JPS60253939A - Measuring method of substrate temperature - Google Patents

Measuring method of substrate temperature

Info

Publication number
JPS60253939A
JPS60253939A JP59111233A JP11123384A JPS60253939A JP S60253939 A JPS60253939 A JP S60253939A JP 59111233 A JP59111233 A JP 59111233A JP 11123384 A JP11123384 A JP 11123384A JP S60253939 A JPS60253939 A JP S60253939A
Authority
JP
Japan
Prior art keywords
wafer
temperature
quartz
infrared
inspection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59111233A
Other languages
Japanese (ja)
Inventor
Yasuo Uoochi
魚落 泰雄
Takashi Yahano
矢羽野 俊
Haruo Shimoda
下田 春夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59111233A priority Critical patent/JPS60253939A/en
Publication of JPS60253939A publication Critical patent/JPS60253939A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • G01J5/0007Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter of wafers or semiconductor substrates, e.g. using Rapid Thermal Processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To measure the temperature of a substrate to be processed through a quartz pipe of a furnace body equipped with infrared lamps by forming an inspection hole in the quartz pipe by using a heat-resistant material having a transmission area of longer wavelength than quartz. CONSTITUTION:The quartz pipe 1 of the furnace body is equipped with infrared lamps, this quartz pipe 1 has the inspection hole 4, and the housing 5 of the lamps also has an inspection hole 4, so that a wafer 3 is detected from the outside. Then, the heat-resistant material with a transmission wavelength area of longer wavelength than quartz is used for the inspection hole 4. Thus, the inspection hole 4 for long-wavelength transmission and then infrared rays from the wafer 3 are guided out; and an optical band pass filter 11 which cuts transmitted light of the quartz is placed between an infrared detector 8 and the inspection hole to detect only infrared rays from the wafer 3, thereby measuring the temperature of the wafer 3 directly.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は赤外線温度針を用いて被処理基板温度を@瓜良
く測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for precisely measuring the temperature of a substrate to be processed using an infrared temperature needle.

(b)技術の背景 情報処理の高速化と大容量化とを達成する1段として電
算機が使用されており、この仙算素子或いば記1,9素
子として使用されるI’C,LSIなどの半導体素子は
華位素子の小形化による築積度の増加と量産化とが非常
な努力で押し進められていここで半導体素子の製作はロ
ッド状の半導体単結晶を厚さ約500pmの薄板(以下
ウェハと云う)に切断し、研磨などの表面処理を行って
平消でlf7浄な表面状態とした後、このウェハを伯位
として薄膜形成技術と写真食刻技術(ホトリソグラフィ
)とを使用してパターン形成や窓開けを行い、不純物圧
入や熱処理を繰り返すことにより多層構造をとる半導体
素子をウェハ」−に数多く形成し、最後にスクライブ処
理により切り出してIC,LSIなどの半導体素子が作
られている。
(b) Background of the technology Computers are used as one stage to achieve higher speed and larger capacity information processing, and the I'C, which is used as the arithmetic element or the element 1, Semiconductor devices such as LSI are being pushed forward with great efforts to increase the degree of construction and mass production by miniaturizing the size of the device.The production of semiconductor devices is made by converting rod-shaped semiconductor single crystals into thin sheets with a thickness of about 500 pm. After cutting the wafer into wafers (hereinafter referred to as wafers) and performing surface treatments such as polishing to obtain a flat, lf7-clean surface, we applied thin film formation technology and photolithography to these wafers. A wafer is used to form patterns and open windows, and by repeating impurity injection and heat treatment, many semiconductor elements with a multilayer structure are formed on a wafer.Finally, they are cut out using a scribing process to create semiconductor elements such as ICs and LSIs. It is being

かかる半導体素子の型造工程において高温処理を短時間
行うことが必要な条件では従来のように電気かで熱処理
する方法よりも複数個の赤外線ランプを備えた加熱炉の
なかにウェハを置き必要な時間たけランプを加熱する方
法か有利である。
In the semiconductor device molding process, when high-temperature treatment is required for a short period of time, it is necessary to place the wafer in a heating furnace equipped with multiple infrared lamps, rather than the conventional method of heat treatment using an electric oven. A method of heating the lamp over time is advantageous.

