JPS60255669A - Manufacture of composite carbon material containing silicon carbide and titanium group element carbide - Google Patents

Manufacture of composite carbon material containing silicon carbide and titanium group element carbide

Info

Publication number
JPS60255669A
JPS60255669A JP59112390A JP11239084A JPS60255669A JP S60255669 A JPS60255669 A JP S60255669A JP 59112390 A JP59112390 A JP 59112390A JP 11239084 A JP11239084 A JP 11239084A JP S60255669 A JPS60255669 A JP S60255669A
Authority
JP
Japan
Prior art keywords
silicon
carbide
carbon material
titanium
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59112390A
Other languages
Japanese (ja)
Other versions
JPH0227304B2 (en
Inventor
井澤 一
一弘 辻
建人 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Cement Co Ltd filed Critical Osaka Cement Co Ltd
Priority to JP59112390A priority Critical patent/JPS60255669A/en
Publication of JPS60255669A publication Critical patent/JPS60255669A/en
Publication of JPH0227304B2 publication Critical patent/JPH0227304B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、高温材料、耐摩耗材あるいは耐薬品材等とし
て各種の産業分野において利用され得る炭化ケイ素、チ
タン族元素炭化物を含む複合炭素材料の製造方法に関す
るものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a composite carbon material containing silicon carbide and titanium group element carbide that can be used in various industrial fields as a high-temperature material, wear-resistant material, chemical-resistant material, etc. The present invention relates to a manufacturing method.

(ロ)背景説明 この種炭化ケイ素およびチタン族元素炭化物(炭化チタ
ン、炭化ジルコニウム等)を含む複合炭素材料は、炭化
ケイ素およびチタン族元素炭化物のもつ優れた耐熱性、
耐摩耗性、耐薬品性に加え1強度的にも5優れているこ
とから、任意の形状のものが得られることを条件に、高
温材料、耐摩耗材あるいは耐薬品材として、さらに、炭
素材料の強度補強手段の1つなどとしても、産業上広く
利用される可能性がある。: ところで、−F記の炭化物特にチタン族元素炭化物では
、チタンやジルコニウムが高融点金属であるためその炭
化物をつくること自体に困難を伴うものでもあるが、こ
のiの炭化物が非常に硬くてもろいものであることから
加工成形が非常に困難で、それ故従来この種炭化物を含
む材料を得ようとする場合、その炭化物粉末等を出発原
料として成形する焼結法に依存しなければならなかった
(b) Background explanation This type of composite carbon material containing silicon carbide and titanium group element carbides (titanium carbide, zirconium carbide, etc.) has excellent heat resistance and
Since it has excellent strength as well as abrasion resistance and chemical resistance, it can be used as a high-temperature material, wear-resistant material, or chemical-resistant material, provided that it can be made into any shape. There is a possibility that it will be widely used industrially as one of the strength reinforcing means. : By the way, it is difficult to make carbides in -F, especially titanium group element carbides, because titanium and zirconium are high melting point metals, but carbides in i are very hard and brittle. It is very difficult to process and mold it because it is a substance, and therefore, conventionally when trying to obtain materials containing this type of carbide, it was necessary to rely on a sintering method that molds the carbide powder etc. as a starting material. .

しかるに、一般に金属炭化物は難焼結性であり、その焼
結には適宜の焼結助剤の添加を必要とするが、この助剤
が炭化物特性に悪影響を及ぼすため焼結法では良質のも
のが得られない不都合を来たしている。また、焼結晶で
はやはりその形状や大きさに融通性を欠くことがあるし
、焼結晶を加工して任意の形状に仕上げることも勿論困
難である。
However, metal carbides are generally difficult to sinter, and their sintering requires the addition of an appropriate sintering aid, but since this aid has a negative effect on the properties of the carbide, the sintering method is difficult to sinter. This is causing the inconvenience of not being able to get it. Furthermore, baked crystals sometimes lack flexibility in shape and size, and it is of course difficult to process baked crystals into any desired shape.

