JPH0892553A - Fluorescent substance - Google Patents

Fluorescent substance

Info

Publication number
JPH0892553A
JPH0892553A JP22358294A JP22358294A JPH0892553A JP H0892553 A JPH0892553 A JP H0892553A JP 22358294 A JP22358294 A JP 22358294A JP 22358294 A JP22358294 A JP 22358294A JP H0892553 A JPH0892553 A JP H0892553A
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent
comparative example
particle size
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22358294A
Other languages
Japanese (ja)
Inventor
Fumei
恵子 アルベサール
Masaaki Tamaya
正昭 玉谷
Naohisa Matsuda
直寿 松田
Yoshikazu Okumura
美和 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22358294A priority Critical patent/JPH0892553A/en
Priority to US08/356,959 priority patent/US5644193A/en
Priority to CN94119597A priority patent/CN1049448C/en
Publication of JPH0892553A publication Critical patent/JPH0892553A/en
Priority to US08/774,420 priority patent/US5808409A/en
Priority to US08/774,419 priority patent/US6081069A/en
Priority to US08/774,421 priority patent/US5814932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a fluorescent substance having excellent luminescent characteristics such as luminescent spectrum and sight sensitivity, capable of forming a dense fluorescent face having high luminance in using the fluorescent substance for a cathode ray tube or a fluorescent lamp. CONSTITUTION: This fluorescent substance has 0.5-20μm average particle diameter and the ratio of the major axis to the minor axis of each particle of 1.0-1.5 and is represented by the composition formula MWO4 (Ma is at least one of Ca and Mg) or CaWO4 :Pb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光特性および陰極線管
や蛍光ランプに用いる際の塗布特性に優れた蛍光体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor having excellent light emitting properties and coating properties when used in a cathode ray tube or a fluorescent lamp.

【0002】[0002]

【従来の技術】陰極線管や蛍光ランプに用いられる蛍光
体は、電子線や紫外線によって励起したときの発光効率
の観点から数μmの粒径が必要とされている。この程度
の粒径を有する結晶粒を得るために、蛍光体は通常、焼
成・洗浄によって合成される。しかし、こうして合成さ
れた蛍光体は凝集が多くまた形状は完全な球状ではな
く、原料の形状や結晶構造を反映して多面体に近い形と
なり、このため粒子の流動性が良くない。
2. Description of the Related Art Phosphors used in cathode ray tubes and fluorescent lamps are required to have a particle size of several μm from the viewpoint of luminous efficiency when excited by electron beams or ultraviolet rays. In order to obtain crystal grains having such a grain size, the phosphor is usually synthesized by firing and washing. However, the phosphor synthesized in this manner has a large amount of aggregation and is not a perfect spherical shape, and has a shape close to a polyhedron reflecting the shape and crystal structure of the raw material, and therefore the fluidity of the particles is not good.

【0003】こうした蛍光体を用いて例えば陰極線管の
蛍光面を形成した場合、電子線励起によって生じる発光
が蛍光面からの光出力として必ずしも十分に利用されな
いという欠点がある。すなわち、蛍光体粒子の形状が多
面体に近く流動性が悪いと、緻密な蛍光膜が得られず空
隙が生じるうえ、光反射膜としてのアルミバックの平滑
度も劣り凹凸が生じる。このため、発光した光の乱反射
が大きくなり、これが光の損失の原因となる。また凝集
が多いと、いわゆる異物の多い均質でない蛍光膜にな
り、画像のボケなどを生じる。また、カラー陰極線管の
場合、通常、ガラス内面と感光性樹脂からなる懸濁液
(スラリー)を全面塗布して蛍光膜を形成し、紫外線を
照射して所望の領域だけを重合させた後、紫外線が照射
されなかった領域の蛍光膜を洗い流す。このとき、蛍光
膜の光散乱が大きいと紫外線が蛍光膜の内部にまで侵入
しないので内部が重合しにくい。このため、蛍光膜の輝
度が最大になる十分厚い膜が形成されにくい。さらに、
光散乱が大きいと、所望の領域以外の領域まで感光して
重合するため、設計通りの蛍光膜パターンを得ることが
困難になる。同様に前記のような蛍光体を蛍光ランプに
用いた場合にも、緻密な蛍光膜が得られないため、紫外
線励起による発光が十分有効に利用されない。
[0003] When such a phosphor is used to form a fluorescent screen of a cathode ray tube, for example, there is a drawback that the light emission generated by electron beam excitation is not always sufficiently utilized as the light output from the fluorescent screen. That is, if the shape of the phosphor particles is close to a polyhedron and the fluidity is poor, a dense phosphor film cannot be obtained and voids are formed, and the smoothness of the aluminum back as a light reflecting film is poor, resulting in unevenness. Therefore, diffuse reflection of the emitted light becomes large, which causes a loss of light. Further, if there is a large amount of aggregation, a so-called inhomogeneous fluorescent film containing a lot of foreign matter is formed, which causes image blurring. Further, in the case of a color cathode ray tube, usually, a suspension (slurry) consisting of a glass inner surface and a photosensitive resin is applied over the entire surface to form a fluorescent film, and after irradiating ultraviolet rays to polymerize only a desired region, Rinse away the fluorescent film in the areas not exposed to ultraviolet light. At this time, if the light scattering of the fluorescent film is large, ultraviolet rays do not penetrate into the inside of the fluorescent film, so that the inside is less likely to polymerize. Therefore, it is difficult to form a sufficiently thick film that maximizes the brightness of the fluorescent film. further,
If the light scattering is large, a region other than the desired region is exposed to light and polymerized, so that it becomes difficult to obtain a fluorescent film pattern as designed. Similarly, when the above fluorescent material is used in a fluorescent lamp, a dense fluorescent film cannot be obtained, so that the light emission due to the ultraviolet excitation is not effectively utilized sufficiently.

