JPS6025609B2 - Control method for blast furnace exhaust gas energy recovery plant - Google Patents

Control method for blast furnace exhaust gas energy recovery plant

Info

Publication number
JPS6025609B2
JPS6025609B2 JP53010539A JP1053978A JPS6025609B2 JP S6025609 B2 JPS6025609 B2 JP S6025609B2 JP 53010539 A JP53010539 A JP 53010539A JP 1053978 A JP1053978 A JP 1053978A JP S6025609 B2 JPS6025609 B2 JP S6025609B2
Authority
JP
Japan
Prior art keywords
pressure
signal
valve
exhaust gas
pressure regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53010539A
Other languages
Japanese (ja)
Other versions
JPS54103916A (en
Inventor
重義 石川
幹郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP53010539A priority Critical patent/JPS6025609B2/en
Publication of JPS54103916A publication Critical patent/JPS54103916A/en
Publication of JPS6025609B2 publication Critical patent/JPS6025609B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は高炉排ガスエネルギーをタービンにより回収し
ながら高炉の炉頂圧を制御する方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for controlling the top pressure of a blast furnace while recovering blast furnace exhaust gas energy using a turbine.

従来、高炉からの排ガス経路に炉頂圧を調節するための
圧力調節弁としンジ調整弁および排ガスエネルギーを回
収するためのタービンを並列に配設し、さらにタービン
の供給側に緊急遮断弁および調速弁を設け、高炉の炉頂
圧に応じた圧力調節計の出力信号によりこれらの圧力調
節弁レンジ調整弁および調速弁を制御して、高炉排ガス
ェネルギ−を回収しながら炉頂圧を制御する方法が知ら
れている。
Conventionally, a pressure control valve and a pressure control valve for adjusting the furnace top pressure and a turbine for recovering exhaust gas energy were arranged in parallel in the exhaust gas path from the blast furnace, and an emergency shutoff valve and a control valve were also installed on the supply side of the turbine. A pressure control valve is provided, and the pressure control valve, range adjustment valve, and speed control valve are controlled by the output signal of the pressure regulator according to the top pressure of the blast furnace, and the top pressure of the furnace is controlled while recovering blast furnace exhaust gas energy. There are known ways to do this.

炉頂圧は変動を極力小さく維持し、種々の外乱による変
動中は数%以内に抑える必要があるが、上述したような
従来の炉頂圧の制御系においては、炉項圧を一定に維持
するに際して、原料投入、高炉吹抜け、タナ落ち、スリ
ップ等の外乱に加えて、タービンのトリップ現象に伴う
炉頂圧の変動がタービンにより排ガスエネルギーを回収
する場合の新しくかつ最大の問題である。
Fluctuations in the furnace top pressure must be kept as small as possible, and fluctuations caused by various disturbances must be kept within a few percent.However, in the conventional furnace top pressure control system described above, it is necessary to maintain the furnace top pressure at a constant level. In addition to disturbances such as raw material input, blast furnace blow-through, taper drop, and slip, fluctuations in furnace top pressure due to turbine tripping are new and biggest problems when exhaust gas energy is recovered using a turbine.

タービンがトリツプしたときは、タービンおよびこれに
直結されている発電機を保護するために、緊急遮断弁を
短時間(0.$ec程度)に全閉するが、これによる炉
頂圧の変動を許容し得る程度に小さく抑えるためには、
圧力調節弁としンジ調整弁の開度をこれに応じて短時間
のうちに大きくして、全ガス流量をこれらの弁(セプタ
ン弁と称する。
When the turbine trips, the emergency shutoff valve is fully closed for a short period of time (approximately 0.0 sec) to protect the turbine and the generator directly connected to it. In order to keep it as small as possible,
The opening degrees of the pressure regulating valve and the pressure regulating valve are correspondingly increased in a short time to increase the total gas flow rate of these valves (referred to as septan valves).

