JPS60256001A - Shape detecting apparatus - Google Patents
Shape detecting apparatusInfo
- Publication number
- JPS60256001A JPS60256001A JP11235484A JP11235484A JPS60256001A JP S60256001 A JPS60256001 A JP S60256001A JP 11235484 A JP11235484 A JP 11235484A JP 11235484 A JP11235484 A JP 11235484A JP S60256001 A JPS60256001 A JP S60256001A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- rotor
- gap
- heat
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
- B21B38/02—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、圧延板の表面形状を検出する形状検出器に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a shape detector for detecting the surface shape of a rolled plate.
[従来の技術]
圧延板の形状検出方法の一つとして、中空多分割ロール
法が知られている。即ち、第1図に示すように、中空状
の軸a上に、該軸a外周との闇に所要のギャップbを形
成するよう多分割した中空のロータCを回転自在に嵌装
すると共に、軸aの周方向に多数の噴流孔dを穿設して
、軸a内より各噴流孔dを介し空気を噴出させることに
よって、前記ギャップbにより所謂エアベアリングを形
成し、更に軸aには、各ロータCに対応した上下位置に
夫々空気圧測定孔e、eを設け、且つ該空気圧測定孔e
、eには、外部に設置した空電変換器に連結した配管f
、fの端を軸a内に導入して接続し、各ロータCの外周
を走行する板形状によりギャップわが変化するとその変
化が空気圧の変化として上下の空気圧測定孔e、e 、
配管f、fを介し空電変換器に送られ、ここで電気的な
値に変換されて板形状が検出されるよう−にしたもので
ある。[Prior Art] A hollow multi-segmented roll method is known as one of the methods for detecting the shape of a rolled plate. That is, as shown in FIG. 1, a hollow rotor C, which is divided into multiple parts so as to form a required gap b between the outer periphery of the shaft a, is rotatably fitted on a hollow shaft a, and By drilling a large number of jet holes d in the circumferential direction of the shaft a and jetting air from inside the shaft a through each jet hole d, a so-called air bearing is formed by the gap b. , air pressure measurement holes e, e are provided at the upper and lower positions corresponding to each rotor C, and the air pressure measurement hole e
, e is a pipe f connected to an external static converter.
, f are connected by introducing them into the shaft a, and when the gap changes due to the shape of the plate running around the outer periphery of each rotor C, that change is reflected as a change in air pressure through the upper and lower air pressure measurement holes e, e,
It is sent to a pneumatic converter via pipes f and f, where it is converted into an electrical value and the plate shape is detected.
しかしながら、斯かる中空多分割ロール洗を用いた形状
検出器においては、ロータQが金属製であるため、圧延
板から熱を受けると熱膨張によりギャップbやロータC
,C間の隙間が変化したり、或いは空気の供給圧が僅か
に変化しても、検出された圧力に誤差が生じ正確な形状
検出ができず、安定性に問題があった。However, in a shape detector using such hollow multi-split roll cleaning, the rotor Q is made of metal, so when it receives heat from the rolled plate, it expands due to the gap b and the rotor C.
, C or even if the air supply pressure changes slightly, an error occurs in the detected pressure, making it impossible to accurately detect the shape, resulting in a stability problem.
特にエアベアリングを形成する場合、ロータC(7)内
外径をそt’L−Fれ300xm、350mm程度に、
ロータCの幅を75u+程度としたとき、ロータCと軸
a闇のギャップbは0.075u程度、ロータC,C間
の隙間は0.15m5程度を保つ必要がある。In particular, when forming an air bearing, the inner and outer diameters of rotor C (7) should be approximately 300xm and 350mm.
When the width of the rotor C is about 75u+, the gap b between the rotor C and the axis a needs to be about 0.075u, and the gap between the rotors C and C needs to be about 0.15m5.
