JPH0917350A - Fluorescent screen of cathode-ray tube having high resolution - Google Patents

Fluorescent screen of cathode-ray tube having high resolution

Info

Publication number
JPH0917350A
JPH0917350A JP19785595A JP19785595A JPH0917350A JP H0917350 A JPH0917350 A JP H0917350A JP 19785595 A JP19785595 A JP 19785595A JP 19785595 A JP19785595 A JP 19785595A JP H0917350 A JPH0917350 A JP H0917350A
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent film
particles
ray tube
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19785595A
Other languages
Japanese (ja)
Inventor
Ryuji Ozawa
隆二 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19785595A priority Critical patent/JPH0917350A/en
Publication of JPH0917350A publication Critical patent/JPH0917350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

PURPOSE: To obtain a clear image in which a void is reduced and there is no irregular distribution in light emitting brightness by precipitating and accumulat ing phosphor particles suspended in a polyvinyl alcohol aqueous solution. CONSTITUTION: Phosphor particles are suspended in a polyvinyl alcohol aqueous solution having the concentration of 0.02 to 0.5wt.% and pH of 6.0 to 7.5, and a suspension is obtained. This suspension is injected into a cathode-ray tube vessel, and is rotated at high speed, and after the phosphor particles are accumulated on a face plate, a supernatant is removed and the resulting accumulative is dried.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】〔産業上の利用分野〕本発明は陰極線管の
蛍光膜に関する。
The present invention relates to a fluorescent film for a cathode ray tube.

【0002】〔従来の技術〕陰極線管の解像力が電子ビ
ーム径で主に決まる蛍光膜は、単色に発光する粉末蛍光
体で作られている。粉末蛍光体を使い、陰極線管内に単
色蛍光膜を作成する確立された方法は、粉末蛍光体を先
ず珪酸カリの水溶液に分散させ、蛍光体の懸濁液を作
る。この蛍光体懸濁液とは別に、陰極線管のガラス容器
内に、酢酸バリウムや硝酸バリウムのような電解質を含
んだ溶液を入れておく。前記した蛍光体の懸濁液をシャ
ワー状にして、上記した陰極線管内の電解質溶液に均一
に注ぐ。蛍光体懸濁液と電解質溶液の混合により、懸濁
液中の珪酸カリと電解質は電気化学反応を起こし、珪酸
カリは分解し、酸化珪素のゲルが溶液中に遊離する。遊
離した酸化珪素のゲルは、各蛍光体粒子の表面に物理吸
着する。表面に酸化珪素のゲルを付着した蛍光体粒子
は、溶液中をガラス基板に向かって沈降する。この沈降
粒子の自然堆積で蛍光膜は作られる。各蛍光体粒子の表
面に吸着した酸化珪素が、蛍光体粒子とガラス基板との
間の接着剤として働き、蛍光体粒子をガラス基板表面に
強固に付着させる。酸化珪素ゲルの働きは、一般に見過
ごされているが蛍光体粒子を基板に付着させるだけでな
い。各粒子の表面に吸着した酸化珪素ゲルは、溶液中を
沈降している他の蛍光体粒子表面の酸化珪素ゲルとも結
合する。その結果、溶液中を沈降している蛍光体粒子
は、種々の大きさで凝集する。凝集粒子は、重量の大き
な大粒子と等価と成るので、凝集粒子は1次粒子の沈降
速度よりも可なり速く沈降し、基板上に堆積する。蛍光
体粒子の速い沈降は、蛍光膜の生産効率の面では利点と
成るが、蛍光膜の性質では欠点と成る。種々の大きさの
凝集粒子が基板上に堆積する結果、蛍光膜には、凝集粒
子の粗充填による大きな空隙が沢山できる。大きな空隙
の存在が蛍光膜の映像の切れを減退させているだけでな
く、最適輝度を与える蛍光膜厚を厚くしている。
[Prior Art] A fluorescent film whose resolution of a cathode ray tube is mainly determined by an electron beam diameter is made of a powder fluorescent substance which emits light of a single color. An established method of making a monochromatic phosphor film in a cathode ray tube using a powder phosphor is to first disperse the powder phosphor in an aqueous solution of potassium silicate to make a suspension of the phosphor. Separately from this phosphor suspension, a solution containing an electrolyte such as barium acetate or barium nitrate is placed in the glass container of the cathode ray tube. The suspension of the phosphor is showered and uniformly poured into the electrolyte solution in the cathode ray tube. When the phosphor suspension and the electrolyte solution are mixed, the potassium silicate and the electrolyte in the suspension cause an electrochemical reaction, the potassium silicate is decomposed, and the silicon oxide gel is released into the solution. The liberated silicon oxide gel is physically adsorbed on the surface of each phosphor particle. The phosphor particles having the silicon oxide gel attached to the surface settle in the solution toward the glass substrate. The fluorescent film is formed by the natural deposition of the sedimented particles. The silicon oxide adsorbed on the surface of each phosphor particle acts as an adhesive between the phosphor particle and the glass substrate, and firmly adheres the phosphor particle to the glass substrate surface. The function of the silicon oxide gel is generally overlooked, but it does not only attach the phosphor particles to the substrate. The silicon oxide gel adsorbed on the surface of each particle also binds to the silicon oxide gel on the surface of another phosphor particle that has settled in the solution. As a result, the phosphor particles that have settled in the solution are aggregated in various sizes. Since the agglomerated particles are equivalent to the large particles having a large weight, the agglomerated particles settle down considerably faster than the sedimentation rate of the primary particles and are deposited on the substrate. The fast sedimentation of the phosphor particles is an advantage in terms of the production efficiency of the phosphor film, but is a disadvantage in the property of the phosphor film. As a result of depositing aggregated particles of various sizes on the substrate, many large voids are formed in the fluorescent film due to coarse filling of the aggregated particles. The presence of large voids not only reduces the disconnection of the image on the fluorescent film, but also thickens the fluorescent film that provides optimum brightness.