例えはCMOSトランジスタを作る場合、シリコン(S
i )ウェハの十にpチャンネルとnチャンネルのソー
ス、トレイン拡散領域を作り、この上に鱗珪酸ガラス(
略称PSG)を化学気相成長法(略称CVD)を用いて
形成し被覆した後、リアクティブ・イオンエツチング法
でPSGHにコンタクト窓を形成し、更にこの上にアル
ミニウム(AI)を蒸着し、これにポトエノチンクを施
して導体パターンを形成する工程がある。
For example, when making a CMOS transistor, silicon (S
i) Fabricate p-channel and n-channel source and train diffusion regions on the top of the wafer, and deposit scaly silicate glass (
After forming and coating PSGH (abbreviated as PSG) using chemical vapor deposition method (abbreviated as CVD), a contact window is formed on PSGH using reactive ion etching method, and aluminum (AI) is further deposited on this. There is a process in which a conductive pattern is formed by potoenoting.

ここでCV、D法で形成したコンタクト窓はPSGHに
対し殆ど直角に開けられているので、この上に形成した
導体パターンはコンタクト窓のエツジの部分で断線を起
こし易い。
Here, since the contact window formed by the CV or D method is opened almost perpendicularly to the PSGH, the conductor pattern formed thereon is likely to be disconnected at the edge of the contact window.

そのためコンタクト窓を形成したのち、ウェハを加熱し
てPSGの焼きなましを行い角をとる必要がある。
Therefore, after forming the contact window, it is necessary to heat the wafer and anneal the PSG to obtain a square shape.

然しこの処理時間か永くなるとPSGを構成する燐(P
)がp領域にまで拡散して素子を不良とする恐れがある
However, as this processing time becomes longer, the phosphorus (P) that makes up PSG
) may diffuse into the p region, making the device defective.

そこで処理条件を例えは1200°Cl2O秒と短時間
に留める必要かある。
Therefore, it is necessary to keep the processing conditions to a short period of time, for example, 1200° Cl2O seconds.

そこで、このような場合ウェハを赤外線加熱かに入れ、
短時間たけ点燈ずれはこの目的を達成することができる
Therefore, in such cases, the wafer should be placed in an infrared heating oven.
Short-term lighting shifts can achieve this purpose.

本発明はこのような赤外線加熱炉における温度測定方法
に関するものである。
The present invention relates to a method for measuring temperature in such an infrared heating furnace.

(C)従来技術と問題点 ウェハなと被処理基板の温度を測定する方法として熱電
対を用いる方法と赤外線温度計を用いる方法か知られて
いる。
(C) Prior Art and Problems There are two known methods for measuring the temperature of a wafer or a substrate to be processed: a method using a thermocouple and a method using an infrared thermometer.

ここで従来は熱電対を用いる方法か一般に用いられてい
る。すなわぢウェハのセット位置の近傍に熱電対の先端
を置き、それによりウェハの温度を測定する。
Conventionally, a method using a thermocouple has been generally used. That is, the tip of a thermocouple is placed near the wafer set position, and the wafer temperature is thereby measured.

然し、この温度は厳密に言えばウェハ周辺の温度であっ
てウェハ自体の温度とは異なる。
However, strictly speaking, this temperature is the temperature around the wafer and is different from the temperature of the wafer itself.

また測定積度を垢ずために熱電対をウェハに接触させる
と、熱電対の構成金属のウェハへの拡散が生して不良発
生の原因となる。
Furthermore, if the thermocouple is brought into contact with the wafer in order to prevent measurement errors, the constituent metals of the thermocouple will diffuse into the wafer, causing defects.

一方赤外線温度計を用いる方法はウェハの処理温度の測
定には殆ど用いられていなかった。
On the other hand, methods using infrared thermometers have hardly been used to measure the processing temperature of wafers.

その理由はウェハの汚染を防くために石英管のなかにウ
ェハを置き、これを通して温度を測定する必要かあるか
、赤外線温度計に検知する温度はウェハの温度よりも石
英管の温度が現れ易い。
The reason for this is whether it is necessary to place the wafer in a quartz tube and measure the temperature through it to prevent contamination of the wafer. easy.