)側に切り換える必要がある。しかしながら、レンジ調
整弁は圧力調節弁の制御性の良い最大開度を外れた時を
リミットスイッチで検出して作動する構成になっている
ために関度の増加速度には限度があり、遮断弁の閉速度
よりも相当遅れて炉頂圧が上昇してしまう。このような
タービンのトリップによる炉頂圧の上昇を抑えるために
制御系の利得を大きくするとハンチングを起こし易くな
り、炉頂圧制御系の安定性を悪くする。
) side. However, because the range adjustment valve is configured to operate when a limit switch detects when the pressure adjustment valve deviates from its maximum opening, which is easy to control, there is a limit to the speed at which the range can increase. The furnace top pressure rises considerably later than the closing speed. If the gain of the control system is increased in order to suppress the rise in the furnace top pressure due to such turbine tripping, hunting is likely to occur, which deteriorates the stability of the furnace top pressure control system.

あるいはセプタン弁の動作速度早くすることは、タービ
ンを切り離した状態で炉頂圧を制御する際に、圧力調節
計の利得と圧力調節弁の動作速度に対する最適値であり
、したがってこの最適値よりも動作速度を早くすると、
正常時の炉頂圧制御特性を不安定にしてしまう。本発明
は炉頂圧の異常上昇を防止することを目的とするもので
あり、炉頂圧がわずかに上昇したときにのみ高い利得で
圧力調節弁を作動させる炉頂圧制御機能を従来の制御系
に付加し、タービントリップはもとより、高炉吹抜けそ
の他の高炉側の外乱に対しても炉頂圧を一定に維持する
ような制御方法を提供するものである。実施例につき、
図面にしたがって以下に説明する。
Alternatively, increasing the operating speed of the septan valve is the optimal value for the gain of the pressure regulator and the operating speed of the pressure regulating valve when controlling the furnace top pressure with the turbine disconnected. If you increase the operating speed,
This makes the furnace top pressure control characteristics during normal operation unstable. The purpose of the present invention is to prevent abnormal increases in furnace top pressure, and the furnace top pressure control function that operates the pressure control valve at a high gain only when the furnace top pressure increases slightly is replaced by conventional control. In addition to the system, a control method is provided that maintains the furnace top pressure constant not only against turbine trips but also against blast furnace blow-through and other disturbances on the blast furnace side. For the example,
This will be explained below with reference to the drawings.

第1図において、高炉1からの排ガスはダストコレクタ
2およびベンチユリスクラーバ3,3′等により除塵さ
れた後、並列に配設された圧力調節弁4,5およびその
圧力調節弁4,5のレンジ調整弁6に運速され、さらに
排ガスエネルギーを回収するためのタービン7が並列に
接続され、タービン7には発電機8が直結される。
In FIG. 1, the exhaust gas from the blast furnace 1 is removed by a dust collector 2, a ventilator scrubber 3, 3', etc., and then the pressure regulating valves 4, 5 arranged in parallel and the pressure regulating valves 4, 5 are removed. A turbine 7 is connected in parallel to the range control valve 6 and for recovering exhaust gas energy, and a generator 8 is directly connected to the turbine 7.

そしてタービン7の供給側には締切弁9、緊急遮断弁1
0および調速弁11が直列に配設され、排出側には締切
弁12が設けられる。タービン7の負荷はタービン軸に
おいて検出され、信号発信器13の信号によりガバナ1
4および信号低位選択器15を介して遼遠弁11を制御
する。一方、高炉1の炉頂圧は炉頂圧力発信器16,1
6′の信号として信号選択器17により選択されて第1
圧力調節計18に送られ、この調節計18の出力信号は
信号切換器19に送られる。
On the supply side of the turbine 7, there is a shutoff valve 9 and an emergency shutoff valve 1.
0 and a regulating valve 11 are arranged in series, and a shutoff valve 12 is provided on the discharge side. The load of the turbine 7 is detected at the turbine shaft, and the governor 1 is detected by the signal from the signal transmitter 13.
4 and a signal low selector 15 to control the Liaoyuan valve 11. On the other hand, the furnace top pressure of the blast furnace 1 is determined by the furnace top pressure transmitters 16 and 1.
6' is selected by the signal selector 17 and the first
The signal is sent to a pressure regulator 18, and the output signal of this regulator 18 is sent to a signal switch 19.