【0003】電子線の照射により蛍光膜で発光する蛍光
体粒子は、多くの場合、電子線の照射側から見て第1層
に配列した粒子であり、発光粒子と基板との間に介在す
る粒子は、発光した光の散乱媒体として働く。明るい蛍
光膜は、従って、散乱媒体の可能な限り少ない蛍光膜で
得られる。蛍光膜の表面に配列した蛍光体粒子で発光し
た光は、蛍光膜中での光散乱を受けて減少してから、基
板側から出てくる。蛍光体粒子の光屈折率は大きいの
で、蛍光膜中の光散乱は、基板との間に介在する蛍光体
粒子による光吸収によらず、蛍光体粒子表面での光反射
が主となる。若し蛍光膜に大きな空隙が有ると、その空
隙は反射光のチャンネルとなるので、光散乱の広がり
は、空隙の大きさに比例して増加する。その結果、沢山
の空隙を持った蛍光膜に映し出される映像はボケる。映
像の切れの良い蛍光膜は、空隙の少ない蛍光膜でのみ得
られる。
In many cases, the phosphor particles that emit light from the fluorescent film upon irradiation with an electron beam are particles arranged in the first layer when viewed from the electron beam irradiation side, and are interposed between the light emitting particles and the substrate. The particles act as a scattering medium for the emitted light. Bright phosphor screens are thus obtained with phosphor films with as few scattering media as possible. The light emitted from the phosphor particles arranged on the surface of the fluorescent film is reduced by the light scattering in the fluorescent film and then emerges from the substrate side. Since the light refractive index of the phosphor particles is large, the light scattering in the phosphor film is mainly reflected by the surface of the phosphor particles, not by the light absorption by the phosphor particles interposed between the phosphor film and the substrate. If the fluorescent film has a large void, the void serves as a channel for reflected light, so that the spread of light scattering increases in proportion to the size of the void. As a result, the image displayed on the fluorescent film with many voids is blurred. A fluorescent film with a good image cut can be obtained only by a fluorescent film with few voids.

【0004】蛍光膜中の空隙率を減少させる目的で、上
記した懸濁液中を沈降している粒子に遠心力を印加する
方法が開発されている。この方法を使用すると、空隙は
減少する。しかし、沈降中に出来る凝集粒子には変化が
無いので、図1に示すように得られる蛍光膜の厚みが不
規則となる。蛍光膜の厚みの変化は、蛍光体粒子の層数
の変化に対応しているので、蛍光膜から取り出す光の強
弱として、蛍光膜中の場所による輝度の不規則変化とな
って観測される。即ち、蛍光膜の厚い所の輝度は暗くな
る。蛍光膜の輝度の不規則な分布に原因して、蛍光膜上
の映像が見苦しくなり、蛍光膜の欠陥となるので、避け
なければ成らない。
For the purpose of reducing the porosity in the fluorescent film, a method of applying a centrifugal force to the particles settling in the suspension has been developed. Voids are reduced using this method. However, since the aggregated particles formed during the sedimentation do not change, the thickness of the obtained fluorescent film becomes irregular as shown in FIG. Since the change in the thickness of the fluorescent film corresponds to the change in the number of layers of the phosphor particles, the intensity of the light extracted from the fluorescent film is observed as an irregular change in luminance depending on the location in the fluorescent film. That is, the brightness of the thick portion of the fluorescent film becomes dark. The image on the fluorescent film becomes unsightly due to the irregular distribution of the brightness of the fluorescent film, which causes defects in the fluorescent film, which must be avoided.