【0004】ここで、MWO4 (ただし、MはCaおよ
びMgのうち少なくとも1種)またはCaWO4 :Pb
のいずれの蛍光体も、400〜500nmにピーク波長
を持つ発光スペクトルを有し、短波長の発光であるため
に視感度的に不利である。また、例えばCaWO4 :P
bなどの励起スペクトルのピークは254nmよりもか
なり長波長側にずれており、254nmの紫外線で励起
する場合には励起効率が低下するという問題があった。
Here, MWO 4 (where M is at least one of Ca and Mg) or CaWO 4 : Pb
Any of the above phosphors has an emission spectrum having a peak wavelength in the range of 400 to 500 nm and emits light of a short wavelength, which is disadvantageous in terms of visibility. In addition, for example, CaWO 4 : P
The peak of the excitation spectrum such as b is shifted to the longer wavelength side than 254 nm, and there is a problem that the excitation efficiency is lowered when excited by ultraviolet rays of 254 nm.

【0005】[0005]

【発明が解決しようとする課題】本発明は、発光スペク
トルや視感度などの発光特性に優れ、かつ陰極線管や蛍
光ランプに用いる際に緻密かつ均質で輝度の高い蛍光面
を形成することができる蛍光体を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention is capable of forming a phosphor screen which is excellent in light emission characteristics such as light emission spectrum and luminosity and which is dense and uniform and has high brightness when used in a cathode ray tube or a fluorescent lamp. It is intended to provide a phosphor.

【0006】[0006]

【課題を解決するための手段】本発明の蛍光体は、平均
粒径が0.5〜20μmであり、個々の粒子の長径と短
径の比が1.0〜1.5の範囲にあり、粒径0.2μm
以下の超微粒子を0.001〜5重量%、好ましくは
0.01〜1重量%含む、組成式MWO4 (ただし、M
はCaおよびMgのうち少なくとも1種)またはCaW
4 :Pbで表されることを特徴とするものである。
The phosphor of the present invention has an average particle size of 0.5 to 20 μm, and the ratio of the major axis to the minor axis of each particle is in the range of 1.0 to 1.5. , Particle size 0.2 μm
The composition formula MWO 4 (provided that M is 0.001 to 5% by weight, preferably 0.01 to 1% by weight) contains the following ultrafine particles.
Is at least one of Ca and Mg) or CaW
It is characterized by being represented by O 4 : Pb.

【0007】以下、本発明をさらに詳細に説明する。本
発明において、蛍光体粒子の平均粒径を0.5〜20μ
mと規定したのは、陰極線管や蛍光ランプに用いる場合
の最適な粒径がこの範囲にあることが経験的に知られて
いることによるものである。すなわち、平均粒径が0.
5μmより小さい場合または20μmより大きい場合に
は、蛍光面の輝度が低くなってしまう。
The present invention will be described in more detail below. In the present invention, the average particle diameter of the phosphor particles is 0.5 to 20 μm.
The reason why m is defined is that it is empirically known that the optimum particle size for use in a cathode ray tube or a fluorescent lamp is in this range. That is, the average particle size is 0.
When it is smaller than 5 μm or larger than 20 μm, the brightness of the phosphor screen becomes low.