(ハ)目的 本発明は、このような事情に着目してなされたもので、
前述のように今後益々その利用価値が高まるものと予想
される炭化ケイ素、チタン族元素炭化物および炭素より
なる複合炭素材料を得るための有益な製造方法として、
前記焼結法のような既知のものに代り得る好適なものを
提供することを目的としている。
(c) Purpose The present invention was made with attention to such circumstances,
As mentioned above, as a useful manufacturing method for obtaining a composite carbon material consisting of silicon carbide, titanium group element carbide, and carbon, whose utility value is expected to increase in the future,
The object is to provide a suitable alternative to known sintering methods.

(ニ)構成 本発明は、このような目的を達成するために鋭意研究を
重ねた結果、炭素材料を含ケイ素材および含チタン族元
素材と共に、前記含ケイ素材の融点以上の高温における
酸素の影響を受けない不活性雰囲気中に配置し、前記含
ケイ素材を前記炭素材料に浸透反応させて炭化ケイ素を
生成するとともに、この炭化ケイ素の生成反応熱を利用
して前記含チタン族元素材を前記炭素材料に浸透反応さ
せて、炭化ケイ素、チタン族元素炭化物および炭素より
なる材料を得ることを特徴とするこの種複合炭素材料の
製造方法を確立するに至ったものである。
(D) Structure As a result of extensive research to achieve the above object, the present invention has been developed to provide a carbon material, together with a silicon-containing material and a titanium-containing element material, in the presence of oxygen at a high temperature equal to or higher than the melting point of the silicon-containing material. Placed in an unaffected inert atmosphere, the silicon-containing material permeates and reacts with the carbon material to produce silicon carbide, and the heat of reaction of the silicon carbide formation is used to generate the titanium-containing element material. A method for producing this type of composite carbon material has been established, which is characterized in that a material made of silicon carbide, titanium group element carbide, and carbon is obtained by subjecting the carbon material to a permeation reaction.

すなわち、本発明の製造方法では、所望の形状に成形し
た炭素材料に、含ケイ素材および含チタン族元素材を付
着あるいは接触させ、これを含ケイ素材の融点以上の高
温における酸素の影響を受けない不活性な雰囲気中に配
置するようにする。
That is, in the manufacturing method of the present invention, a silicon-containing material and a titanium-containing element material are attached to or in contact with a carbon material molded into a desired shape, and this is exposed to the influence of oxygen at a high temperature above the melting point of the silicon-containing material. Make sure to place it in a non-inert atmosphere.

すると、まず融点の低い含ケイ素材(ケイ素;約141
0℃)が溶融し、この溶融含ケイ素材が炭素材料の空隙
中に浸透して行き、そこで炭素と炭化ケイ素を生成する
反応を開始することになる。
Then, first, a silicon-containing material with a low melting point (silicon; approximately 141
0° C.), and this molten silicon-containing material penetrates into the voids of the carbon material, where it starts a reaction that produces carbon and silicon carbide.

しかるに、この際に起こる炭化ケイ素の生成反応は、大
きな熱量を放出する発熱反応であって、この反応開始と
同時に炭素材料の湿度が高められ。
However, the silicon carbide production reaction that occurs at this time is an exothermic reaction that releases a large amount of heat, and the humidity of the carbon material is increased at the same time as this reaction starts.

ケイ素の反応量によっても異なる示、この含ケイ素材の
炭素材料への浸透反応によって、炭素材料の温度を雰囲
気温度からさらに数百度上昇することができる。しかし
て、この炭素材料の昇温により、その表面の高い融点を
有する含チタン族元素材(チタン;約1730℃、ジル
コニウム;約1860℃)が溶融されると、この溶融含
チタン族元素材がやはり炭素材料の空隙中に浸透して行
き、そこで炭素と反応してチタン族元素炭化物を生成す
ることになる。なお、このチタン族元素炭化物の生成反
応も発熱反応で゛あって、この反応が開始すると炭素材
料の温度がさらに上昇し、これが溶融含ケイ素材および
溶融含チタン族元素材の粘度を低下して、これら溶融金
属の炭素材料に対する侵透反応を一層促進するものとな
る。ちなみに、炭素に対するケイ素、チタンおよびジル
コニウムの各反応式波びにそのさいの生成反応熱を示す
と、次のとうりである。
The temperature of the carbon material can be raised several hundred degrees above the ambient temperature due to the reaction of the silicon-containing material penetrating the carbon material, which varies depending on the amount of silicon reacted. When the titanium-containing element material having a high melting point on the surface (titanium: approximately 1,730°C, zirconium: approximately 1,860°C) is melted by increasing the temperature of this carbon material, this molten titanium-containing element material It also penetrates into the voids of the carbon material, where it reacts with carbon to produce titanium group element carbides. Note that this reaction for producing titanium group element carbides is also an exothermic reaction, and once this reaction starts, the temperature of the carbon material further increases, which lowers the viscosity of the molten silicon-containing material and the molten titanium group element material. , which further promotes the penetration reaction of these molten metals into the carbon material. Incidentally, the heat of reaction produced in each reaction equation of silicon, titanium, and zirconium with respect to carbon is shown as follows.