切襖器19の接点19aは減算器20および信号制限器
21に接続され、この制限器21はさらに前記信号低位
選択器15に接続される。選択器15は減算器20‘こ
接続され、減算器20は前記信号切換器19の接点19
bに接続され、かつ信号制限器22および23に接続さ
れる。制限器22はさらに前記圧力調節弁4に接続され
、制限器23は比例バイアス設定器24を経て圧力調節
弁5に接続される。圧力調節弁4,5にはそれぞれリミ
ットスイッチ25,26が設けられ、これはリレーボッ
クス27に接続され、このリレーボックス27は電動機
駆動信号発生器28および後述する信号高位選択器29
を介して前記レンジ調整弁6に接続される。
A contact 19a of the stub 19 is connected to a subtracter 20 and a signal limiter 21, and the limiter 21 is further connected to the signal low selector 15. The selector 15 is connected to a subtracter 20', and the subtracter 20 is connected to the contact 19 of the signal switch 19.
b and to signal limiters 22 and 23. The restrictor 22 is further connected to the pressure regulating valve 4, and the restrictor 23 is connected to the pressure regulating valve 5 via a proportional bias setting device 24. The pressure control valves 4 and 5 are provided with limit switches 25 and 26, respectively, which are connected to a relay box 27, which is connected to a motor drive signal generator 28 and a signal high level selector 29, which will be described later.
It is connected to the range adjustment valve 6 via.

本発明の特徴とするところは、上述したような高炉排ガ
スエネルギーの回収プラントにおける炉項圧の制御系に
、タービントリップ、高炉吹抜け等により炉頂圧がわず
かに上昇した時にのみ、早い応答と高い利得でレンジ調
整弁6を作動させる炉頂圧力制御機能を追加したことに
ある。
The characteristics of the present invention are that the control system for the furnace top pressure in the above-mentioned blast furnace exhaust gas energy recovery plant has a fast response and a high The reason lies in the addition of a furnace top pressure control function that operates the range control valve 6 based on the gain.

すなわち、第1圧力調節計18と並列に別個の第2圧力
調節計30を接続し、電動機駆動信号発生器28としン
ジ調整弁6との間に信号高位選択器29を介在させて、
これに第2圧力調節計30を接続する。そして手動設定
器31を第1圧力調節計18と、バイアス設定器32を
介して第2圧力調節計30とにそれぞれ接続する。第2
圧力調節計30の設定値はバイアス設定器32により第
1圧力調節計18よりもわずかに〔十Bだけ〕高く設定
され、そしてこの第2圧力調節計30から信号高位選択
器29に伝達される信号xは、第3図に示すように、x
:K(e十Td群十Ti′edt) 地ここに、Kは第
2圧力調節計のゲイン、Tdは微分時間、Tiは積分時
間、eは偏差を示す、となる。
That is, a separate second pressure regulator 30 is connected in parallel with the first pressure regulator 18, and a signal high level selector 29 is interposed between the motor drive signal generator 28 and the engine control valve 6.
A second pressure regulator 30 is connected to this. The manual setting device 31 is then connected to the first pressure regulator 18 and the second pressure regulator 30 via the bias setting device 32, respectively. Second
The set value of the pressure regulator 30 is set slightly higher [by 10 B] than the first pressure regulator 18 by the bias setting device 32, and is transmitted from this second pressure regulator 30 to the signal high level selector 29. The signal x is x
:K (e1Td group 10Ti'edt) where K is the gain of the second pressure regulator, Td is the differential time, Ti is the integration time, and e is the deviation.

