JPS60253865A - Processing method of ultrasonic flaw detection data - Google Patents

Processing method of ultrasonic flaw detection data

Info

Publication number
JPS60253865A
JPS60253865A JP59109813A JP10981384A JPS60253865A JP S60253865 A JPS60253865 A JP S60253865A JP 59109813 A JP59109813 A JP 59109813A JP 10981384 A JP10981384 A JP 10981384A JP S60253865 A JPS60253865 A JP S60253865A
Authority
JP
Japan
Prior art keywords
steel plate
flaws
information
flaw
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59109813A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nishifuji
西藤 勝之
Fusao Oda
小田 冨佐雄
Yoshitoshi Morimoto
森本 美登志
Muneo Matsutani
松谷 宗雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
JFE Engineering Corp
Original Assignee
Mitsubishi Electric Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, NKK Corp, Nippon Kokan Ltd filed Critical Mitsubishi Electric Corp
Priority to JP59109813A priority Critical patent/JPS60253865A/en
Publication of JPS60253865A publication Critical patent/JPS60253865A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To facilitate the detection of flaws as specified by inspection standard by a method wherein flaw information is picked up by scanning over the surface of steel material to be digitized and after a signal processing, it is outputted as secondary information to extract flaws alone on specified scan lines. CONSTITUTION:Probes 2A-2D are arranged over a steel plate 1 at an equispace and a scanned at right angles to the rolling direction thereof to detect flaws and reflected waves from the steel plate 1 are received by the probes 2A-2D individually to be inputted into a quantization device 6 with transmitting/receiving cables 4A-4D through a flaw detector 3. Then, the quantization device 6 divides flaw information of the steel plate 1 into four stages in terms of the degree of flaws and sends digitized information sequentially to a signal processor 7, with which flaw information is ranked in the form of a mesh throughout the steel plate 1 together with a counter system 8 to discriminate flaws on the dara mesh covering a specified scan line based on the inspection standard. Thus, the evaluation of the steel plate 1 can be done accurately on the basis of the standard.

Description

【発明の詳細な説明】 〔発明の技術分野〕 、 この発明は、自動制御によって鋼板の表面に探触子を走
査させる超音波自動探傷装置において、鋼板の表面の傷
情報の信号処理を、計算機システムを用いて高精度に行
うための方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to an ultrasonic automatic flaw detection device that automatically scans the surface of a steel plate with a probe, in which signal processing of flaw information on the surface of the steel plate is performed using a computer. The present invention relates to a method for performing high precision using a system.

〔従来技術〕[Prior art]

従来一般的に、超音波自動探傷装置による鋼板の超音波
探傷では、鋼板の圧延方向に平行に探触子を走査させる
X走査方式と、鋼板の圧延方向に直角に探触子を走査さ
せるX走査方式との2方式が知られている。
Conventionally, in the ultrasonic flaw detection of steel sheets using automatic ultrasonic flaw detection equipment, there are two methods: an X-scan method in which the probe is scanned parallel to the rolling direction of the steel sheet, and an X-scan method in which the probe is scanned perpendicular to the rolling direction of the steel sheet. Two methods are known: a scanning method and a scanning method.

第1図は従来のX走査方式による超音波自動探傷装置の
システムを示す構成図である。図において、1は被検査
材を成す鋼板であシ、この鋼板lには、図示されない搬
送制御機構によシ、第1図の矢印方向に搬送、停止の制
御がなされる。2A〜2Dは超音波の探触子であり、こ
の各探触子2A〜2Dは、鋼板lの圧延方向に等間隔に
4ケ並べられ、図示されない探触子追従機、構によって
鋼板10表面を圧延方向と直角に走査する。ここで、各
探触子2八〜2Dの個数は4ケとして説明したが、幾つ
かの探触子をブロック化して構成したり、おるいは探触
子数を増加したシすれば、探傷能率又は探、傷カバー率
を向上させる特質を持っている。
FIG. 1 is a block diagram showing a system of a conventional ultrasonic automatic flaw detection device using the X-scanning method. In the figure, reference numeral 1 denotes a steel plate that constitutes the material to be inspected. This steel plate 1 is controlled to be conveyed and stopped in the direction of the arrow in FIG. 1 by a conveyance control mechanism (not shown). Reference numerals 2A to 2D are ultrasonic probes, and each of the four probes 2A to 2D is arranged at equal intervals in the rolling direction of the steel plate 1, and is controlled by a probe tracking mechanism (not shown) on the surface of the steel plate 10. is scanned perpendicular to the rolling direction. Here, the number of each probe 28 to 2D is explained as 4, but if some probes are configured as blocks or the number of probes is increased, flaw detection is possible. It has the characteristics of improving efficiency, detection, and wound coverage.