C+Si+SiCΔ)I ”、 = −73,2Kj/
■O1C十Ti−+TiCΔH@号= −184,I 
Kj/ molC+ Zr+ ZrCΔH@5= −,
1[1,8Kj/ molかくして、反応完了後におい
ては、元の炭素材料はその空隙中に反応生成した炭化ケ
イ素およびチタン族元素炭化物と未反応の炭素とを含有
してなる複合炭素材料に改質される。
C+Si+SiCΔ)I”, = −73,2Kj/
■O1C Ti−+TiCΔH@= −184,I
Kj/ molC+ Zr+ ZrCΔH@5= −,
1[1.8Kj/mol] Thus, after the reaction is completed, the original carbon material is transformed into a composite carbon material containing reacted silicon carbide and titanium group element carbides and unreacted carbon in its voids. questioned.

この方法では、基材とする炭素材料の空隙中に含ケイ素
材および含チタン族元素材が浸透反応し、炭化ケイ素お
よびチタン族元素炭化物を生成するものであるため、元
の炭素材料に対し反応によって得られる複合炭素材料が
略同形状を保つ特徴を有する。したがって、あらかじめ
元の炭素材料を所望の形状に形成しておけば、任意の形
状をもつ複合炭素材料が簡単に得られる。
In this method, the silicon-containing material and the titanium group element material permeate into the pores of the carbon material used as the base material and react to generate silicon carbide and titanium group element carbide, so there is no reaction with the original carbon material. The composite carbon material obtained by this method has the characteristic that it maintains approximately the same shape. Therefore, by forming the original carbon material into a desired shape in advance, a composite carbon material having an arbitrary shape can be easily obtained.

また、この方法\εは、元の炭素材料のもつ空隙率をl
i1節したり、反応させる含ケイ素材および含チタン族
元素材の量あるいは配合比を調節することにより、jに
素材料の複合化する厚さを任意に調節すること(全体を
均一に複合化したりあるいは表面層のみを複合化するこ
と)も客易になし得るし、またその複合化部分の組成を
制御することも可能である。
In addition, this method \ε reduces the porosity of the original carbon material to l
By adjusting the amount or blending ratio of the silicon-containing material and the titanium-containing element material to be reacted, the thickness of the material to be composited can be arbitrarily adjusted (to uniformly composite the entire material). (or only the surface layer) can be easily made, and it is also possible to control the composition of the composite part.