一方、電動機駆動信号発生器28から信号高位選択器2
9に伝達される信号x′は第3図に示すようにx′:A
・(t) 式‘21で与えられる。
On the other hand, from the motor drive signal generator 28 to the signal high level selector 2
The signal x' transmitted to 9 is x':A as shown in FIG.
-(t) Given by equation '21.

ここに、Aは電動機駆動信号発生器28のレイト(一種
のゲイン)、tはリミットスイッチ26が日(高レベル
)信号を検出した時点を起点とする時間を表す。炉頂圧
力は炉頂圧力発信器16,16′により検出され、信号
選択器17により選択されて、第1圧力調節計18およ
び第2圧力調節計30の入力信号となる。
Here, A represents the rate (a type of gain) of the motor drive signal generator 28, and t represents the time starting from the time when the limit switch 26 detects the high level signal. The furnace top pressure is detected by the furnace top pressure transmitters 16, 16', selected by the signal selector 17, and becomes an input signal for the first pressure regulator 18 and the second pressure regulator 30.

しかし、高炉の平常操業時には、第2圧力調節計30の
方が〔十B〕だけ高く設定されているために全開信号を
出しており、第1圧力調節計18からの信号のみにより
制御系が機能する。タービントリツプ時(第3図のTt
時)は、第1圧力調節計18の出力信号は信号切襖器1
9により接点19b側に導かれ、この信号レベルが第2
図のH点より大きい場合(ほとんどの場合は大きくなる
)は、リミットスイッチ26によって信号発生器28が
作動し、x′=A・(t)(式【2})なる信号を発生
し、徐々にレンジ調整弁6の開度を増大させる。
However, during normal operation of the blast furnace, the second pressure regulator 30 outputs a full open signal because it is set higher by [10 B], and the control system is activated only by the signal from the first pressure regulator 18. Function. During turbine trip (Tt in Figure 3)
time), the output signal of the first pressure regulator 18 is the signal cutter 1
9 to the contact 19b side, and this signal level is the second
If it is larger than point H in the figure (in most cases it will be larger), the limit switch 26 activates the signal generator 28 to generate a signal x'=A・(t) (formula [2}), and gradually The opening degree of the range adjustment valve 6 is increased.

時情mh以後になると、第2圧力調節計30からの出力
信号x(式‘11)の方が高くなり、これを信号高位選
択器29が選択するため、レンジ調整弁6はこのxに追
従して早い速度で開度を増大させる。したがってタービ
ントリツプにより上昇しかかつた炉頂圧はわずかに上昇
した時点で低下し、炉頂圧が目標値まで低下して近ずく
と、xは急速に低下し、T〆点(第3図)以降は選択器
29は信号発生器28側の信号x′を選択して正常時の
制御系に復帰することになる。つまり、第3図はタービ
ントリップ時点Ttから第2圧力調節計30の出力xと
電動機駆動信号発生器28の出力xの関係を示し、この
二つの信号は第1図に示すように信号高位選択器29を
介してレンジ調整弁6を操作する。従って、レンジ調整
弁6は時間m〜TI間では第2圧力調節計30の出力x
の線図に沿った動きをし、時間Th以前または時間Ti
以後では電動機駆動信号発生器28の出力xの線図に沿
った動きをする。なお、バイアス設定器32による設定
値〔十B〕の値は、必要に応じて、トリツブ信号等によ
ってシーケンシャルに変更し、適当な時期に復帰させる
こともできる。
After the time condition mh, the output signal x (formula '11) from the second pressure regulator 30 becomes higher, and the signal high level selector 29 selects this, so the range adjustment valve 6 follows this x. and increase the opening at a fast speed. Therefore, the furnace top pressure, which had only begun to rise due to the turbine trip, decreases when it rises slightly, and when the furnace top pressure approaches the target value, x rapidly decreases, and the T point (Fig. 3) ) After that, the selector 29 selects the signal x' from the signal generator 28 to return to the normal control system. That is, FIG. 3 shows the relationship between the output x of the second pressure regulator 30 and the output x of the motor drive signal generator 28 from the turbine trip time Tt, and these two signals are selected as shown in FIG. The range adjustment valve 6 is operated via the device 29. Therefore, the range adjustment valve 6 outputs the output x of the second pressure regulator 30 between time m and TI.
before time Th or time Ti
Thereafter, the movement follows the diagram of the output x of the motor drive signal generator 28. Note that the value set by the bias setter 32 [10B] can be changed sequentially using a trib signal or the like, if necessary, and restored at an appropriate time.