【0008】本発明の蛍光体は、個々の蛍光体粒子の長
径と短径の比、すなわち個々の蛍光体粒子において径が
最大の部分と最小の部分の比(アスペクト比)が1.0
〜15の範囲にあり、完全な真球に極めて近い形状をも
つ。また、本発明の蛍光体粒子は粒径0.2μm以下の
超微粒子を0.001〜5重量%、好ましくは0.01
〜1重量%含む。5重量%を超えて超微粒子が含まれて
いると、光散乱が増加するために、この蛍光体から作製
した蛍光膜の光透過率が低下し、実用性に乏しくなる。
一方、上記範囲内の超微粒子を含んでいると、蛍光体の
流動性と分散性が向上する。このため、液中での蛍光体
の沈降や蛍光体スラリーの塗布によって蛍光膜を形成し
たとき、この蛍光膜は最密充填に近くなる。したがっ
て、蛍光膜内の乱反射が少なくなって膜の透過率が向上
し、蛍光面からの光出力として利用される発光の割合が
大きくなり、蛍光面の輝度が向上する。一方、カラー陰
極線管などの熱処理時に、超微粒子が球状粒子間のバイ
ンダーの役目を果たし、蛍光膜の付着力が強化される。
In the phosphor of the present invention, the ratio of the major axis to the minor axis of each phosphor particle, that is, the ratio (aspect ratio) of the maximum diameter portion and the minimum diameter portion of each phosphor particle is 1.0.
It is in the range of ~ 15 and has a shape very close to a perfect sphere. The phosphor particles of the present invention contain 0.001 to 5% by weight, preferably 0.01% by weight of ultrafine particles having a particle size of 0.2 μm or less.
~ 1% by weight. If the ultrafine particles are contained in an amount of more than 5% by weight, light scattering increases, so that the light transmittance of the fluorescent film produced from this fluorescent material decreases, and the practicality becomes poor.
On the other hand, the inclusion of ultrafine particles within the above range improves the fluidity and dispersibility of the phosphor. For this reason, when the fluorescent film is formed by the sedimentation of the fluorescent material in the liquid or the application of the fluorescent material slurry, the fluorescent film becomes close to the closest packing. Therefore, diffused reflection in the fluorescent film is reduced, the transmittance of the film is improved, the ratio of light emission used as light output from the fluorescent screen is increased, and the brightness of the fluorescent screen is improved. On the other hand, during heat treatment of a color cathode ray tube or the like, the ultrafine particles act as a binder between spherical particles, and the adhesive force of the fluorescent film is strengthened.

【0009】また、本発明の蛍光体の発光特性に関して
は、発光スペクトルが長波長側にずれることから、視感
度的に明るくなる。一方、励起スペクトルは254nm
からのずれが小さくなるため、254nmの紫外線で励
起したときに従来より励起光率が向上し蛍光膜の輝度向
上につながる。
Regarding the emission characteristics of the phosphor of the present invention, since the emission spectrum is shifted to the long wavelength side, the luminous efficiency becomes bright. On the other hand, the excitation spectrum is 254 nm
Since the deviation from is small, when excited by ultraviolet rays of 254 nm, the excitation light efficiency is improved and the brightness of the fluorescent film is improved.

【0010】本発明の蛍光体は、原料となる蛍光体粉粒
子を高周波熱プラズマ中で溶融した後、急冷することに
より製造できる。原料の蛍光体粉末は、通常、湿式法に
より沈澱を調製した後に焼成・洗浄して製造するが、一
次粒径は2μm程度以上であることが好ましい。これ
は、一次粒径が小さくたとえば1μm以下である場合に
は、全体が溶融蒸発してしまいこれを急冷して得られる
粒子は0.2μm以下になることが多い。また、粒径が
2μm以上である場合でも、一部は蒸発するため、得ら
れた粒子表面には0.2μm以下の超微粒子が付着す
る。得られる蛍光体の粒径は、原料として用いた蛍光体
の分散性が良い場合には原料蛍光体の粒径とほぼ同じに
なる。したがって、得られる蛍光体の粒径は原料となる
蛍光体の粒径および凝集の程度によって制御することが
できる。
The phosphor of the present invention can be produced by melting phosphor powder particles as a raw material in high frequency thermal plasma and then rapidly cooling it. The phosphor powder as a raw material is usually produced by preparing a precipitate by a wet method, followed by baking and washing, and it is preferable that the primary particle size is about 2 μm or more. This is because when the primary particle size is small and is, for example, 1 μm or less, the entire particles are melted and evaporated, and the particles obtained by quenching are often 0.2 μm or less. Further, even when the particle size is 2 μm or more, a part thereof is evaporated, so that ultrafine particles of 0.2 μm or less adhere to the surface of the obtained particles. The particle size of the obtained phosphor is substantially the same as the particle size of the raw phosphor when the dispersibility of the phosphor used as the raw material is good. Therefore, the particle size of the obtained phosphor can be controlled by the particle size of the phosphor as a raw material and the degree of aggregation.