本発明において、炭素材料としては、一般の炭素材料な
らどのようなものでも使用できる。また、含ケイ素材・
・および含チタン族元素材としては、それらの純金属ま
たはそれらの合金類が使用できる。そして、炭素材料に
含ケイ素材および含チタン族元素材を浸透反応させるに
あたっては、例えば、粉末状の含ケイ素材および含チタ
ン族元素材を適当なバインダあるいは溶剤に分散させた
ものを炭素材料の表面に付着あるいは塗布しておく。ま
た、炭素材料が比較的小さなものである場合は、小塊状
の舎ケイ素材および含チタン族元素材を炭素材料に載せ
ておくだけでもよい、このように含ケイ素材および含チ
タン族元素材の炭素材料に対する初期の接触様態は、炭
素材料の形状や大きさに合わせて適宜選択する。一方、
前述した浸透反応を行なわせるための雰囲気作りは、通
常の高温加熱装置を用いればよい。十なわち、かかる加
熱装置としては、炉内の雰囲気を酸素あ影響を受けない
不活性な状態(例え′f、アルゴン、ヘリウム等)に保
ち、かつ前記炭素材料を均一に加熱して少なくとも含ケ
イ素材を溶融状態に維持できるものであれば足りる。
In the present invention, any general carbon material can be used as the carbon material. In addition, silicon-containing materials
・As the titanium-containing element material, pure metals or alloys thereof can be used. In order to infiltrate and react the silicon-containing material and the titanium-containing element material into the carbon material, for example, the powdered silicon-containing material and titanium-containing element material are dispersed in a suitable binder or solvent. Attach or apply to the surface. In addition, if the carbon material is relatively small, it is sufficient to simply place a small lump of silicon material and titanium group element material on the carbon material. The manner of initial contact with the carbon material is appropriately selected depending on the shape and size of the carbon material. on the other hand,
An ordinary high-temperature heating device may be used to create an atmosphere for carrying out the above-described osmosis reaction. In other words, such a heating device maintains the atmosphere in the furnace in an inert state unaffected by oxygen (e.g., argon, helium, etc.), and uniformly heats the carbon material to at least contain the carbon material. Any material that can maintain the silicon material in a molten state is sufficient.

(ホ)実施例 以下、実施例を示して本発明を具体的に説明する。(e) Examples Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 10X40X51111の直方体の形状をもつ炭素材料
(C)の表面に、小塊状のケイ素(St)およびチタン
(Ti)をそれぞれ重量比でS i / C=0.5お
よびTi/C=0.1の量だけ載せて、高温加熱装置に
よりアルゴン気流中で1800℃の温度の下に置いた−
1このような条件下では、ケイ素がまず溶融して炭素材
料中へ浸透していくのが観察された。、また、この際、
炭素材料の輝度が著しく上昇し、それと同時にチタンも
溶融して順次に炭素材料中に浸透した。こうして得られ
た材料の粉末X線回折を測定したところ、その組成は、
炭化ケイ素、炭化チタンおよび炭素であった。また、こ
の材料の曲げ強さくスパン3o■、クロスヘッドスピー
ド0.5 raml■in )を測定した結末では、5
31 Kgf /c■lであり、元の炭素材料の約20
0 Kgf / cm’のそれと比較すると、約2.7
倍の値をもっことがわかった。この材料の破断面の電子
顕微鏡写真(倍率35倍)および同視野中のケイ素とチ
タンの各分布状態を、第1図および第2図、第3図に示
す、これらより、溶融ケイ素ならびにチタンは、炭素材
料の内部に侵透しながら反応して、それぞれ炭化ケイ素
および炭化チタンを生成することが確められる。ま起、
第4図と第5図に1倍率2000倍の電子顕微鏡写真と
同視野中のケイ素の分布状態を示す、これ゛らのものは
、炭素材料の空隙部分に炭化ケイ素の結晶が生成し、こ
れが炭素粒子を架橋していることを示し、これが曲げ強
さの強化の大きな要因と考えられる。
Example 1 On the surface of a carbon material (C) having a rectangular parallelepiped shape of 10 x 40 x 51111, silicon (St) and titanium (Ti) in the form of small lumps were added at a weight ratio of Si/C=0.5 and Ti/C=0, respectively. .1 was loaded and placed under a temperature of 1800°C in an argon stream using a high-temperature heating device.
1 Under these conditions, silicon was observed to first melt and penetrate into the carbon material. , Also, in this case,
The brightness of the carbon material increased significantly, and at the same time, titanium also melted and gradually penetrated into the carbon material. When powder X-ray diffraction of the material thus obtained was measured, its composition was as follows:
They were silicon carbide, titanium carbide and carbon. In addition, when measuring the bending strength of this material (span 3 o) and crosshead speed 0.5 ram x in), the result was 5
31 Kgf / c l, which is about 20 kgf of the original carbon material.
When compared with that of 0 Kgf/cm', it is approximately 2.7
It turned out to be twice as valuable. An electron micrograph (35x magnification) of the fractured surface of this material and the respective distribution states of silicon and titanium in the same field of view are shown in Figures 1, 2, and 3. From these, it can be seen that molten silicon and titanium are It has been confirmed that silicon carbide and titanium carbide are produced by penetrating into the interior of the carbon material and reacting, respectively. Wake up,
Figures 4 and 5 show electron micrographs at a magnification of 2,000 times and the distribution of silicon in the same field of view.These images show that silicon carbide crystals are formed in the voids of the carbon material. This indicates that the carbon particles are crosslinked, and this is thought to be a major factor in increasing the bending strength.