【0005】〔発明が解決しようとする課題〕解決しよ
うとする課題は、沈降法で作られた陰極線管用蛍光膜
で、空隙が極度に少なく、発光輝度に不規則な分布がな
い鮮明な映像を与える陰極線管用蛍光膜の提供である。
[Problem to be Solved by the Invention] A problem to be solved is a fluorescent film for a cathode ray tube produced by a sedimentation method, which produces a clear image with extremely few voids and no irregular distribution of emission brightness. The present invention provides a fluorescent film for a cathode ray tube.

【0006】〔課題を解決するための手段〕[Means for Solving the Problems]

【0007】沈降法で作られた蛍光膜を注意深く観察す
ると、空隙が出来たり、蛍光膜に不規則な厚みが出来る
原因は、上記した溶液中を沈降している粒子が凝集する
ことに起因している事が分かる。従って、問題の解決
は、溶液中を沈降している粒子を凝集させないで沈降さ
せて、基板上に堆積させれば解決できる事が分かる。沈
降の各過程を調べると、珪酸カリ液中では、蛍光体粒子
は理想に近い1次粒子で分散している。蛍光体粒子の凝
集は、珪酸カリと電気化学反応を持つ電解質溶液との混
合で発生している。そこで、電解質溶液を使わないで、
蛍光体粒子を沈降させれば、1次粒子だけが基板上に堆
積し、凝集の無い蛍光膜が得られる筈である。事実、電
解質溶液を使用しないと、粒子の沈降速度は極度に遅く
なるが、厚みの平坦な蛍光膜が得られる。だが、その蛍
光膜は、蛍光体粒子のガラス基板表面への接着力が弱
く、次に続くメタルバックの工程で、蛍光体粒子が容易
に基板から脱落したり、蛍光膜の構成が崩れて損傷す
る。その結果、蛍光膜は塗布出来ても、その蛍光膜は実
用に成らない。実用になる蛍光膜を得るには、蛍光体粒
子がガラス基板に強固に接着しなければ成らない。
When the fluorescent film produced by the sedimentation method is carefully observed, the cause of the formation of voids and the irregular thickness of the fluorescent film is that the particles settled in the above-mentioned solution are aggregated. I understand that. Therefore, it can be seen that the solution to the problem can be solved by allowing the particles that have settled in the solution to settle without agglomerating and depositing them on the substrate. Examination of each process of sedimentation reveals that the phosphor particles are dispersed in the potassium silicate solution as primary particles which are close to ideal. Aggregation of the phosphor particles occurs when potassium silicate is mixed with an electrolyte solution having an electrochemical reaction. So, without using the electrolyte solution,
If the phosphor particles are allowed to settle, only the primary particles should be deposited on the substrate, and a fluorescent film without aggregation should be obtained. In fact, when the electrolyte solution is not used, the sedimentation rate of the particles becomes extremely slow, but a fluorescent film having a flat thickness is obtained. However, the fluorescent film has weak adhesion of the fluorescent particles to the glass substrate surface, and in the subsequent metal back process, the fluorescent particles easily fall off the substrate or the structure of the fluorescent film is destroyed and damaged. To do. As a result, even if the fluorescent film can be applied, the fluorescent film is not practical. In order to obtain a practical fluorescent film, the phosphor particles must firmly adhere to the glass substrate.