また、第2図は圧力調節弁の開度特性、すなわち操作信
号レベルに対する圧力調節弁4,5の開度特性を表わす
。なお、L,H点は弁の制御性の良い範囲を外れたこと
を検出するりミットスイッチの作動点を示す。さらに詳
述すれば第2図は圧力調節弁の関度を示すグラフであり
、タービントリップ時に調速弁11が全閉すると、圧力
調節弁4が全開し、圧力調節弁5は中間関度となる。こ
の時、炉頂圧力が上昇すれば、圧力を押えるようにレン
ジ弁6が開く、この関係を第3図に示す。すなわち、圧
力調節弁4,5はスプリット作動し、操作信号があるレ
ベルまでは圧力調節弁4のみが開き、バイアス設定器の
設定で決る信号レベル以上になると圧力調節弁5が開き
始める。
Further, FIG. 2 shows the opening degree characteristics of the pressure regulating valves, that is, the opening degree characteristics of the pressure regulating valves 4 and 5 with respect to the operation signal level. Note that the L and H points indicate the operating point of the mitt switch, which detects that the valve is out of a range with good controllability. To be more specific, FIG. 2 is a graph showing the relationship between the pressure regulating valves. When the regulating valve 11 is fully closed during a turbine trip, the pressure regulating valve 4 is fully opened, and the pressure regulating valve 5 is at an intermediate level. Become. At this time, if the pressure at the top of the furnace increases, the range valve 6 opens to suppress the pressure. This relationship is shown in FIG. 3. That is, the pressure regulating valves 4 and 5 are operated in a split manner, and only the pressure regulating valve 4 opens until the operating signal reaches a certain level, and when the signal level exceeds the signal level determined by the setting of the bias setting device, the pressure regulating valve 5 begins to open.

尚、圧力調節弁4が100%開度に達したあとは信号の
増加に対して圧力調節弁4は全開を保持する。また、圧
力調節弁は、一般に、バタフライバルブが使用され、こ
の弁の制御特性、すなわち、Cv値カーブはS字型を示
す。而して、圧力調節弁を2台並列に設置し、バイアス
設定を適宜に選択すれば、その合成Cv値の直線に近い
範囲を拡大することができ、この間を制御性の良い範囲
と称している。更に、上記の如く、第2図は圧力調節弁
の開度の特性を示すグラフであり、機軸の信号レベルは
、圧力調節計18の出力信号に対応するもので、この信
号を信号制御器22,23及び比例バイアス設定器24
によって信号配分を行い、圧力調節弁4,5の操作信号
としている。
Note that after the pressure regulating valve 4 reaches 100% opening, the pressure regulating valve 4 remains fully open as the signal increases. Further, a butterfly valve is generally used as the pressure regulating valve, and the control characteristics of this valve, that is, the Cv value curve, exhibits an S-shape. Therefore, by installing two pressure regulating valves in parallel and selecting the bias setting appropriately, it is possible to expand the range of the combined Cv value that is close to a straight line, and this range is called the range with good controllability. There is. Furthermore, as mentioned above, FIG. 2 is a graph showing the opening characteristics of the pressure regulating valve, and the signal level of the shaft corresponds to the output signal of the pressure regulator 18, and this signal is transmitted to the signal controller 22. , 23 and proportional bias setter 24
The signals are distributed as operation signals for the pressure regulating valves 4 and 5.

すなわち、第2図は、圧力調節計18の出力信号レベル
に対応する弁関度を縦軸にとった圧力調節弁の関度特性
を示すものである。
That is, FIG. 2 shows the relationship characteristics of the pressure regulating valve, with the valve relationship corresponding to the output signal level of the pressure regulator 18 taken on the vertical axis.