実施例2 10X40X5層層の直方体の形状をもつ炭素材料(C
)の表面に、小塊状のケイ素(Si)およびジルコニウ
ム(Z r)を重量比でSi/C=0゜5およびZr/
C=0.1の量だけ佐せて、前記実施例1と同条件下に
加熱した。反応後の材料の組成は、炭化ケイ素、炭化ジ
ルコニウムおよび炭素であり、その曲げ強さ4t774
Kgf/c■2であった。この材料の破断面の電子顕微
鏡写真(倍率35倍)および同視野中のケイ素とジルコ
ニウムの各分布状態を、第6図および第゛7図、第8図
に示す。
Example 2 Carbon material (C
) on the surface of silicon (Si) and zirconium (Zr) in the form of small lumps with a weight ratio of Si/C=0°5 and Zr/
It was heated under the same conditions as in Example 1, except that an amount of C=0.1 was added. The composition of the material after reaction is silicon carbide, zirconium carbide and carbon, and its bending strength is 4t774
It was Kgf/c■2. An electron micrograph (35x magnification) of the fractured surface of this material and the respective distribution states of silicon and zirconium in the same field of view are shown in FIGS. 6, 7, and 8.

(へ)効果 以、上のように1本発明の製造方法によれば、炭素材料
を出発原料として、比較的簡単に所期目的とする炭化ケ
イ素、チタン族元素炭化物および炭素よりなる複合炭素
材料を得ることができ、しかもその際元の炭素材料を所
望の形状に成形しておけば任意の形状のものが簡単に得
られること、また、その炭化物層の厚さや組成、も容易
にコントロールできることの特徴をもつ。また、この方
法によれば、含ケイ素材等の浸透反応に伴う反応熱を利
用して高融点の含チタン族元素材を炭素材料に対し浸透
反応させるようにしているので、製造条件として高い温
度を必要としないなどの利点も具備するものである。
(f) Effects As described above, according to the production method of the present invention, a composite carbon material consisting of silicon carbide, a titanium group element carbide, and carbon can be produced relatively easily using a carbon material as a starting material. Furthermore, if the original carbon material is molded into the desired shape, any shape can be easily obtained, and the thickness and composition of the carbide layer can also be easily controlled. It has the characteristics of In addition, according to this method, the reaction heat accompanying the osmotic reaction of the silicon-containing material, etc. is used to cause the osmotic reaction of the titanium-containing element material with a high melting point to the carbon material, so the manufacturing conditions are high. It also has the advantage that it does not require