【0008】沈降して基板上に堆積した蛍光体粒子を基
板ガラスに強固に接着させるには、沈降して堆積した各
蛍光体粒子の表面に接着剤を付着させれば良い。その様
な接着剤に、有機化合物がある。接着剤を各粒子表面に
均一な厚みの薄膜で付着させるには、蛍光体粒子を良く
分散させる有機化合物の溶液に、蛍光体粒子を懸濁させ
たる後、蛍光体粒子を乾燥すると、有機化合物は蛍光体
粒子の表面に薄膜として均一に付着している。接着剤を
含んだ溶液中では、蛍光体粒子は一次粒子で分散しなけ
れば成らない。その上で、陰極線管の製造が終了した時
に、接着剤となる物質が陰極線管内に残留していない事
が望まれる。従って、有機化合物の溶液の選択基準は次
の様になる。(1)有機化合物の溶液は、蛍光体粒子を
1次粒子で分散させる、(2)蛍光膜を乾燥した時、蛍
光体粒子を強固にガラス基板表面上に接着させる、
(3)使用した有機化合物は、陰極線管の製造工程の加
熱で完全に分解し、分解物が製造された陰極線管中に残
留しない等である。これ等の条件を満たす有機化合物と
して、水に溶けるポリ・ビニール・アルコール(以下P
VAと略す)と酢酸エステル等のエステル類の溶剤やア
セトン等のケトン類の溶剤に溶ける硝化綿がある。蛍光
膜の大量生産には、有機溶剤を使用するよりも、水を使
用した方が有利であるので、PVAの使用が有利とな
る。以下の説明は、PVAを使用して蛍光膜を作る例で
あるが、本発明は以下の説明に限定されず、硝化綿の使
用も含まれる。
In order to firmly adhere the phosphor particles settled and deposited on the substrate to the substrate glass, an adhesive may be attached to the surface of each phosphor particle deposited and deposited. Such adhesives include organic compounds. In order to attach the adhesive to the surface of each particle in a thin film having a uniform thickness, the phosphor particles are suspended in a solution of an organic compound in which the phosphor particles are well dispersed, and then the phosphor particles are dried. Is uniformly attached to the surface of the phosphor particles as a thin film. In a solution containing an adhesive, phosphor particles must be dispersed as primary particles. Moreover, it is desired that the substance serving as an adhesive does not remain in the cathode ray tube when the production of the cathode ray tube is completed. Therefore, the selection criteria for the organic compound solution are as follows. (1) In the solution of the organic compound, the phosphor particles are dispersed by the primary particles, (2) when the phosphor film is dried, the phosphor particles are firmly adhered to the glass substrate surface,
(3) The organic compound used is completely decomposed by heating in the manufacturing process of the cathode ray tube, and the decomposed product does not remain in the manufactured cathode ray tube. Polyorganic vinyl alcohol (hereinafter P
Abbreviated as VA) and nitrification cotton which is soluble in a solvent of an ester such as acetic acid ester or a solvent of a ketone such as acetone. For mass production of the fluorescent film, it is more advantageous to use water than to use an organic solvent, and thus PVA is advantageous. The following description is an example of forming a fluorescent film using PVA, but the present invention is not limited to the following description and includes the use of nitrified cotton.

【0009】PVAの溶液は、PVAの濃度により非常
に高い粘度の溶液から、水の粘度に近づいた溶液迄を作
る事が出来る。沈降法にPVA溶液を使用するには、蛍
光体粒子の沈降時間を短くする目的で、PVA溶液の粘
度を可能な限り薄くする事が製造の面では有利となる。
経験的に求めた結果によると、PVAの濃度が0.5重
量%を越えない方が良い。PVA濃度の下限は、堆積し
た各蛍光体粒子の表面が、完全にPVAの薄膜で覆われ
る濃度である。各蛍光体粒子の表面がPVAで覆われる
下限濃度は、次のようにして決定できる。塗布された蛍
光膜を乾燥し、蛍光膜中の蛍光体粒子を倍率が300倍
以上の光学顕微鏡で観察する。蛍光体粒子表面にPVA
の薄膜が形成されていると、各蛍光体粒子の平らな面に
光の干渉縞が観測される。干渉縞の観測される濃度以上
で有れば、蛍光体粒子は基板上に強固に接着する。経験
的に求めたPVAの下限濃度は、0.02重量%であ
る。それ故、0.02から0.5重量%の範囲にあるP
VA溶液が使用できる。この様な濃度範囲にあるPVA
溶液の粘度は、水よりも大きいので、蛍光体粒子の基板
ガラスへの沈降時間が長くなる。蛍光体粒子の沈降時間
の短縮を目的に、遠心力を適用しても得られる蛍光膜に
差がないので、蛍光膜の塗布に遠心沈降法を適用でき
る。その場合、PVAの上限濃度を0.5%以上に増加
させる事も出来るが、PVA濃度の増加による利点は無
いので、0.5%以下のPVA濃度を推奨する。
Depending on the concentration of PVA, a solution of PVA can be made from a solution having a very high viscosity to a solution having a viscosity close to that of water. In order to use the PVA solution in the sedimentation method, it is advantageous in terms of production to make the viscosity of the PVA solution as thin as possible in order to shorten the sedimentation time of the phosphor particles.
According to the empirically obtained result, the concentration of PVA should not exceed 0.5% by weight. The lower limit of the PVA concentration is the concentration at which the surface of each deposited phosphor particle is completely covered with a thin film of PVA. The lower limit concentration at which the surface of each phosphor particle is covered with PVA can be determined as follows. The applied phosphor film is dried, and the phosphor particles in the phosphor film are observed with an optical microscope having a magnification of 300 times or more. PVA on the surface of phosphor particles
When the thin film is formed, light interference fringes are observed on the flat surface of each phosphor particle. If the concentration is equal to or higher than the concentration at which interference fringes are observed, the phosphor particles adhere firmly to the substrate. The lower limit concentration of PVA obtained empirically is 0.02% by weight. Therefore, P in the range of 0.02 to 0.5% by weight
VA solution can be used. PVA in such concentration range
Since the viscosity of the solution is higher than that of water, the settling time of the phosphor particles on the substrate glass becomes long. Since there is no difference in the obtained fluorescent film even when centrifugal force is applied for the purpose of shortening the sedimentation time of the phosphor particles, the centrifugal sedimentation method can be applied to the application of the fluorescent film. In that case, the upper limit concentration of PVA can be increased to 0.5% or more, but there is no advantage due to the increase of the PVA concentration, so a PVA concentration of 0.5% or less is recommended.