【0011】本発明の目的である完全な球に近い形状を
有する蛍光体を得るには、原料となる粒子全体が蒸発す
ることなく、かつ粒子の表面が完全に溶融するような条
件が必要であるが、これは高周波熱プラズマのパワーと
プラズマ中への原料蛍光体の供給量を調整することによ
り達成できる。この条件で粒子表面を溶融させ、表面張
力によって球状を保った状態で急冷凝固することによっ
て、長径と短径との比が1.0〜1.5の範囲にあるよ
うな真球状の蛍光体を得ることができる。この蛍光体が
0.2μm以下の超微粒子を多く含んでいる場合には、
超音波洗浄を行い、上澄み液を捨てることによって、
0.2μm以下の超微粒子を0.001〜5重量%、好
ましくは0.01〜1重量%含む本発明の蛍光体を得
る。
In order to obtain a phosphor having a shape close to a perfect sphere, which is the object of the present invention, it is necessary that the raw material particles are not entirely evaporated and the surface of the particles is completely melted. However, this can be achieved by adjusting the power of the high frequency thermal plasma and the supply amount of the raw material phosphor into the plasma. A spherical fluorescent substance having a ratio of major axis to minor axis in the range of 1.0 to 1.5 by melting the particle surface under these conditions and rapidly solidifying while maintaining the spherical shape by the surface tension. Can be obtained. When this phosphor contains a large amount of ultrafine particles of 0.2 μm or less,
By ultrasonic cleaning and discarding the supernatant,
A phosphor of the present invention containing 0.001 to 5% by weight, preferably 0.01 to 1% by weight, of ultrafine particles of 0.2 μm or less is obtained.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。 (比較例1)通常の湿式沈澱・焼成法によりCaWO4
蛍光体(比較例1)を調製した。ブレーン法により測定
したこの蛍光体の平均粒径は4.3μmであった。紫外
線または電子線励起したとき、この蛍光体の発光スペク
トルのピーク波長は411nmにあった。色度値はx=
0.165、y=0.120であった。
Embodiments of the present invention will be described below. (Comparative Example 1) CaWO 4 was prepared by an ordinary wet precipitation / calcination method.
A phosphor (Comparative Example 1) was prepared. The average particle size of this phosphor measured by the Blaine method was 4.3 μm. When excited by ultraviolet rays or electron beams, the peak wavelength of the emission spectrum of this phosphor was 411 nm. The chromaticity value is x =
It was 0.165 and y = 0.120.

【0013】(実施例1)比較例1のCaWO4 蛍光体
を原料とし、アルゴンと酸素との混合ガスをキャリアガ
スとして高周波熱プラズマ中に供給し、溶融急冷するこ
とによって蛍光体(実施例1)を得た。得られた蛍光体
の平均粒径をブレーン法により測定したところ3.9μ
mであった。得られた蛍光体の電子顕微鏡写真を図1に
示す。この電子顕微鏡写真より求めた個々の蛍光体粒子
の長径と短径との比は1.00〜1.08の範囲にあっ
た。得られた蛍光体の粒子表面には原料粒子の部分的な
蒸発によって生じた0.2μm以下の同種蛍光体が付着
しているが、超音波洗浄を行った後、上澄み液を捨てる
ことによって0.2μm以下の超微粒子を0.1重量%
含んだ蛍光体を得た。また、この蛍光体のX線回析パタ
ーンは、CaWO4 のものであることが確かめられた。
Example 1 Using the CaWO 4 phosphor of Comparative Example 1 as a raw material, a mixed gas of argon and oxygen was supplied as a carrier gas into a high frequency thermal plasma, and the phosphor was melted and rapidly cooled (Example 1). ) Got. The average particle size of the obtained phosphor was measured by the Blaine method to be 3.9 μm.
It was m. An electron micrograph of the obtained phosphor is shown in FIG. The ratio of the major axis to the minor axis of each phosphor particle obtained from this electron micrograph was in the range of 1.00 to 1.08. The same phosphor of 0.2 μm or less generated by partial evaporation of the raw material particles adheres to the particle surface of the obtained phosphor, but after the ultrasonic cleaning, the supernatant liquid is discarded to 0.1% by weight of ultrafine particles of 2 μm or less
The contained phosphor was obtained. It was also confirmed that the X-ray diffraction pattern of this phosphor was that of CaWO 4 .