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る炭化ケイ素、炭化チ
タンおよび炭素よりなる複“含炭素材料の破断面を示す
電子顕微鏡写真(倍率35倍)であり、第2図は同視野
中のケイ素の分布を示すX線元素分析写真(白い部分が
シリコンを表わす)、第3図は同じくチタンの分布を示
すX線元素分析写真(白い部分がチタンを表わす)であ
る。第4図は、第1図のものを拡大した電子顕微鏡写真
(倍率2000倍)であり、第5図は同視野中のケイ素
の分布を示すX線元素分析写真である。第6図は、本発
明の他の実施例に係る炭化ケイ素、炭化ジルコニウムお
よび炭素よりなる複合炭素材料の破断面を示す電子顕微
鏡写真(倍率35倍)であり、第7図は同視野中のケイ
素の分布を示すX線元素分析写真、第8図は同じくジル
コニウムの分布を示すXt1元素分析写真(白い部分が
ジルコニウムを表わす)である。 代理人 弁理士 赤澤−博 第5図 第7図 手続補正書(方式) %式% l 事件の表示 昭和59年特許願第112390号 ? 発明の名称 炭化ケイ素、チタン族元素炭化物を含む複合炭素材料の
製造方法 3 補正をする者 事件との関係 特許出願人 住所 大阪市北区堂島浜−下目4番4号名称 大阪セメ
ント株式会社 代表者 北 川 欣 − 4代理人 〒606 住所 京都市左京区高野東関町20番地 谷畑高野ビル
612昭和59年9月25日 6 補正の対象 明細書の図面の簡単な説明の欄 7 補正の内容 4、図面の簡単な説明 第1図は、本発明の一実施例に係る炭化ケイ素、炭化チ
タンおよび炭素よりなる複合炭素材料の破断面を示す粒
子構造の写真(倍率35倍)であり、第2図は同視野中
のケイ素の分布を示すX線写真(白い部分がシリコンを
表わす)、第3図は同じくチタンの分布を示すX線写真
(白い部分がチタンを表わす)である。第4図は、第1
図のものを拡大した粒子構造の写真(倍率2000倍)
であり、第5図は同視野中のケイ素の分布を示すX線写
真である。第6図は、本発明の他の実施例に係る炭化ケ
イ素、炭化ジルコニウムおよび炭素よりなる複合炭素材
料の破断面を示す粒子構造の写真(倍率35倍)であり
、第7図は同視野中のケイ素の分布を示すX線写真、第
8図は同じくジルコニウムの分布を示すX線写真(白い
部分がジルコニウムを表わす)である。
FIG. 1 is an electron micrograph (35x magnification) showing the fracture surface of a composite carbon-containing material made of silicon carbide, titanium carbide, and carbon according to an embodiment of the present invention, and FIG. Figure 3 is an X-ray elemental analysis photograph showing the distribution of silicon (the white part represents silicon), and Figure 3 is an X-ray elemental analysis photograph showing the distribution of titanium (the white part represents titanium). , is an enlarged electron micrograph (2000x magnification) of the one in Figure 1, and Figure 5 is an X-ray elemental analysis photograph showing the distribution of silicon in the same field of view. Fig. 7 is an electron micrograph (magnification: 35x) showing the fracture surface of a composite carbon material made of silicon carbide, zirconium carbide, and carbon according to Example 1, and Fig. 7 is an X-ray elemental analysis showing the distribution of silicon in the same field of view. The photograph, Figure 8, is an Xt1 elemental analysis photograph that also shows the distribution of zirconium (the white part represents zirconium). Agent Patent Attorney Hiroshi Akazawa Figure 5 Figure 7 Procedural Amendment (Method) % Formula % l Display of the case 1982 Patent Application No. 112390? Name of the invention Method for producing composite carbon material containing silicon carbide and titanium group element carbide 3 Person making the amendment Relationship to the case Patent applicant address Dojimahama, Kita-ku, Osaka-shi Item 4 No. 4 Name Osaka Cement Co., Ltd. Representative Kin Kitagawa - 4 Agent 606 Address 612 Tanihata Takano Building, 20 Takano Higashi Sekicho, Sakyo-ku, Kyoto City September 25, 1980 6 Drawings of the specification subject to amendment Brief explanation column 7 Amendment content 4, brief explanation of drawings Figure 1 shows a particle structure of a fractured surface of a composite carbon material made of silicon carbide, titanium carbide, and carbon according to an embodiment of the present invention. These are photographs (35x magnification). Figure 2 is an X-ray photograph showing the distribution of silicon in the same field of view (the white part represents silicon), and Figure 3 is an X-ray photograph showing the distribution of titanium (the white part (represents titanium). Figure 4 shows the first
A photo of the particle structure enlarged from the one in the figure (2000x magnification)
FIG. 5 is an X-ray photograph showing the distribution of silicon in the same field of view. FIG. 6 is a photograph (35x magnification) of the particle structure showing the fracture surface of a composite carbon material made of silicon carbide, zirconium carbide, and carbon according to another example of the present invention, and FIG. FIG. 8 is an X-ray photograph showing the distribution of silicon (the white part represents zirconium).

