形成する方法を説明する図
、第4図ψ)〜al’)はこの発明による2層構造の螢
光面に近い螢光体層を形成する方法を説明する図である
。 (1)・・・フェースプレート、(2)・・・螢光体層
、(3)−9,メタルバック膜、(4)・・・電子線、
(5)・・・電子線劣化の多い螢光体層、(6)・・・
電子銃劣化の少ない螢光体層、(7)・・・螢光面、(
8)・・・ガラスバルブ、(11)・・・電子線劣化が
生じ易い螢光体、0葎電子線劣化が生じにくい螢光体、
Q時・・・電子線劣化がより少ない螢光体層、0・・・
・電子線劣化がより多い螢光体層。 なお、図中同一符号は同一または相当部分を示す。 代 理 人 大 岩 増 雄
FIG. 1 is a schematic cross-sectional view of the fluorescent surface of a cathode ray tube, FIG. A) to (A) are two-layered structures (11-Figures explaining the method of actually forming the phosphor layer on the fluorescent surface, Figure 4 ψ) to al') are the two-layer structure according to the present invention. FIG. 3 is a diagram illustrating a method of forming a phosphor layer close to a phosphor surface. (1)...face plate, (2)...phosphor layer, (3)-9, metal back film, (4)...electron beam,
(5)...phosphor layer that is often degraded by electron beams, (6)...
Fluorescent layer with little electron gun deterioration, (7)...fluorescent surface, (
8)...Glass bulb, (11)...phosphor that is susceptible to electron beam deterioration, phosphor that is unlikely to undergo electron beam deterioration,
Q time...phosphor layer with less electron beam deterioration, 0...
・The phosphor layer is more susceptible to electron beam deterioration. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】 (]) 比重が谷々T)A 、pH1また平均粒径が各
々dA、dBの2種類の螢光体を混合して沈降法により
塗着する際に とすることを特徴とする陰極線管の螢光面の製造方法。 (2) (pA、(1*)の螢光体と(pB * (i
n )の螢光体の内、(pB ldB )の螢光体の方
を相対的に電子線刺激による劣化が少ない螢光体で構成
したことを特徴とする特許請求の範囲第1項記載の陰極
線管の螢光面の製造方法。
[Claims] (]) When two types of fluorophores having a specific gravity of T)A, a pH of 1, and an average particle size of dA and dB are mixed and applied by a sedimentation method. A method for manufacturing the fluorescent surface of a cathode ray tube. (2) Fluorophore of (pA, (1*) and (pB * (i
Claim 1, characterized in that among the phosphors n), the phosphor (pB ldB ) is composed of a phosphor that is relatively less degraded by electron beam stimulation. A method of manufacturing a fluorescent surface for a cathode ray tube.
JP11345384A 1984-05-31 1984-05-31 Producing method for cathode-ray tube phosphor screen Pending JPS60257039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11345384A JPS60257039A (en) 1984-05-31 1984-05-31 Producing method for cathode-ray tube phosphor screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11345384A JPS60257039A (en) 1984-05-31 1984-05-31 Producing method for cathode-ray tube phosphor screen

Publications (1)

Publication Number Publication Date
JPS60257039A true JPS60257039A (en) 1985-12-18

Family

ID=14612614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11345384A Pending JPS60257039A (en) 1984-05-31 1984-05-31 Producing method for cathode-ray tube phosphor screen

Country Status (1)

Country Link
JP (1) JPS60257039A (en)

Similar Documents

Publication Publication Date Title
US3714490A (en) Luminescent screen comprising phosphor cores luminescent in first color and phosphor coatings luminescent in second color
JPH0589800A (en) Green luminous projection type cathode-ray tube
JPS6174244A (en) Flat-type color chathode-ray tube
JPS60257039A (en) Producing method for cathode-ray tube phosphor screen
US3255003A (en) Method of making cathode ray tube face plates
US6268691B1 (en) Red emitting phosphor for cathode ray tube
US4289799A (en) Method for making high resolution phosphorescent output screens
JP3091001B2 (en) Phosphor screen formation method
JPH0294228A (en) Forming method for phosphor screen of picture tube
US4513025A (en) Line emission penetration phosphor for multicolored displays
JP2003197135A (en) Image display device
US3639138A (en) Phosphor screen fabrication
JPH021334B2 (en)
JPS58212034A (en) Phosphor screen and formation thereof
JPS60257038A (en) Producing method for cathode-ray tube phosphor screen
JPH0917350A (en) Fluorescent screen of cathode-ray tube having high resolution
KR100463281B1 (en) Reflective Flat Tube and Manufacturing Method
SU693460A1 (en) Method of applying cathode-luminescent coating
JPH0256824A (en) Manufacture of fluorescent screem
JPS58154787A (en) Projection-type cathode ray tube
JPH0892553A (en) Fluorescent substance
JPS59934B2 (en) Fluorescent surface manufacturing method
KR940008548B1 (en) Filming liquid composition of crt
JPS5835860A (en) Crt for light source
JPH05205634A (en) Manufacture of fluorescent screen for color cathode-ray tube