【0014】この蛍光体について紫外線または電子線励
起による発光スペクトルを測定したところ、ピーク波長
は433nmであり、比較例1の蛍光体のスペクトルに
比べて20nm以上も長波長側にずれていた。このため
色度値はx=0.173、y=1.44となった。この
蛍光体を254nmの紫外線で励起して粉体輝度を測定
したところ、比較例1の蛍光体に対して78%であっ
た。また、この蛍光体を加速電圧10kV、電流密度
0.5μA/cm2 の電子線で励起して粉体輝度を測定
したところ、比較例1の蛍光体に対して約102%であ
った。
When the emission spectrum of this phosphor was measured by ultraviolet or electron beam excitation, the peak wavelength was 433 nm, which was 20 nm or more longer than the spectrum of the phosphor of Comparative Example 1 on the long wavelength side. Therefore, the chromaticity values were x = 0.173 and y = 1.44. When this phosphor was excited by ultraviolet rays of 254 nm and the powder brightness was measured, it was 78% with respect to the phosphor of Comparative Example 1. Moreover, when the powder luminance was measured by exciting this phosphor with an electron beam having an accelerating voltage of 10 kV and a current density of 0.5 μA / cm 2 , it was about 102% with respect to the phosphor of Comparative Example 1.

【0015】次に、この蛍光体を用いて沈澱法により、
塗布量10mg/cm2 の蛍光膜を形成して透過率を測
定したところ、比較例1の蛍光体を用いて形成した蛍光
膜に対して1.7倍の光透過率が得られた。
Next, a precipitation method is carried out using this phosphor.
When a fluorescent film having a coating amount of 10 mg / cm 2 was formed and the transmittance was measured, a light transmittance 1.7 times that of the fluorescent film formed using the phosphor of Comparative Example 1 was obtained.

【0016】得られた蛍光体を用いて沈降法により塗布
量6mg/cm2 の蛍光面を形成し、アルミバックを施
した後、電子銃を装着し、排気・封止して7インチの陰
極線管を作製した。この陰極線管について、加速電圧3
0kV、ビーム電流500μAの条件で輝度を測定した
ところ、比較例1の蛍光体を用いて同様に作製した陰極
線管に対して118%であった。
A phosphor screen having a coating amount of 6 mg / cm 2 was formed by a sedimentation method using the obtained phosphor, and after applying an aluminum back, an electron gun was attached, exhausted and sealed, and a 7-inch cathode wire was attached. A tube was made. About this cathode ray tube, acceleration voltage 3
When the brightness was measured under the conditions of 0 kV and a beam current of 500 μA, it was 118% with respect to the cathode ray tube similarly manufactured using the phosphor of Comparative Example 1.

【0017】(比較例2)通常の湿式沈澱・焼成法によ
りCaWO4 :Pbの蛍光体(比較例2)を製造した。
ブレーン法により測定したこの蛍光体の平均粒径は3.
6μmであった。紫外線または電子励起によるこの蛍光
体の発光スペクトルのピーク波長は435nmであっ
た。色度値はx=0.172、y=1.169であっ
た。また、励起スペクトルのピーク波長は270nmに
位置していた。
(Comparative Example 2) A CaWO 4 : Pb phosphor (Comparative Example 2) was produced by a conventional wet precipitation / calcination method.
The average particle size of this phosphor measured by the Blaine method is 3.
It was 6 μm. The peak wavelength of the emission spectrum of this phosphor excited by ultraviolet rays or electrons was 435 nm. The chromaticity values were x = 0.172 and y = 1.169. The peak wavelength of the excitation spectrum was located at 270 nm.

【0018】(実施例2)比較例2のCaWO4 :Pb
蛍光体を原料とし、アルゴンと酸素との混合ガスをキャ
リアガスとして高周波熱プラズマ中に供給し、溶融急冷
することによって蛍光体(実施例2)を得た。得られた
蛍光体の平均粒径をブレーン法により測定したところ、
3.1μmであった。また、電子顕微鏡写真より求めた
個々の蛍光体粒子の長径と短径との比は1.00〜1.
11の範囲にあった。得られた蛍光体を超音波洗浄して
上澄み液を捨てることによって0.2μm以下の超微粒
子を0.05重量%含んだ蛍光体を得た。また、この蛍
光体のX線回析パターンは、CaWO4 :Pbのもので
あることが確かめられた。
Example 2 CaWO 4 : Pb of Comparative Example 2
A phosphor (Example 2) was obtained by using a phosphor as a raw material, supplying a mixed gas of argon and oxygen as a carrier gas into high-frequency thermal plasma, and melting and quenching. When the average particle size of the obtained phosphor was measured by the Blaine method,
It was 3.1 μm. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph is 1.00 to 1.
It was in the range of 11. The obtained phosphor was ultrasonically washed and the supernatant was discarded to obtain a phosphor containing 0.05% by weight of ultrafine particles of 0.2 μm or less. Moreover, it was confirmed that the X-ray diffraction pattern of this phosphor was that of CaWO 4 : Pb.