Claims (1)

【特許請求の範囲】[Claims] 炭素材料を含ケイ素材および含チタン族元素材と共に、
前記含ケイ素材の融点具−ヒの高温における酸素の影響
を受けない不活性雰囲気中に配置し、前記含ケイ素材を
前記炭素材料に浸透反応させて炭化ケイ素を生成すると
ともに、この炭化ケイ素の生成反応熱を利用して前記含
チタン族元素材を前記炭素材ネ1に浸透反応させて、炭
化ケイ素、チタン族元素炭化物および炭素よりなる材料
を得ることを特徴とする炭化ケイ素、チタン族元素炭化
物を含む複合炭素材料の製造方法。
Carbon material together with silicon-containing material and titanium-containing element material,
The melting point of the silicon-containing material is placed in an inert atmosphere unaffected by oxygen at a high temperature, and the silicon-containing material permeates and reacts with the carbon material to produce silicon carbide. Silicon carbide, a titanium group element, characterized in that a material consisting of silicon carbide, a titanium group element carbide, and carbon is obtained by permeating and reacting the titanium group element material into the carbon material 1 using the heat of reaction generated. A method for producing a composite carbon material containing carbide.
JP59112390A 1984-05-31 1984-05-31 Manufacture of composite carbon material containing silicon carbide and titanium group element carbide Granted JPS60255669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59112390A JPS60255669A (en) 1984-05-31 1984-05-31 Manufacture of composite carbon material containing silicon carbide and titanium group element carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112390A JPS60255669A (en) 1984-05-31 1984-05-31 Manufacture of composite carbon material containing silicon carbide and titanium group element carbide

Publications (2)

Publication Number Publication Date
JPS60255669A true JPS60255669A (en) 1985-12-17
JPH0227304B2 JPH0227304B2 (en) 1990-06-15

Family

ID=14585472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112390A Granted JPS60255669A (en) 1984-05-31 1984-05-31 Manufacture of composite carbon material containing silicon carbide and titanium group element carbide

Country Status (1)

Country Link
JP (1) JPS60255669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176361A (en) * 1987-01-13 1988-07-20 ランキサイド テクノロジー カンパニー エル ピー Self-supporting ceramic composite matter and manufacture
US5008159A (en) * 1988-11-10 1991-04-16 United Kingdom Atomic Energy Authority Method of producing silicon carbide-based bodies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176361A (en) * 1987-01-13 1988-07-20 ランキサイド テクノロジー カンパニー エル ピー Self-supporting ceramic composite matter and manufacture
US5008159A (en) * 1988-11-10 1991-04-16 United Kingdom Atomic Energy Authority Method of producing silicon carbide-based bodies

Also Published As

Publication number Publication date
JPH0227304B2 (en) 1990-06-15

Similar Documents

Publication Publication Date Title
RU1838279C (en) Method to produce self-bearing ceramic composite
JP2911940B2 (en) Method for manufacturing self-supporting body
CN1022033C (en) Process for preparing self-supporting ceramic body
JPS63503393A (en) Versatile boron carbide-aluminum composites and their fabrication by microstructure control
US3235346A (en) Composite bodies comprising a continuous framework and an impregnated metallic material and methods of their production
JPH02247068A (en) Formation of metal matrix complex having variable packing rate
JPH05311274A (en) Self-supporting composite ceramic body
JPS60224704A (en) Low-temperature sinterable powder sheet
JPS63214342A (en) Preparation of compound
JPS60255669A (en) Manufacture of composite carbon material containing silicon carbide and titanium group element carbide
US5015440A (en) Refractory aluminides
JP4115682B2 (en) Method for producing intermetallic compound-based composite material
JPS6379768A (en) Manufacture of self-supporting ceramic or ceramic composite structure
JPH02275761A (en) Production of ceramic composite
KR0134959B1 (en) Method of preparing a self-support by bonding the first ceramic composite to the second object
JPS60251175A (en) Manufacture of formed body made from silicon carbide and carbon
JPS61110734A (en) Manufacture of titanium composite material
JPH06192767A (en) Composite and its production
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
Najafzadehkhoee et al. High-Temperature W/ZrC Composite Coatings
JP2952087B2 (en) Aluminum borate whisker having a nitrided layer on the surface and method for producing preform
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JP2580689B2 (en) Ti-Al alloy powder sintered body and method for producing the same
JPH03166368A (en) Production of pb-zr-ti oxide type target material
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body