【0010】PVA水溶液は、pHが6.0から7.5
の範囲にある時、多くの蛍光体粒子に対して良い分散剤
の働きをする。pH値が上記範囲より小さいか、又は大
きいと、蛍光体粒子は凝集する。pH値を上記範囲に調
整すれば、PVA−蛍光体懸濁液の作成に、特種な界面
活性剤を使用しなくとも、蛍光体粒子はPVA溶液中で
完全分散する。上記した叙述は、界面活性剤の使用を禁
じるものではない。完全分散した蛍光体粒子が沈降して
堆積して出来た蛍光膜中には、図2に示したように、凝
集粒子による堆積が皆無であるので、大きな空隙はな
い。この事実は、SEMで蛍光膜の断面を観測して確認
できる。SEM写真では明確に示す事が難しいが、蛍光
体粒子は、粒子間に僅かな空隙を持って配列している。
得られた蛍光膜で、粒子間の間隙を更に減少させる目的
で、蛍光膜をプレス機で加圧する。そうすると、蛍光体
粒子が良く密着した蛍光膜が得られるが、蛍光膜の輝度
が著しく減少する。以上の結果より、蛍光膜を明るく発
光させるには、蛍光膜を構成する蛍光体粒子は、相互に
密着せず、ある間隔を持って配置していることが必要条
件に成る。遠心沈降法で得られる蛍光膜は、この条件を
満たしている。プレス機による実験は、蛍光膜の輝度を
更に向上させるには、蛍光体粒子間を埋めている微小蛍
光体粒子を取り除くと良い事を示している。事実、製造
された粉末蛍光体で、粒子径分布の小さい粒子径側に分
布している25重量%前後の微小粒子を取り除いた粉末
蛍光体を使用すると、蛍光膜の輝度が向上する。蛍光膜
中の微小粒子は発光には余り関与せず、発光した光の散
乱の働きをするので、微小粒子を取り除くと、蛍光膜の
解像力の向上にも成る。
The PVA aqueous solution has a pH of 6.0 to 7.5.
When it is in the range, it acts as a good dispersant for many phosphor particles. When the pH value is lower or higher than the above range, the phosphor particles aggregate. When the pH value is adjusted to the above range, the phosphor particles are completely dispersed in the PVA solution without using a special surfactant for preparing the PVA-phosphor suspension. The above statement does not prohibit the use of surfactants. As shown in FIG. 2, there is no accumulation by aggregated particles in the fluorescent film formed by sedimentation of completely dispersed fluorescent material particles, so that there are no large voids. This fact can be confirmed by observing the cross section of the fluorescent film with the SEM. Although it is difficult to clearly show in the SEM photograph, the phosphor particles are arranged with a slight gap between the particles.
In the obtained fluorescent film, the fluorescent film is pressed with a press in order to further reduce the gaps between the particles. Then, a phosphor film in which the phosphor particles are well adhered is obtained, but the brightness of the phosphor film is significantly reduced. From the above results, in order to cause the fluorescent film to emit bright light, it is a necessary condition that the phosphor particles forming the fluorescent film do not adhere to each other and are arranged with a certain interval. The fluorescent film obtained by the centrifugal sedimentation method satisfies this condition. Experiments using a pressing machine have shown that in order to further improve the brightness of the phosphor film, it is preferable to remove the fine phosphor particles filling the spaces between the phosphor particles. In fact, the brightness of the phosphor film is improved by using the manufactured powder phosphor in which the fine particles of about 25% by weight distributed on the particle size side having a small particle size distribution are removed. Since the fine particles in the fluorescent film do not contribute much to light emission and act to scatter the emitted light, removing the fine particles also improves the resolution of the fluorescent film.