これらのことから確度は落らるが、熱電対をウェハの近
傍に置き測定する方法が一般に用いられていた。
For these reasons, a method of measuring by placing a thermocouple near the wafer has generally been used, although the accuracy is lower.

(d)発明の目的 本発明の目的は赤外線温度計を用いて高い精度でウェハ
の処理温度を測定する方法を提供するにある。
(d) Object of the Invention An object of the present invention is to provide a method for measuring the processing temperature of a wafer with high accuracy using an infrared thermometer.

(e)発明の構成 本発明の目的は赤外線ランプを用いて加熱した基板温度
の測定法として、該赤外線ランプを備えた炉体の石英管
に石英よりも長波長の透過領域をもつ耐熱材料を用いて
覗き窓を形成し、該覗き窓を通して被処理基板の温度を
赤外線温度計により測定することを特徴とする基板温度
の測定方法により達成することができる。
(e) Structure of the Invention The purpose of the present invention is to provide a method for measuring the temperature of a heated substrate using an infrared lamp, in which a heat-resistant material having a transmission region of longer wavelength than quartz is used in a quartz tube of a furnace body equipped with the infrared lamp. This can be achieved by a substrate temperature measuring method characterized in that a viewing window is formed using the observation window, and the temperature of the substrate to be processed is measured with an infrared thermometer through the viewing window.

すなわち本発明は赤外線ランプによるウェハの加熱処理
を行う場合、石英ランプのカバーが石英製であり、また
必ずと言ってよいほど石英管を通してウェハの温度の測
定が行われる点に着目し、石英管に穴を開け、石英より
も長波長の透過領域を持つ材料で覗き窓を設けると共に
5.5乃至30μmの赤外線を検知する赤外線温度計に
よりウニ/”tの温度を直接に測定するものである。
That is, the present invention focuses on the fact that when a wafer is heated using an infrared lamp, the cover of the quartz lamp is made of quartz, and the temperature of the wafer is almost always measured through the quartz tube. The temperature of the sea urchin can be directly measured using an infrared thermometer that detects infrared rays of 5.5 to 30 μm. .

(f)発明の実施例 第1図は石英ランプのエネルギ分布図、第2図は石英や
覗き窓としての使用材料及びフィルタの波長透過特性ま
た第3図は本発明に係る実施例である。
(f) Embodiment of the Invention FIG. 1 is an energy distribution diagram of a quartz lamp, FIG. 2 is a wavelength transmission characteristic of quartz, materials used as a viewing window, and filters, and FIG. 3 is an embodiment of the present invention.

すなわち赤外線加熱炉は第3図に示すように窒素、水素
或いはこの混合ガスのような非酸化性のガスを通ず石英
管】の上下に複数の赤外線ランプ2か配列しており、こ
れを点燈して石英管1のなかに置かれている被処理基板
(この場合はウェハ3)への加熱が行われている。
In other words, as shown in Fig. 3, an infrared heating furnace has a plurality of infrared lamps 2 arranged above and below a quartz tube that does not pass a non-oxidizing gas such as nitrogen, hydrogen, or a mixture thereof. When the light is turned on, the substrate to be processed (wafer 3 in this case) placed in the quartz tube 1 is heated.

ここで赤外線ランプ(以下略してランプ)2のエネルギ
分布は第1図のようであり、この加熱によりウェハ3の
温度は上昇し、温度に対応した赤外線を放射する。
Here, the energy distribution of the infrared lamp (hereinafter simply referred to as a lamp) 2 is as shown in FIG. 1, and the temperature of the wafer 3 rises due to this heating, and infrared rays corresponding to the temperature are emitted.

本発明はこの赤外線を検知するために石英管番コ覗き窓
4を設けると共にランプの献体5にも覗き穴6を設けて
外部からウェハ3の検知かできるようにする。
In the present invention, a quartz tube observation window 4 is provided in order to detect this infrared rays, and a observation hole 6 is also provided in the lamp body 5 so that the wafer 3 can be detected from the outside.

ここで覗き穴6を通してウェハ3を観察する場合を考察
すると、検知される光はウェハ3と石英管1からの赤外
線である。
Now, considering the case where the wafer 3 is observed through the peephole 6, the detected light is infrared rays from the wafer 3 and the quartz tube 1.