従って、圧力調節計18の出力を信号制御器22,23
に接続して圧力調節弁25,26の操作信号とすること
は問題がない。本発明の制御方法によれば、タービント
リップなどの外乱により炉頂圧がわずかに上昇したとき
に、応答の早いかつ利得の高い第2圧力調節計の出力信
号によりレンジ調整弁の関度を増大させ、緊急遮断弁に
よりタービンへの供給を遮断された排ガス流量を圧力調
節弁に速かに流すようにしたから、タービントリップ時
等の炉頂圧の異常上昇を防止することができる。
Therefore, the output of the pressure regulator 18 is controlled by the signal controllers 22 and 23.
There is no problem in connecting the pressure control valves 25 and 26 to the pressure control valves 25 and 26 as operation signals. According to the control method of the present invention, when the top pressure of the furnace rises slightly due to a disturbance such as a turbine trip, the output signal of the second pressure regulator, which has a quick response and a high gain, increases the range control valve. Since the flow rate of the exhaust gas whose supply to the turbine has been cut off by the emergency shutoff valve is quickly made to flow to the pressure control valve, it is possible to prevent an abnormal rise in the furnace top pressure at the time of a turbine trip or the like.

また平常時はこの第2圧力調節計による制御系は分離さ
れて機能しないから、本来の炉頂圧制御系の安定性を損
うことがない。
In addition, since the control system using the second pressure regulator is separated and does not function in normal times, the stability of the original furnace top pressure control system is not impaired.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、第1図は制御系を示すダイ
ヤグラム、第2図は圧力調節弁の関度の特性を示すグラ
フ、第3図はしンジ調整弁の信号特性を示すグラフであ
る。 1…・・・高炉、4,5・・・・・・圧力調節弁、6・
・・・・・レンジ調整弁、7・・・・・・タービン、8
・・・・・・発電機、10……緊急遮断弁、11……調
速弁、16,I6′・・・・・・炉頂圧力発信器、18
・・・・・・第1圧力調節計、25,26……リミット
スイッチ、27……リレーボックス、28……電動機駆
動信号発生器、29・・・・・・信号高位選択器、30
・・・…第2圧力調節計、31・・・・・・手動設定器
、32・・・・・・バイアス設定器。 第2図 第3図 図 蛇
The figures show an embodiment of the present invention, Fig. 1 is a diagram showing the control system, Fig. 2 is a graph showing the relationship characteristics of the pressure regulating valve, and Fig. 3 is a graph showing the signal characteristics of the pressure regulating valve. It is. 1... Blast furnace, 4, 5... Pressure control valve, 6.
... Range adjustment valve, 7 ... Turbine, 8
... Generator, 10 ... Emergency shutoff valve, 11 ... Speed control valve, 16, I6' ... Furnace top pressure transmitter, 18
......First pressure regulator, 25, 26...Limit switch, 27...Relay box, 28...Motor drive signal generator, 29...Signal high level selector, 30
...Second pressure regulator, 31...Manual setting device, 32...Bias setting device. Figure 2 Figure 3 Snake

Claims (1)