【0011】解像力を最適化した蛍光膜は、蛍光膜の輝
度も最適化される。最適化された蛍光膜は、発光粒子と
ガラス基板との間に、発光に関与しないで光の散乱の役
しか持たない蛍光体粒子の介在を最小限化した蛍光膜で
ある。そのように最適化した蛍光膜は、理論的に蛍光体
粒子の1.5層で作られる。が、物理的に1.5層の蛍
光膜を作るのは至難である。実用的には、SEMの断面
写真で2.5層以下の粒子配列であれば充分である。こ
のような薄い蛍光膜を精度良く、均一な厚みで基板上に
塗布するには、与えられた基板面積を持った陰極線管容
器に注ぐPVA−蛍光体懸濁液量と懸濁液中の粉末蛍光
体量の制御で実現できる。このような簡単な項目の制御
で、膜厚が均一な蛍光膜が再現性良く得られる。本発明
になる蛍光膜は、陰極線管の蛍光膜としてだけでなく、
電子線を照射して映像を蛍光膜に映し出すいかなる表示
装置の蛍光膜としても使用出来るのは勿論である。以下
に1.5インチの陰極線管に蛍光膜を作る実施例を用い
て、本発明の内容を更に詳細に説明する。
The brightness of the fluorescent film, which is optimized in resolution, is also optimized. The optimized fluorescent film is a fluorescent film in which the interposition of phosphor particles, which do not participate in light emission and only play a role of scattering light, between the light emitting particles and the glass substrate is minimized. A phosphor film so optimized is theoretically made of 1.5 layers of phosphor particles. However, it is extremely difficult to physically form a fluorescent film of 1.5 layers. Practically, it is sufficient if the grain arrangement of 2.5 layers or less in the SEM cross-sectional photograph. In order to apply such a thin phosphor film on a substrate with high accuracy and uniform thickness, the amount of PVA-phosphor suspension and the powder in the suspension are poured into a cathode ray tube container having a given substrate area. It can be realized by controlling the amount of phosphor. By controlling such simple items, a fluorescent film having a uniform film thickness can be obtained with good reproducibility. The fluorescent film according to the present invention is not only used as a fluorescent film of a cathode ray tube,
Needless to say, it can be used as a fluorescent film of any display device that emits an electron beam to display an image on the fluorescent film. The contents of the present invention will be described in more detail below with reference to an example in which a fluorescent film is formed on a 1.5-inch cathode ray tube.

【0012】〔実施例〕先ず使用する粉末蛍光体の処理
から始める。平均粒子径が3.0μm(顕微鏡法)であ
る市販の白色蛍光体(YS:Tb:Eu)を入手
する。市販蛍光体には、微小粒子が大量に含まれている
ので、これ等の微小粒子を取り除く作業が必要である。
微小粒子を効率良く取り除くには、水篩いを使う。水篩
いの方法は次の様にする。入手した蛍光体100グラム
を500ccの容器に入れられた脱イオン水400cc
中に分散させる。この懸濁液を静置すると、粒子はスト
ークスの法則に従って、大きい粒子から順に容器の底に
沈降する。ストークスの法則から1.5μmの粒子が懸
濁液の表面から10cm沈降する時間を計算すると、3
8分となる。懸濁液を放置してから38分したら、懸濁
液の表面から10cm迄の液をサイフォンを使って取り
除く。取り除かれた液の方には、1.5μm以下の粒子
だけが含まれる。容器に残った懸濁液と沈降した蛍光体
中には、微小粒子が未だ含まれているので、懸濁液に再
度脱イオン水を添加し、上記した操作を繰り返す。操作
の繰り返し回数を5回以上にすると、1.5μm以下の
粒子が大略除かれた蛍光体が容器に残る。容器に残った
蛍光体を110℃で乾燥すると、目的とする粉末蛍光体
が得られる。
Example First, the treatment of the powder phosphor to be used is started. A commercially available white phosphor (Y 2 O 2 S: Tb: Eu) having an average particle diameter of 3.0 μm (microscopic method) is obtained. Since commercially available phosphor contains a large amount of fine particles, it is necessary to remove these fine particles.
Use a water sieve to remove fine particles efficiently. The water sieving method is as follows. 400 cc of deionized water containing 100 g of the obtained phosphor in a 500 cc container
Disperse in. When this suspension is left to stand, the particles settle down to the bottom of the container in order from the largest particles according to Stokes' law. From Stokes' law, the time required for particles of 1.5 μm to settle 10 cm from the surface of the suspension was calculated to be 3
8 minutes. 38 minutes after leaving the suspension, remove the liquid up to 10 cm from the surface of the suspension using a siphon. The removed liquid contains only particles of 1.5 μm or less. Since fine particles are still contained in the suspension remaining in the container and the settled phosphor, deionized water is added to the suspension again, and the above operation is repeated. When the number of repetitions of the operation is 5 times or more, the fluorescent substance in which the particles of 1.5 μm or less are substantially removed remains in the container. The target phosphor powder is obtained by drying the phosphor remaining in the container at 110 ° C.