【0019】この蛍光体について紫外線または電子線励
起による発光スペクトルを測定したところ、ピーク波長
は458nmであり、色度値はx=0.180、y=
0.186であった。また、励起スペクトルは259n
mであり、254nmからのずれはわずかであった。こ
の蛍光体を254nmの紫外線で励起して粉体輝度を測
定したところ、比較例2の蛍光体に対して105%であ
った。また、この蛍光体を加速電圧10kV、電流密度
0.5μA/cm2 の電子線で励起して粉体輝度を測定
したところ、比較例2の蛍光体に対して約103%であ
った。
When the emission spectrum of this phosphor was measured by ultraviolet or electron beam excitation, the peak wavelength was 458 nm, and the chromaticity values were x = 0.180 and y =.
It was 0.186. The excitation spectrum is 259n
m, and the deviation from 254 nm was slight. When this phosphor was excited by ultraviolet rays of 254 nm and the powder brightness was measured, it was 105% with respect to the phosphor of Comparative Example 2. Further, when this phosphor was excited with an electron beam having an accelerating voltage of 10 kV and a current density of 0.5 μA / cm 2 , the powder brightness was measured and found to be about 103% of that of the phosphor of Comparative Example 2.

【0020】次に、この蛍光体を用いて沈降法により、
塗布量9mg/cm2 の蛍光膜を形成して透過率を測定
したところ、比較例2の蛍光体を用いて形成した蛍光膜
に対して1.8倍の光透過率が得られた。
Next, by using this phosphor by a sedimentation method,
When a fluorescent film having a coating amount of 9 mg / cm 2 was formed and the transmittance was measured, a light transmittance 1.8 times that of the fluorescent film formed using the phosphor of Comparative Example 2 was obtained.

【0021】得られた蛍光体を用いて沈澱法により塗布
量6mg/cm2 の蛍光面を形成し、アルミバックを施
した後、電子銃を装着し、排気・封止して7インチの陰
極線管を作製した。この陰極線管について、加速電圧3
0kV、ビーム電流500μAの条件で輝度を測定した
ところ、比較例2の蛍光体を用いて同様に作製した陰極
線管に対して121%であった。
A phosphor screen having a coating amount of 6 mg / cm 2 was formed by a precipitation method using the obtained phosphor, and after applying an aluminum back, an electron gun was attached, exhausted and sealed, and a 7-inch cathode ray was attached. A tube was made. About this cathode ray tube, acceleration voltage 3
When the luminance was measured under the conditions of 0 kV and a beam current of 500 μA, it was 121% with respect to the cathode ray tube similarly produced using the phosphor of Comparative Example 2.

【0022】(比較例3)通常の湿式沈澱・焼成法によ
りMgWO4 蛍光体(比較例3)を製造した。ブレーン
法により測定したこの蛍光体の平均粒径は4.2μmで
あった。紫外線または電子線励起によるこの蛍光体の発
光スペクトルのピーク波長は498nmであった。色度
値はx=0.225、y=0.418であった。
(Comparative Example 3) A MgWO 4 phosphor (Comparative Example 3) was manufactured by a conventional wet precipitation / calcination method. The average particle size of this phosphor measured by the Blaine method was 4.2 μm. The peak wavelength of the emission spectrum of this phosphor excited by ultraviolet rays or electron beams was 498 nm. The chromaticity values were x = 0.225 and y = 0.418.

【0023】(実施例3)比較例3のMgWO4 蛍光体
を原料とし、アルゴンと酸素との混合ガスをキャリアガ
スとして高周波熱プラズマ中に供給し、溶融急冷するこ
とによって蛍光体(実施例3)を得た。得られた蛍光体
の平均粒径をブレーン法により測定したところ、4.0
μmであった。また、電子顕微鏡写真より求めた個々の
蛍光体粒子の長径と短径との比は1.00〜1.07の
範囲にあった。得られた蛍光体を超音波洗浄して上澄み
液を捨てることによって0.2μm以下の超微粒子を
0.2重量%含んだ蛍光体を得た。また、この蛍光体の
X線回析パターンは、MgWO4 のものであることが確
かめられた。
Example 3 Using the MgWO 4 phosphor of Comparative Example 3 as a raw material, a mixed gas of argon and oxygen was supplied as a carrier gas into high frequency thermal plasma, and the phosphor was melted and rapidly cooled (Example 3). ) Got. When the average particle size of the obtained phosphor was measured by the Blaine method, it was 4.0.
was μm. The ratio of the major axis to the minor axis of each phosphor particle obtained from the electron micrograph was in the range of 1.00 to 1.07. The obtained phosphor was ultrasonically washed and the supernatant was discarded to obtain a phosphor containing 0.2% by weight of ultrafine particles of 0.2 μm or less. It was also confirmed that the X-ray diffraction pattern of this phosphor was that of MgWO 4 .