今1800+am幅の軸a上に0−タCを装着するとき
、24個のロータCが装着されるが、このとき、ロータ
C,C間の隙間の合計を1.0−一程度以内にしないと
、〇−タCの安定性が悪くなる。ところで、このような
精度の厳しいエアベアリングを形成する必要があるのに
、ロータCが鉄系の金属であると、その線膨張係数αは
1,28 X、10−5程度である。従ってロータCの
温度が40’C上昇するとロータCの幅方向の熱膨張量
δWは6W = α−W−fl −1,28X10i
X75X40−0.0384 an、 24個分で0.
921gv程度になり、結局〇−タC,C間の隙間がな
くなり、エアベアリングを構成しないことになる。ギャ
ップbは40℃の温度上昇で−1x 300x 1,2
8 X10′5x40−0.07685mも膨らむから
、温度上昇が検出精度に与える影響はとても大きい。Now, when the 0-tor C is installed on the shaft a with a width of 1800+ am, 24 rotors C are installed, but at this time, the total gap between the rotors C and C must not be less than about 1.0-1. Then, the stability of 〇-ta C becomes worse. By the way, although it is necessary to form such an air bearing with strict precision, if the rotor C is made of iron-based metal, its linear expansion coefficient α is about 1.28×10 −5 . Therefore, when the temperature of rotor C increases by 40'C, the amount of thermal expansion δW in the width direction of rotor C is 6W = α-W-fl -1, 28X10i
X75X40-0.0384 an, 0.0 for 24 pieces.
It becomes about 921 gv, and the gap between ○-ta C and C disappears, and an air bearing is not formed. Gap b is -1x 300x 1,2 with temperature rise of 40℃
Since it expands by 8 x 10'5 x 40 - 0.07685 m, the effect of temperature rise on detection accuracy is very large.
そこでロータCと軸8間のギャップbをインピーダンス
変化やりアクタンス変化で検出することも考えられが、
特に渦電流を利用した変位計などでは、ロータCが金属
ででさていると偏心や硬度のむらがインピーダンスやリ
アクタンスに影響を及ぼすし、またロータCを介した変
位計相互の干渉を誘起しやすいものとなる。Therefore, it is possible to detect the gap b between the rotor C and the shaft 8 by impedance change or actance change.
Especially in displacement meters that use eddy currents, if the rotor C is made of metal, eccentricity and uneven hardness will affect impedance and reactance, and the displacement meters are likely to interfere with each other via the rotor C. becomes.
[発明が解決しようとする問題点]
本発明は斯かる実情に鑑み、形状検出を安定して行える
ようにしたものである。[Problems to be Solved by the Invention] In view of the above circumstances, the present invention is designed to stably perform shape detection.
[問題点を解決するための手段]
本発明の形状検出器は、軸上に、空気の吹出しによって
該軸外周との間のギャップが保持されるよう耐熱性を有
する非磁性体から成る中空多分割ロータを嵌装し、且該
各ロータ内面には良導体を設けると共に、前記軸にはイ
ンピーダンス変化を利用した変位計を設け、該変位計の
出力により板形状を検出し得るようにした構成を有する
。[Means for Solving the Problems] The shape detector of the present invention has a hollow polygon made of a heat-resistant non-magnetic material on the shaft so that a gap between the shaft and the outer periphery is maintained by blowing air. A split rotor is fitted, a good conductor is provided on the inner surface of each rotor, and a displacement meter that utilizes impedance change is installed on the shaft, and the plate shape can be detected by the output of the displacement meter. have
[実 施 例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.