【0013】次に、PVA濃度が0.10重量%の水溶
液を調合する。新鮮な脱イオン水を使用すると、pH値
が7.0前後であるので、特にpH値の調整をしなくと
も済む。上記したPVA溶液1000ccを容器に入
れ、ゆるく攪拌しながら、前記粉末蛍光体の0.5グラ
ムを徐々に加えると、蛍光体粒子が良く分散したPVA
−蛍光体の懸濁液が出来る。この懸濁液から10ccを
取り、平面積が8cmある1.5インチの陰極線管容
器内に注入する。陰極線管容器を2000rpmの高速
で10分間、回転すると、0.5mg/cmの割合で
蛍光体粒子が均一にフェース・プレート上に堆積する。
陰極線管容器を徐々に傾けて上澄み液を取り去ると、蛍
光膜がフェース・プレート上に残る。蛍光膜を110℃
で乾燥すると、蛍光体粒子が強固にフェース・プレート
上に付着する。得られた蛍光膜の断面を、SEMで観察
すると、図2に示した蛍光膜が得られている。この蛍光
膜の付着強度は強いので、その後に続くメタル・バック
の製造工程を経ても、蛍光膜は何らの損傷を受けない。
又、接着剤として蛍光体粒子表面に付着したPVAの薄
膜は、その後に続く陰極線管の製造工程で加えられる加
熱により、完全に水と炭酸ガスに分解して取り除かれる
ので、完成した陰極線管内に残留しない。この陰極線管
容器に電子銃を取り付け、所定の排気工程を加えると、
1.5インチの陰極線管が得られる。この陰極線管の蛍
光膜上の映像の切れは良いので、陰極線管は高解像力な
映像を鮮明に映し出す。
Next, an aqueous solution having a PVA concentration of 0.10% by weight is prepared. When fresh deionized water is used, since the pH value is around 7.0, it is not necessary to adjust the pH value. When 1000 cc of the PVA solution described above was put in a container and 0.5 g of the powder phosphor was gradually added while gently stirring, PVA in which phosphor particles were well dispersed was added.
-A phosphor suspension is formed. 10 cc of this suspension is taken and poured into a 1.5-inch cathode ray tube container having a plane area of 8 cm 2 . When the cathode ray tube container is rotated at a high speed of 2000 rpm for 10 minutes, phosphor particles are uniformly deposited on the face plate at a rate of 0.5 mg / cm 2 .
When the cathode ray tube container is gradually tilted to remove the supernatant liquid, the fluorescent film remains on the face plate. Fluorescent film 110 ℃
When dried with, the phosphor particles firmly adhere to the face plate. When the cross section of the obtained fluorescent film is observed by SEM, the fluorescent film shown in FIG. 2 is obtained. Since the fluorescent film has a high adhesion strength, the fluorescent film is not damaged in any subsequent manufacturing process of the metal back.
The thin film of PVA attached to the surface of the phosphor particles as an adhesive is completely decomposed and removed into water and carbon dioxide gas by the heating applied in the subsequent manufacturing process of the cathode ray tube. Does not remain. When an electron gun is attached to this cathode ray tube container and a predetermined exhaust process is added,
A 1.5 inch cathode ray tube is obtained. Since the image on the fluorescent film of the cathode ray tube is cut off well, the cathode ray tube clearly shows an image with high resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の方法で作られた蛍光膜の断面図FIG. 1 is a cross-sectional view of a phosphor film manufactured by a conventional method.

【図2】 本発明になる蛍光膜の断面図FIG. 2 is a sectional view of a fluorescent film according to the present invention.

【符号の説明】[Explanation of symbols]

1はフェス・プレートとなるガラス基板 2は蛍光体粒子 1 is a glass substrate which becomes a festival plate 2 is phosphor particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陰極線管の内部に設置される粉末蛍光体
から成る蛍光膜が、物理的に2層以下に配列された粒子
で構成されている事を特徴とする陰極線管の蛍光膜。
1. A fluorescent film for a cathode ray tube, characterized in that the fluorescent film made of a powdered fluorescent substance disposed inside the cathode ray tube is composed of particles physically arranged in two layers or less.
【請求項2】 請求項1にて限定された蛍光膜で、蛍光
膜が蛍光膜中の粒子間隙を埋める微小粒子を含まない蛍
光体粉末で作られている事を特徴とする陰極線管の蛍光
膜。
2. Fluorescent light of a cathode ray tube according to claim 1, wherein the fluorescent film is made of a phosphor powder that does not contain fine particles that fill the particle gaps in the fluorescent film. film.
【請求項3】 請求項1と請求項2にて限定された蛍光
膜で、蛍光膜がポリ・ビニール・アルコール水溶液中に
懸濁した蛍光体粒子の沈降による堆積で作られた事を特
徴とする陰極線管の蛍光膜。
3. The fluorescent film defined in claim 1 and claim 2, characterized in that the fluorescent film is formed by sedimentation of phosphor particles suspended in an aqueous solution of poly (vinyl alcohol). Fluorescent film of cathode ray tube.
JP19785595A 1995-06-30 1995-06-30 Fluorescent screen of cathode-ray tube having high resolution Pending JPH0917350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19785595A JPH0917350A (en) 1995-06-30 1995-06-30 Fluorescent screen of cathode-ray tube having high resolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19785595A JPH0917350A (en) 1995-06-30 1995-06-30 Fluorescent screen of cathode-ray tube having high resolution