【0024】この蛍光体について紫外線または電子線励
起による発光スペクトルを測定したところ、ピーク波長
は512nmであり、色度値はx=0.233、y=
0.441であった。また、励起スペクトルは254n
mよりも短波長側へずれていた。この蛍光体を254n
mの紫外線で励起して粉体輝度を測定したところ、比較
例3の蛍光体に対して114%であった。また、この蛍
光体を加速電圧10kV、電流密度0.5μA/cm2
の電子線で励起して粉体輝度を測定したところ、比較例
3の蛍光体に対して約109%であった。このように、
実施例3の蛍光体は比較例3の蛍光体に比べ、励起スペ
クトルが短波長側にずれることから紫外線励起した場合
の吸収が多くなり、発光効率も高くなる。
When the emission spectrum of this phosphor by ultraviolet or electron beam excitation was measured, the peak wavelength was 512 nm, and the chromaticity value was x = 0.233, y =
It was 0.441. The excitation spectrum is 254n
It was deviated to the shorter wavelength side than m. 254n this phosphor
When the powder brightness was measured by exciting with ultraviolet light of m, it was 114% with respect to the phosphor of Comparative Example 3. In addition, this phosphor was used with an acceleration voltage of 10 kV and a current density of 0.5 μA / cm 2.
When the powder luminance was measured by exciting with the electron beam of No. 3, it was about 109% with respect to the phosphor of Comparative Example 3. in this way,
Compared with the phosphor of Comparative Example 3, the phosphor of Example 3 has a larger excitation spectrum when it is excited by ultraviolet light and has a higher emission efficiency than the phosphor of Comparative Example 3.

【0025】次に、この蛍光体を用いて沈降法により、
塗布量12mg/cm2 の蛍光膜を形成して透過率を測
定したところ、比較例3の蛍光体を用いて形成した蛍光
膜に対して1.5倍の光透過率が得られた。
Next, by using this phosphor, a sedimentation method is carried out.
When a fluorescent film having a coating amount of 12 mg / cm 2 was formed and the transmittance was measured, a light transmittance 1.5 times that of the fluorescent film formed using the phosphor of Comparative Example 3 was obtained.

【0026】得られた蛍光体を用いて沈殿法により塗布
量6mg/cm2 の蛍光面を形成し、アルミバックを施
した後、電子銃を装着し、排気・封止して7インチの陰
極線管を作製した。この陰極線管について、加速電圧3
0kV、ビーム電流500μAの条件で輝度を測定した
ところ、比較例3の蛍光体を用いて同様に作製した陰極
線管に対して115%であった。
A phosphor screen having a coating amount of 6 mg / cm 2 was formed by using the obtained phosphor by a precipitation method, and after applying an aluminum back, an electron gun was attached, exhausted and sealed, and a 7-inch cathode wire was attached. A tube was made. About this cathode ray tube, acceleration voltage 3
When the luminance was measured under the conditions of 0 kV and a beam current of 500 μA, it was 115% with respect to the cathode ray tube similarly produced using the phosphor of Comparative Example 3.

【0027】[0027]

【発明の効果】以上詳述したように本発明によれば、視
感度的に明るく、254nmの紫外線励起による発光輝
度の高い蛍光体を提供できる。また、陰極線管や蛍光ラ
ンプに用いる際に緻密度や均質性に優れた透過率の高い
蛍光面を形成できるので、輝度の高い陰極線管や蛍光ラ
ンプが得られる。なお、この蛍光体を環状およびコンパ
クト型の蛍光ランプに用いた場合にも、従来のものに比
べて大きな輝度向上を達成できる。
As described above in detail, according to the present invention, it is possible to provide a fluorescent substance which is bright in terms of visual sensitivity and has high emission luminance upon excitation by ultraviolet rays of 254 nm. Further, when used in a cathode ray tube or a fluorescent lamp, a fluorescent screen having a high transmittance and excellent in compactness and homogeneity can be formed, so that a cathode ray tube or a fluorescent lamp having high brightness can be obtained. Even when this phosphor is used in a circular or compact type fluorescent lamp, a large improvement in brightness can be achieved as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の蛍光体の粒子構造を示す電
子顕微鏡写真。
FIG. 1 is an electron micrograph showing a particle structure of a phosphor of Example 1 of the present invention.