今石英管1に覗き窓4かなく、石英管たけの場合は石英
の透過率の波長特性は第2図の実線7で表されるから0
.2乃至約3μmの波長領域以外の光は吸収されて検知
することかできない。
Now, if the quartz tube 1 does not have the viewing window 4 and is just a quartz tube, the wavelength characteristic of the transmittance of quartz is expressed by the solid line 7 in Figure 2, so it is 0.
.. Light outside the wavelength range of 2 to about 3 μm is absorbed and cannot be detected.

またウェハ3と石英管1の温度を比較すると、ランプ2
に接近している石英管1の温度の方か商い場合もあるの
で赤外線検知器8で検知する温度ばウェハ自身の温度と
は限らない。
Also, when comparing the temperatures of wafer 3 and quartz tube 1, lamp 2
The temperature detected by the infrared detector 8 is not necessarily the temperature of the wafer itself, since the temperature of the quartz tube 1, which is close to the temperature, may be higher than that of the wafer.

そこで本発明は覗き窓4の材料として石英よりも長波長
の透過波長領域をもつ耐熱性材料を用いる。例えば第2
図で破線9で示すザファイアや2点破線10で示ずケル
マニウム(Ge )なとかこれである。
Therefore, in the present invention, a heat-resistant material having a transmission wavelength range longer than that of quartz is used as the material for the viewing window 4. For example, the second
These include zaphire, which is indicated by a broken line 9 in the figure, and kermanium (Ge), which is not indicated by a two-dot broken line 10.

このように長波長を透過する覗き窓4を設けるとウェハ
3からの赤外線を取り出すことができ、次ぎに赤外線検
知器8との間に石英の透過波長をカットする光学的バン
ドパスフィルタ(以−ト略してフィルタ)11を置けば
ウェハ3からだけの赤外線を検知することができる。
By providing the viewing window 4 that transmits long wavelengths in this way, the infrared rays from the wafer 3 can be taken out, and then an optical bandpass filter (hereinafter referred to as an If a filter 11 is provided, infrared rays only from the wafer 3 can be detected.

$2図の1点破線12は実施例で使用したフィルタの特
性を示すものである。
A dotted line 12 in the $2 diagram shows the characteristics of the filter used in the example.

このように透過域が長波長の覗き窓4を用いると共にフ
ィルタを使用することによってウェハ3の温度を直接に
測定することができる。
In this way, the temperature of the wafer 3 can be directly measured by using the viewing window 4 whose transmission range is a long wavelength and by using a filter.

(g)発明の効果 本発明は赤外線加熱かにおける被処理基板の温度を赤外
線温度計で測定する方法を提供するもので、本発明の実
施により、石英管を通して被処理基板の温度測定か可能
となる。
(g) Effects of the Invention The present invention provides a method for measuring the temperature of a substrate to be processed in an infrared heating oven using an infrared thermometer. By implementing the present invention, it is possible to measure the temperature of a substrate to be processed through a quartz tube. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は赤外線ランプのエネルギ分布図、第2図は覗き
窓の材料と実施例に用いた光学的バンドパスフィルタの
波長透過特性また第3図は本発明を実施した装置のl#
i面図である。 図において lはイ1英管、2ば赤外線う7・ブ、3は
被処理基板、4ば覗き窓、6は覗き穴、8は赤外線温度
計、11は光学的バントパスフィルタ。 茅 1 囚
Figure 1 is an energy distribution diagram of the infrared lamp, Figure 2 is the material of the viewing window and the wavelength transmission characteristics of the optical bandpass filter used in the example, and Figure 3 is the l# of the device implementing the present invention.
It is an i-side view. In the figure, 1 is an infrared thermometer, 2 is an infrared tube, 3 is a substrate to be processed, 4 is a viewing window, 6 is a peephole, 8 is an infrared thermometer, and 11 is an optical bandpass filter. Kaya 1 prisoner

Claims (1)