3は探傷装置であシ、この探傷装置3は、各探触子2A
〜2Dが鋼板1へ送信する超音波信号を制御すると共に
、各探触子2A〜2Dが鋼板1から受信する反射波の中
から、鋼板1の内部傷であり、かつ最も波高の高い傷情
報をサンプリングして抽出するものである。4A〜4D
は送受信ケーブルであり、この各送受信ケーブル4A〜
4Dは、各探触子2A〜2Dと探傷装置3との上記信号
の送受信を行うものである。5杜記録装置であり、この
記録装置5は、探傷装置3で抽出した傷情報を走査速度
に応じて記録速度を変化させながら、各探触子2A〜2
Dごとに記録するものである。
3 is a flaw detection device, and this flaw detection device 3 is used for each probe 2A.
~2D controls the ultrasonic signal transmitted to the steel plate 1, and each probe 2A~2D collects information on flaws that are internal flaws in the steel plate 1 and have the highest wave height from among the reflected waves received from the steel plate 1. This is to sample and extract. 4A-4D
is a transmitting/receiving cable, and each transmitting/receiving cable 4A~
4D is for transmitting and receiving the above-mentioned signals between each of the probes 2A to 2D and the flaw detection device 3. This recording device 5 records the flaw information extracted by the flaw detection device 3 while changing the recording speed according to the scanning speed of each probe 2A to 2.
This is recorded for each D.

次に、上記第1図の超音波自動探傷装置の動作について
説明する。鋼板1を、第1図に示す様な超音波自動探傷
装置へ送シ込み、鋼板1のトップ端Tの検出信号によっ
て鋼板1を停止させる。各探触子2A〜2Dは・鋼板1
の表面へ水膜を介して接触すると共に、鋼板lのトップ
端T及びエツジ端Sを検出するまで鋼板1のエツジ側に
移動する。その後、各探触子2A〜2Dは、鋼板1のエ
ツジ端N側へ圧延方向に直角走査して、すなわちX走査
し、エツジ端Nまで移動して1回目の探傷が終了する。
Next, the operation of the automatic ultrasonic flaw detection apparatus shown in FIG. 1 will be explained. A steel plate 1 is fed into an automatic ultrasonic flaw detector as shown in FIG. 1, and the steel plate 1 is stopped by a detection signal from the top end T of the steel plate 1. Each probe 2A to 2D is a steel plate 1
It moves to the edge side of the steel plate 1 until it comes into contact with the surface of the steel plate 1 through a water film and detects the top edge T and edge edge S of the steel plate 1. Thereafter, each of the probes 2A to 2D scans perpendicularly to the rolling direction toward the edge end N of the steel plate 1, that is, performs an X scan, and moves to the edge end N to complete the first flaw detection.

次いで、各探触子2A〜2Dの各々を鋼板1のボトム端
B側へ1探触子分だけ圧延方向にずらして、エツジ端N
よりエツジ端SへX走査探傷を行い、2回目の探傷が終
了する。これらl往復分の探傷が終了したところで、探
傷済の部分を搬送し、隣接した部分を2往復目に探傷す
る。
Next, each of the probes 2A to 2D is shifted toward the bottom end B side of the steel plate 1 by one probe in the rolling direction, and the edge end N
X-scanning flaw detection is performed to the edge end S, and the second flaw detection is completed. When the flaw detection for one round trip is completed, the inspected part is transported, and the adjacent part is inspected for the second round trip.