フロントページの続き (72)発明者 奥村 美和 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内Front page continuation (72) Inventor Miwa Okumura 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Incorporated Toshiba Research and Development Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が0.5〜20μmであり、個
々の粒子の長径と短径の比が1.0〜1.5の範囲にあ
り、粒径0.2μm以下の超微粒子を0.001〜5重
量%含む、組成式MWO4 (ただし、MはCaおよびM
gのうち少なくとも1種)またはCaWO4 :Pbで表
されることを特徴とする蛍光体。
1. Ultrafine particles having an average particle size of 0.5 to 20 μm, a ratio of major axis to minor axis of individual particles in the range of 1.0 to 1.5, and having a particle size of 0.2 μm or less. Compositional formula MWO 4 containing 0.001 to 5% by weight (where M is Ca and M
and at least one of g) or CaWO 4 : Pb.
【請求項2】 粒径0.2μm以下の超微粒子を0.0
1〜1重量%含むことを特徴とする請求項1記載の蛍光
体。
2. An ultrafine particle having a particle diameter of 0.2 μm or less is 0.0
The phosphor according to claim 1, comprising 1 to 1% by weight.
JP22358294A 1993-12-17 1994-09-19 Fluorescent substance Pending JPH0892553A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22358294A JPH0892553A (en) 1994-09-19 1994-09-19 Fluorescent substance
US08/356,959 US5644193A (en) 1993-12-17 1994-12-16 Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
CN94119597A CN1049448C (en) 1993-12-17 1994-12-17 Fluorescentor, cathode ray tube, fluorescent lamp and radiation intensifying paper
US08/774,420 US5808409A (en) 1993-12-17 1996-12-30 Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
US08/774,419 US6081069A (en) 1993-12-17 1996-12-30 Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
US08/774,421 US5814932A (en) 1993-12-17 1996-12-30 Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22358294A JPH0892553A (en) 1994-09-19 1994-09-19 Fluorescent substance

Publications (1)

Publication Number Publication Date
JPH0892553A true JPH0892553A (en) 1996-04-09

Family

ID=16800429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22358294A Pending JPH0892553A (en) 1993-12-17 1994-09-19 Fluorescent substance

Country Status (1)

Country Link
JP (1) JPH0892553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100633A (en) * 1996-09-30 2000-08-08 Kabushiki Kaisha Toshiba Plasma display panel with phosphor microspheres
JP2002523610A (en) * 1998-08-27 2002-07-30 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Phosphorescent powder, method for producing phosphorescent powder, and apparatus using the same
JP2014528004A (en) * 2011-06-28 2014-10-23 ▲海▼洋王照明科技股▲ふん▼有限公司 Cerium-doped barium / magnesium tungstate light-emitting thin film, method for producing the same, and electroluminescent device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100633A (en) * 1996-09-30 2000-08-08 Kabushiki Kaisha Toshiba Plasma display panel with phosphor microspheres
JP2002523610A (en) * 1998-08-27 2002-07-30 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Phosphorescent powder, method for producing phosphorescent powder, and apparatus using the same
JP2014528004A (en) * 2011-06-28 2014-10-23 ▲海▼洋王照明科技股▲ふん▼有限公司 Cerium-doped barium / magnesium tungstate light-emitting thin film, method for producing the same, and electroluminescent device
US9270084B2 (en) 2011-06-28 2016-02-23 Ocean's King Lighting Science & Technology Co., Ltd. Cerium doped magnesium barium tungstate luminescent thin film, manufacturing method and application thereof

Similar Documents

Publication Publication Date Title
US6081069A (en) Phosphor, cathode-ray tube, fluorescent lamp and radiation intensifying screen
EP0638625B1 (en) Luminescent material for a mercury discharge lamp
US6069439A (en) Phosphor material, method of manufacturing the same and display device
JP2002208355A (en) Plasma display panel
JP3329598B2 (en) Phosphor, cathode ray tube, fluorescent lamp and phosphor manufacturing method
JPH0589800A (en) Green luminous projection type cathode-ray tube
JPH0892553A (en) Fluorescent substance
JP2003027051A (en) Composite phosphor and fluorescent lamp using the same
US8294352B2 (en) Fluorescent lamp
JP3585967B2 (en) Phosphor manufacturing method
EP1772508A1 (en) Display unit-use blue light emitting fluorescent substance and production method therefor and field emission type display unit
JP2004043568A (en) Image display device
JP2002348571A (en) Vacuum ultraviolet-excited fluorescent substance and light-emitting device using the same
EP1555306A1 (en) Fluorescent material for display unit, process for producing the same and color display unit including the same
JP2004123786A (en) Phosphor for display device, its production method, and color display device using the same
EP0094201A2 (en) Cathodoluminescent particles for multicolour displays and method of manufacture thereof
JP2003231881A (en) Phosphor, method for producing phosphor and cathode- ray tube
JP2002302672A (en) Rare earth oxysulfide phosphor and its evaluation method
JP3417831B2 (en) Manufacturing method of phosphor material
JPH06103915A (en) Color cathode-ray tube
JPH0629421B2 (en) Blue light emitting phosphor and blue light emitting cathode ray tube for color projection type image device using the same
JP3260563B2 (en) Phosphor and manufacturing method thereof
JPH054996B2 (en)
JP2005008704A (en) Spherical phosphor of yttrium silicate and cathode-ray tube
JPH10102053A (en) Fluorescent substance and its production