第2図及び第3図に示す如く、中空状の固定軸1上に、
該軸1外周との間に所要のギャップ2を形成するよう、
耐熱性を有する非磁性体から成る中空多分割ロータ3を
回転自在にw!装すると共に、軸1の周方向に多数の噴
流孔4を穿設して軸1内に圧送した空気を各噴流孔4か
ら吹出させて前記ギャップ2によりエアベアリングを形
成し、且つ前記各ロータ3の内面に良導体5を設番プ、
又軸1の上下位置にはインピーダンス変化を利用した渦
電流方式の変位計6,6を取付け、該変位計6,6に接
続した配線7を演算M8に導き、該演算!i8に表示器
9を接続する。As shown in FIGS. 2 and 3, on a hollow fixed shaft 1,
To form a required gap 2 between the outer periphery of the shaft 1,
The hollow multi-segmented rotor 3 made of heat-resistant non-magnetic material can be rotated freely lol! At the same time, a large number of jet holes 4 are bored in the circumferential direction of the shaft 1, and air forced into the shaft 1 is blown out from each jet hole 4 to form an air bearing with the gap 2, and each of the rotors A good conductor 5 is installed on the inner surface of 3.
Also, eddy current type displacement meters 6, 6 that utilize impedance changes are attached to the upper and lower positions of the shaft 1, and the wiring 7 connected to the displacement meters 6, 6 is led to the calculation M8, and the calculation! Connect the display device 9 to the i8.
尚、前記ロータ3には、例えば硬度むら、温度変化の少
ないカーボンファイバー等の炭素繊維を使用した耐熱性
を有する非磁性材樹脂の採用が好ましい。又良導体5と
しては、銅、アルミニウム、金属を採用し得、M!1、
メッキ、挿入嵌設、貼付は等によって設けることができ
る。For the rotor 3, it is preferable to use a non-magnetic resin having heat resistance, for example, using carbon fiber such as carbon fiber with little unevenness in hardness and little temperature change. As the good conductor 5, copper, aluminum, or metal can be used, and M! 1,
It can be provided by plating, inserting, pasting, etc.
尚、厚みは0.11程度でよい。Note that the thickness may be about 0.11.
斯かる構成とした形状検出器を第4図に示でように、圧
延1110から出た圧延板11に対し所要の押付力で接
触させると、圧延板11の表面形状を検出することがで
きる。即ち、圧延板11の表面形状が平坦である時は各
ロータ3と軸1との間のギャップ2は一定に保持されて
いるが、平坦でない場合には、その凸部がロー93を部
分的に押下げる。ロータ3が押下げられると、その部分
のギャップ2が変化し、これに基づいて変位計6,6と
良導体5との間でインピーダンスが変化し発生する渦電
流が変化する。従って、その値が演算器8へ送られ、演
算結果が圧延板11の幅方向板形状として表示器9に送
られ表示される。この場合、上部の変位計6だけでもギ
ャップ2の変化を測定できるが、上下の変位計6.6を
用いることにより相対差が解るので更に精度がよくなる
。When the shape detector thus configured is brought into contact with the rolled plate 11 coming out of the rolling mill 1110 with a required pressing force as shown in FIG. 4, the surface shape of the rolled plate 11 can be detected. That is, when the surface shape of the rolled plate 11 is flat, the gap 2 between each rotor 3 and the shaft 1 is maintained constant, but when the surface shape is not flat, the convex portion partially covers the row 93. Press down. When the rotor 3 is pushed down, the gap 2 at that portion changes, and based on this, the impedance changes between the displacement gauges 6, 6 and the good conductor 5, and the generated eddy current changes. Therefore, the value is sent to the calculator 8, and the calculation result is sent to the display 9 and displayed as the shape of the rolled plate 11 in the width direction. In this case, the change in the gap 2 can be measured using only the upper displacement meter 6, but by using the upper and lower displacement meters 6.6, the relative difference can be determined, and the accuracy is further improved.
前記において、各ロータ3はカーボンファイバー等の耐
熱性を有する非磁性体で形成されているので、圧延板1
1からの熱影響は殆どなく、又良導体5は熱を受けても
誘磁率には変化がなく、更に空気の送給圧が若干変化し
たとしても、ギャップ2の測定に空気圧を利用していな
いので、検出値が正確に安定して得られる。In the above, since each rotor 3 is made of a heat-resistant non-magnetic material such as carbon fiber, the rolled plate 1
There is almost no thermal influence from 1, and the permittivity of good conductor 5 does not change even if it receives heat, and even if the air supply pressure changes slightly, air pressure is not used to measure gap 2. Therefore, detected values can be obtained accurately and stably.