【特許請求の範囲】[Claims] 赤外線ランプを用いて加熱した基h7!A度の測定法と
して、該赤外線ランプを備えた炉体の石英危にイコ英よ
りも長波長の通過領域をもつ耐熱材料を用いて覗き窓を
形成し、該覗き窓を通して被処理基板の温度を赤外線温
度計により測定するごとを特徴とする基板温度の測定方
法。
Group h7 heated using an infrared lamp! As a method for measuring A degrees, a viewing window is formed using a heat-resistant material that has a longer wavelength transmission region than the quartz of the furnace body equipped with the infrared lamp, and the temperature of the substrate to be processed is measured through the viewing window. A method for measuring substrate temperature, characterized in that each time the temperature is measured using an infrared thermometer.
JP59111233A 1984-05-31 1984-05-31 Measuring method of substrate temperature Pending JPS60253939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59111233A JPS60253939A (en) 1984-05-31 1984-05-31 Measuring method of substrate temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111233A JPS60253939A (en) 1984-05-31 1984-05-31 Measuring method of substrate temperature

Publications (1)

Publication Number Publication Date
JPS60253939A true JPS60253939A (en) 1985-12-14

Family

ID=14555933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111233A Pending JPS60253939A (en) 1984-05-31 1984-05-31 Measuring method of substrate temperature

Country Status (1)

Country Link
JP (1) JPS60253939A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163933U (en) * 1986-04-08 1987-10-17
JPH0196926A (en) * 1987-10-09 1989-04-14 Fujitsu Ltd Lamp heating
EP0339458A2 (en) * 1988-04-27 1989-11-02 AG Processing Technologies, Inc. Method and apparatus for sensing the temperature of a remote object
DE4012615A1 (en) * 1990-04-20 1991-10-24 T Elektronik Gmbh As Combined contactless temp. measuring of wafer being processed - using quartz glass or material to absorb optical radiation components between radiation source and semiconductor wafer
US5061084A (en) * 1988-04-27 1991-10-29 Ag Processing Technologies, Inc. Pyrometer apparatus and method
US5114242A (en) * 1990-12-07 1992-05-19 Ag Processing Technologies, Inc. Bichannel radiation detection method
US5165796A (en) * 1990-12-07 1992-11-24 Ag Processing Technologies, Inc. Bichannel radiation detection apparatus
US5180226A (en) * 1991-10-30 1993-01-19 Texas Instruments Incorporated Method and apparatus for precise temperature measurement
US5188458A (en) * 1988-04-27 1993-02-23 A G Processing Technologies, Inc. Pyrometer apparatus and method
US5226732A (en) * 1992-04-17 1993-07-13 International Business Machines Corporation Emissivity independent temperature measurement systems
US5359693A (en) * 1991-07-15 1994-10-25 Ast Elektronik Gmbh Method and apparatus for a rapid thermal processing of delicate components
US5683538A (en) * 1994-12-23 1997-11-04 International Business Machines Corporation Control of etch selectivity
US5683173A (en) * 1990-01-19 1997-11-04 Applied Materials, Inc. Cooling chamber for a rapid thermal heating apparatus
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
US7275861B2 (en) 2005-01-31 2007-10-02 Veeco Instruments Inc. Calibration wafer and method of calibrating in situ temperatures
CN102313599A (en) * 2010-06-29 2012-01-11 北京北方微电子基地设备工艺研究中心有限责任公司 Device and method for measuring temperature of coupling window, and plasma equipment