【特許請求の範囲】[Claims] 1 高炉の排ガス経路に炉頂圧を調節するための圧力調
節弁とレンジ調整弁および排ガスエネルギを回収するた
めのタービンを並列に配設し、さらにタービンの供給側
に緊急遮断弁および調速弁を設け、高炉の炉頂圧に応じ
た圧力調節計の出力信号により前記圧力調節弁、レンジ
調整弁および調速弁を制御して、高炉排ガスエネルギを
回収しながら炉頂圧を制御する方法において、前記圧力
調節計に並列に別の第2圧力調節計を配設し、且つ当該
第2圧力調節計を信号高位選択器を介して前記レンジ調
整弁に接続し、該第2圧力調節計の設定値を前記圧力調
節計の設定値よりもわずかに高くかつ高利得に設定して
、炉頂圧が平常時よりもわずかに上昇したときに、該第
2圧力調節計からの出力信号を高位選択器で選択してレ
ンジ調整弁を制御することを特徴とする高炉排ガスエネ
ルギー回収プラントの制御方法。
1 A pressure control valve and a range control valve for adjusting the furnace top pressure and a turbine for recovering exhaust gas energy are arranged in parallel in the exhaust gas path of the blast furnace, and an emergency shutoff valve and a speed control valve are installed on the supply side of the turbine. In the method of controlling the furnace top pressure while recovering the blast furnace exhaust gas energy by providing a , disposing another second pressure regulator in parallel with the pressure regulator, and connecting the second pressure regulator to the range adjustment valve via a signal high level selector, The set value is set slightly higher than the set value of the pressure regulator and has a high gain, and when the furnace top pressure rises slightly from normal, the output signal from the second pressure regulator is set to a high level. A method for controlling a blast furnace exhaust gas energy recovery plant, characterized in that a selection is made using a selector and a range adjustment valve is controlled.
JP53010539A 1978-02-03 1978-02-03 Control method for blast furnace exhaust gas energy recovery plant Expired JPS6025609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53010539A JPS6025609B2 (en) 1978-02-03 1978-02-03 Control method for blast furnace exhaust gas energy recovery plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53010539A JPS6025609B2 (en) 1978-02-03 1978-02-03 Control method for blast furnace exhaust gas energy recovery plant

Publications (2)

Publication Number Publication Date
JPS54103916A JPS54103916A (en) 1979-08-15
JPS6025609B2 true JPS6025609B2 (en) 1985-06-19

Family

ID=11753058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53010539A Expired JPS6025609B2 (en) 1978-02-03 1978-02-03 Control method for blast furnace exhaust gas energy recovery plant

Country Status (1)

Country Link
JP (1) JPS6025609B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994672B (en) * 2012-11-30 2014-11-26 武汉钢铁(集团)公司 Automatic control method for top pressure of TRT (blast furnace top gas recovery turbine unit) system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498412A (en) * 1978-01-19 1979-08-03 Kawasaki Heavy Ind Ltd Reactor gas energy recovering electric/power generation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498412A (en) * 1978-01-19 1979-08-03 Kawasaki Heavy Ind Ltd Reactor gas energy recovering electric/power generation system

Also Published As

Publication number Publication date
JPS54103916A (en) 1979-08-15

Similar Documents

Publication Publication Date Title
JP3081215B2 (en) Apparatus and method for controlling gas turbine engine
US4067557A (en) System for changing over of blast furnace top pressure control
JPS6025609B2 (en) Control method for blast furnace exhaust gas energy recovery plant
US5960624A (en) Process for regulating gas pressures of catalyst regenerator expansion turbines
JPS628605B2 (en)
JPH11153003A (en) Turbine control device
JPS6054365B2 (en) How to operate a blast furnace blower
JPS623283B2 (en)
JPS6033982B2 (en) Turbine plant control device
JPH0326804A (en) Steam turbine controller
SU819497A1 (en) System for regulating steam outside of boiler
JPS5818506A (en) Method of controlling operation of boiler turbine under variable pressure
JPH08232606A (en) Turbine ground steam pressure controller
JPS6120683B2 (en)
JPH0631285Y2 (en) Combustion control device
JPH10238309A (en) Initial pressure regulator of steam turbine
JPH073185B2 (en) Exhaust gas pressure recovery turbine bypass valve control method
JPS5825503A (en) Automatic valve selector device of steam turbine
JPS629643B2 (en)
JPH0781700B2 (en) Furnace pressure control method
JPS5950856B2 (en) Operation control method for blast furnace gas energy recovery power generation equipment
JPH0314884B2 (en)
JPH0850195A (en) Reactor pressure rise preventing device at load interruption
JPS6357802A (en) Control device for expansion turbine
JPS6239654B2 (en)