第5図は本発明の他の実施例を示すもので、前記実施例
では良導体5をロータ3の内周全面に設けたが、該実施
例では、全面に適宜間隔位置に不感体12(切欠き部)
を形成させたものである。尚、不感帯12の長さは、変
位計6.6の径の3倍程度が好ましい。FIG. 5 shows another embodiment of the present invention. In the embodiment described above, a good conductor 5 was provided on the entire inner circumference of the rotor 3, but in this embodiment, insensitive members 12 (cuts) were provided on the entire surface at appropriate intervals. notch)
is formed. Note that the length of the dead zone 12 is preferably about three times the diameter of the displacement meter 6.6.
この方式の場合には、インピーダンス、リアクタンス等
の変化をトリガーにして絶対位置におけるギャップ2を
測定することができる。即ち、不感帯12の位置を基準
にt秒後のロータ3の測定位置を決めることができる。In the case of this method, the gap 2 at the absolute position can be measured using a change in impedance, reactance, etc. as a trigger. That is, the measurement position of the rotor 3 after t seconds can be determined based on the position of the dead zone 12.
このようにして形状を検出することにより、例えば、製
作時にロータ3に偏心があったとしても、該偏心の影響
を取除くことができる。By detecting the shape in this manner, for example, even if the rotor 3 is eccentric during manufacturing, the influence of the eccentricity can be removed.
前記において、ロータ3に炭素繊維を使用した非磁性材
樹脂を使用する場合、その表面に炭素繊維が露出してい
ると圧延板に傷をつける恐れがあるので、例えばクロム
メッキ等をほどこす必要がある。又、炭素繊維を例えば
エポキシ樹脂に含ませた場合、比重量は2000kM−
程度に出来るので鉄系のロータに比べ約2/7程度の軽
いロータとすることが出来る。あるいは、空気の供給圧
を一定とすれば耐負荷の大きいエアベアリングとするこ
とが出来る。In the above, when using a non-magnetic resin containing carbon fibers for the rotor 3, if the carbon fibers are exposed on the surface, there is a risk of damaging the rolled plate, so it is necessary to apply chrome plating, etc., for example. There is. Also, when carbon fiber is included in epoxy resin, for example, the specific weight is 2000 km-
Since the weight can be reduced to about 100%, it is possible to make a rotor that is about 2/7 lighter than an iron-based rotor. Alternatively, if the air supply pressure is kept constant, an air bearing with high load resistance can be obtained.
尚、本発明は前記実施例にのみ限定されるものではなく
、本発明の要旨を逸脱しない限り種種変更を加え得るこ
とは勿論である。It should be noted that the present invention is not limited only to the above-mentioned embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.
[発明の効果]
以上説明したように、本発明の形状検出器によれば、圧
延板からの熱影響や空気圧の変動等の影響を受けること
なく、正確に安定した形状検出を行うことができる、と
言う優れた効果を奏し得る。[Effects of the Invention] As explained above, according to the shape detector of the present invention, accurate and stable shape detection can be performed without being influenced by heat from a rolled plate or fluctuations in air pressure. , it can produce excellent effects.