Publications (1)

Publication Number Publication Date
JPH0917350A true JPH0917350A (en) 1997-01-17

Family

ID=16381463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19785595A Pending JPH0917350A (en) 1995-06-30 1995-06-30 Fluorescent screen of cathode-ray tube having high resolution

Country Status (1)

Country Link
JP (1) JPH0917350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086096A (en) * 2001-09-12 2003-03-20 Fujitsu Ltd Phosphor layer forming method for gas discharge tube
JP2009014527A (en) * 2007-07-05 2009-01-22 Konica Minolta Medical & Graphic Inc Radiation image conversion panel and method for manufacturing it
JP2009021613A (en) * 2001-09-03 2009-01-29 Panasonic Corp Phosphor layer, semiconductor light-emitting apparatus, and method for fabricating semiconductor light-emitting device
US7518304B2 (en) 2003-10-31 2009-04-14 Samsung Sdi Co., Ltd. Flat panel display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021613A (en) * 2001-09-03 2009-01-29 Panasonic Corp Phosphor layer, semiconductor light-emitting apparatus, and method for fabricating semiconductor light-emitting device
US7592639B2 (en) 2001-09-03 2009-09-22 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
US7629620B2 (en) 2001-09-03 2009-12-08 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
US7772769B2 (en) 2001-09-03 2010-08-10 Panasonic Corporation Light-emitting semiconductor device, light-emitting system and method for fabricating light-emitting semiconductor device
JP4676519B2 (en) * 2001-09-03 2011-04-27 パナソニック株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
USRE47453E1 (en) 2001-09-03 2019-06-25 Panasonic Corporation Luminescent layer and light-emitting semiconductor device
JP2003086096A (en) * 2001-09-12 2003-03-20 Fujitsu Ltd Phosphor layer forming method for gas discharge tube
US7518304B2 (en) 2003-10-31 2009-04-14 Samsung Sdi Co., Ltd. Flat panel display device
JP2009014527A (en) * 2007-07-05 2009-01-22 Konica Minolta Medical & Graphic Inc Radiation image conversion panel and method for manufacturing it

Similar Documents

Publication Publication Date Title
JPH0917350A (en) Fluorescent screen of cathode-ray tube having high resolution
US3714490A (en) Luminescent screen comprising phosphor cores luminescent in first color and phosphor coatings luminescent in second color
JPH02308892A (en) Fluorescent material and its treatment
JPH0157758B2 (en)
US4398119A (en) Coated phosphor particles, method, and cathode ray tube screen
US4515827A (en) Method of vapor coating phosphor particles
US8294352B2 (en) Fluorescent lamp
US2062858A (en) Method of forming a screen on material
JPH02209989A (en) Production of fluorescent substance having ultramicrospherical silicon dioxide applied thereto
JPH0940945A (en) Phosphor and its production
JP2009016177A (en) Liquid crystal display device and its manufacturing method
JP3436338B2 (en) Method of manufacturing metallized luminescent screen for cathode ray tube
US3672931A (en) Method of forming phosphor screen
JPH0559357A (en) Fluorescent substance having surface treated with boron nitride
FR2785719A1 (en) LUMINOPHORE ENCAPSULATION PROCESS
JP2702962B2 (en) CRT
JP3243093B2 (en) Zinc sulfide phosphor and cathode ray tube using the same
Clark et al. Preparation, optimization, and cathodoluminescent properties of a line emission penetration phosphor
JP3491448B2 (en) Phosphors and phosphor slurries for cathode ray tubes
CN1022005C (en) Method for fabricating the fluorescent screen of cathode-ray tube
RU2052863C1 (en) Process of deposition of cathode-luminescent coat
JP3964578B2 (en) Red light emitting phosphor for cathode ray tube and cathode ray tube
JPS5912537A (en) Method for forming phosphor screen of cathode ray tube
JPS5981832A (en) Pattern forming method
JPH04233130A (en) Surface treatment of fluorescent material