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163933U (en) * 1986-04-08 1987-10-17
JPH0196926A (en) * 1987-10-09 1989-04-14 Fujitsu Ltd Lamp heating
US5188458A (en) * 1988-04-27 1993-02-23 A G Processing Technologies, Inc. Pyrometer apparatus and method
EP0339458A2 (en) * 1988-04-27 1989-11-02 AG Processing Technologies, Inc. Method and apparatus for sensing the temperature of a remote object
US5061084A (en) * 1988-04-27 1991-10-29 Ag Processing Technologies, Inc. Pyrometer apparatus and method
US5326171A (en) * 1988-04-27 1994-07-05 A G Processing Technologies, Inc. Pyrometer apparatus and method
US5840125A (en) * 1990-01-19 1998-11-24 Applied Materials, Inc. Rapid thermal heating apparatus including a substrate support and an external drive to rotate the same
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6434327B1 (en) 1990-01-19 2002-08-13 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6122439A (en) * 1990-01-19 2000-09-19 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5790751A (en) * 1990-01-19 1998-08-04 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of light pipes and a pyrometer for measuring substrate temperature
US5767486A (en) * 1990-01-19 1998-06-16 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of radiant energy sources and a source of processing gas
US5743643A (en) * 1990-01-19 1998-04-28 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5708755A (en) * 1990-01-19 1998-01-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5683173A (en) * 1990-01-19 1997-11-04 Applied Materials, Inc. Cooling chamber for a rapid thermal heating apparatus
US5689614A (en) * 1990-01-19 1997-11-18 Applied Materials, Inc. Rapid thermal heating apparatus and control therefor
DE4012615A1 (en) * 1990-04-20 1991-10-24 T Elektronik Gmbh As Combined contactless temp. measuring of wafer being processed - using quartz glass or material to absorb optical radiation components between radiation source and semiconductor wafer
DE4012615C2 (en) * 1990-04-20 1992-07-16 A.S.T. Elektronik Gmbh, 7900 Ulm, De
US5114242A (en) * 1990-12-07 1992-05-19 Ag Processing Technologies, Inc. Bichannel radiation detection method
US5165796A (en) * 1990-12-07 1992-11-24 Ag Processing Technologies, Inc. Bichannel radiation detection apparatus
US5359693A (en) * 1991-07-15 1994-10-25 Ast Elektronik Gmbh Method and apparatus for a rapid thermal processing of delicate components
US5180226A (en) * 1991-10-30 1993-01-19 Texas Instruments Incorporated Method and apparatus for precise temperature measurement
US5226732A (en) * 1992-04-17 1993-07-13 International Business Machines Corporation Emissivity independent temperature measurement systems
US5770097A (en) * 1994-12-23 1998-06-23 International Business Machines Corporation Control of etch selectivity
US5683538A (en) * 1994-12-23 1997-11-04 International Business Machines Corporation Control of etch selectivity
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
US7275861B2 (en) 2005-01-31 2007-10-02 Veeco Instruments Inc. Calibration wafer and method of calibrating in situ temperatures
US7452125B2 (en) 2005-01-31 2008-11-18 Veeco Instruments Inc. Calibration wafer and method of calibrating in situ temperatures
CN102313599A (en) * 2010-06-29 2012-01-11 北京北方微电子基地设备工艺研究中心有限责任公司 Device and method for measuring temperature of coupling window, and plasma equipment

Similar Documents

Publication Publication Date Title
JPS60253939A (en) Measuring method of substrate temperature
US8283607B2 (en) Apparatus including heating source reflective filter for pyrometry
TWI290727B (en) Method for monitoring thin-film thickness and method for measuring substrate temperature
US6646752B2 (en) Method and apparatus for measuring thickness of a thin oxide layer
KR950001671B1 (en) Rapid thermal process for obtaining silica coatings
WO1998038673A1 (en) Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
US20090289053A1 (en) Apparatus Including Heating Source Reflective Filter for Pyrometry
CN103882389B (en) A kind of high temperature coefficient of resistance vanadium oxide film preparation method
KR20020026006A (en) System for controlling the temperature of a reflective substrate during rapid heating
CN112250031A (en) Thermopile infrared sensor with self-contained linear thermal resistance correction and preparation method thereof
JPS5669837A (en) Manufacture of semiconductor device
JPS63500272A (en) Method of manufacturing optical waveguide
JPS6294925A (en) Heat treatment device
JP2001228026A (en) Method for measuring radiation temperature
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
Skelly et al. Impurity Atom Transfer during Epitaxial Deposition of Silicon
JPH0620938A (en) Quick thermal oxidizing apparatus for semiconductor substrate
JPH1192295A (en) Silicon carbide dummy wafer
JPH07151606A (en) Instrument for measuring temperature of substrate
Bach et al. The reaction behavior of thin lead oxide layers on silica glass
Adams et al. Radiation thermometry in the semiconductor industry
TWI635261B (en) A method for monitoring a temperature uniformity of a wafer susceptor
Wong Differential infrared (DIR) studies of CVD borosilicate films
Forouhi et al. Simultaneous determination of thickness and optical constants of thin films
Wong et al. Thermal-Radiation Absorption Characteristics of Patterned Wafers During Rapid Thermal Processing