第1図は中空多分割ロール法を用いた従来の形状検出器
の説明図、第2図は本発明の形状検出器の一部を破断し
て示す説明図、第3図は本発明の形状検出器の断面図、
第4図は使用状態説明図、第5図は本発明の他の実施例
の断面図である。
1は軸、2はギャップ、3はロータ、4は噴流孔、5は
良導体、6は変位計、11は圧延板、12は不感帯を示
す。
特 許 出 願 人
石川島播磨重工業株式会社
第2図
第4図 第5図Fig. 1 is an explanatory diagram of a conventional shape detector using the hollow multi-segmented roll method, Fig. 2 is an explanatory diagram showing a partially broken shape detector of the present invention, and Fig. 3 is an explanatory diagram of the shape detector of the present invention. Cross-sectional view of the detector,
FIG. 4 is an explanatory diagram of the state of use, and FIG. 5 is a sectional view of another embodiment of the present invention. 1 is a shaft, 2 is a gap, 3 is a rotor, 4 is a jet hole, 5 is a good conductor, 6 is a displacement gauge, 11 is a rolled plate, and 12 is a dead zone. Patent application Hitoshi Kawajima Harima Heavy Industries Co., Ltd. Figure 2 Figure 4 Figure 5
Claims (1)
ャップが保持されるよう耐熱性を有する非磁性体から成
る中空多分割ロータを嵌装し、且つ該各ロータ内面に良
導体を設けると共に、前記軸にインピーダンス変化を利
用した変位計を設け、該変位計の出力により板形状を検
出し得るよう構成したことを特徴どする形状検出器。1) A hollow multi-segmented rotor made of heat-resistant non-magnetic material is fitted on the shaft so that a dark gap with the outer periphery of the shaft is maintained by blowing air, and a good conductor is provided on the inner surface of each rotor. A shape detector, further comprising: a displacement meter that utilizes impedance change provided on the shaft, and a plate shape that can be detected by the output of the displacement meter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11235484A JPS60256001A (en) | 1984-06-01 | 1984-06-01 | Shape detecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11235484A JPS60256001A (en) | 1984-06-01 | 1984-06-01 | Shape detecting apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60256001A true JPS60256001A (en) | 1985-12-17 |
Family
ID=14584593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11235484A Pending JPS60256001A (en) | 1984-06-01 | 1984-06-01 | Shape detecting apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60256001A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997015409A1 (en) * | 1995-10-24 | 1997-05-01 | Davy Mckee (Poole) Limited | A rotor for a shapemeter |
-
1984
- 1984-06-01 JP JP11235484A patent/JPS60256001A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997015409A1 (en) * | 1995-10-24 | 1997-05-01 | Davy Mckee (Poole) Limited | A rotor for a shapemeter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6606919B2 (en) | Flatness measuring roller | |
US7909676B2 (en) | Independent measuring apparatus for grinding machines | |
US8281671B2 (en) | Load measuring device, manufacturing method for the device and control method using the device | |
JPH0811028A (en) | Method and device for assembling bearing with tapered hole | |
US4939936A (en) | Shapemeter | |
US4024755A (en) | Deflector roll for measuring and checking the flatness of sheet metal stretched in motion | |
JPS60256001A (en) | Shape detecting apparatus | |
JP2584922Y2 (en) | Shape detector | |
KR100237241B1 (en) | Strip shape detecting apparatus | |
JP3682027B2 (en) | Motor core inner diameter measuring apparatus and method | |
US4157039A (en) | Detection of the temperature of sheet or strip material | |
JP3584273B2 (en) | Film thickness measurement method | |
KR100217854B1 (en) | Measuring method and apparatus for length of steel plate | |
SU884766A1 (en) | Apparatus for monitoring strip planeness at rolling | |
WO1987005836A1 (en) | Shapemeter | |
JP2001289006A (en) | Cat back deformed variable measuring method for turbine casing | |
JPS5782742A (en) | Monitoring device for bearing | |
US5983707A (en) | Rotor for a shapemeter | |
JP3512227B2 (en) | Shape measuring roller | |
JPH0462001B2 (en) | ||
JPH10300596A (en) | Measuring method for tension distribution of sheet material | |
JPH05141905A (en) | Shape measuring device for metal strip | |
JPS63225105A (en) | Measurement of profile of non-conductive roll | |
WO1994027753A1 (en) | Improvements in and relating to apparatus for measuring rolled strip | |
CA1265940A (en) | Procedure and means for measuring the transversal distribution of tension in a web |