これらの探傷動作の繰9返し゛を銅板1のボトム端Bま
で行う。また、これらの探傷動作と同時に、探傷装置3
は、各探触子2A〜2Dに超音波信号を発生させながら
銅板lの傷情報を抽出し、この傷情報の反射波の大きさ
をアナログ情報として記録装置5へ出力する。記録装置
5は、例えばペンレコーダで構成され、各探触子2A〜
21)の走査速度に応じて記録速度を変化させ、各探触
子2A〜2Dごとに記録する。
These flaw detection operations are repeated nine times until reaching the bottom end B of the copper plate 1. In addition, at the same time as these flaw detection operations, the flaw detection device 3
extracts flaw information on the copper plate 1 while generating ultrasonic signals in each of the probes 2A to 2D, and outputs the magnitude of the reflected wave of this flaw information to the recording device 5 as analog information. The recording device 5 is composed of, for example, a pen recorder, and each probe 2A to
21) The recording speed is changed according to the scanning speed, and recording is performed for each probe 2A to 2D.

第2図(a)及び(b)は、それぞれ第1図の超音波自
動探傷装置において、鋼板上の探触子走査面及び傷の出
力波形を示す図である。各”図において、IA〜IHは
鋼板1上の探触子走査面であシ、この内で各探触子走査
面IA〜IDはそれぞれ各探触子“2A〜2Dのエツジ
端Sよシエッジ端NへのX走査に対応し、各探触子走査
面IE〜IHはそれぞれ各探触子2A〜2Dのエツジ端
Nよシエツジ端SへのX走査に対応する。2X〜2zは
鋼板1の傷であシ、この6傷2X〜2Zを探傷した時の
記録装置5がらの出力が3’A〜3Dで示され、この各
出力3A〜3Dは各探触子2A〜2Dの出力に対応して
いる。5aは記録装置5の用紙であシ、この用紙5aは
、第2図(b)の矢印方向に紙送りされる。記録装置5
″からの出力3八〜3Dの各出力波形61A〜66Dと
傷2X〜2zとの対応は、下記の通シに表わされる。
FIGS. 2(a) and 2(b) are diagrams showing output waveforms of a probe scanning surface and flaws on a steel plate, respectively, in the automatic ultrasonic flaw detection apparatus of FIG. 1. In each figure, IA to IH are the probe scanning surfaces on the steel plate 1, and among these, each probe scanning surface IA to ID is the edge edge S of each probe 2A to 2D, respectively. Corresponding to the X scan toward the edge N, each probe scanning plane IE to IH corresponds to the X scan from the edge edge N to the edge edge S of each probe 2A to 2D, respectively. 2X to 2z are scratches on the steel plate 1, and the outputs from the recording device 5 when these six scratches 2X to 2Z are detected are shown by 3'A to 3D, and each of the outputs 3A to 3D corresponds to each probe. It corresponds to 2A to 2D output. Reference numeral 5a indicates a sheet of paper from the recording device 5, and this sheet 5a is fed in the direction of the arrow in FIG. 2(b). Recording device 5
The correspondence between each of the output waveforms 61A to 66D of the outputs 38 to 3D from `` and the scratches 2X to 2z is shown in the following diagram.

出力波形61A 、 62A 、 63Bが傷2X出力
波形64B 、 ’65B が傷2Y出力波形66D 
が傷2z 2A〜2Dを鋼板1のX方向又はY′力方向足前させる
装置では、X方向又はY方向の走査方向の傷記録してい
゛たため、−傷の 有、無は分力、・る75i、鋼板1の検査規格(JI’
5−G−osot、 09’61など)に定められてい
る特定走査線上の傷だけを対象にして評価1判御をしそ
いなても、この傷が特定走査線上 のものかどうかぶいう判定は、単に、記録装置5を見た
だけでは容易に認識することができない□という欠点が
あった”。 □ 〔発明の概要〕 ゛ この発明は、上記の様な従来のものの欠点を改善する目
的でなされたもので、鋼板の薇査規□格に定められてい
る特定走査線上の傷だけを抽出して、データ処理をiい
、これによ□す、鋼板の合否判定を行う様にすることに
より、鋼板の検査規格に定められた通シの傷について、
容易に□、かつ精桝に検査を実施できる超音波探傷デー
タ処理力iを提供する”ものである。 ′ 〔発明の実施例〕 以下、この発明の実施例を図について説明する。
Output waveforms 61A, 62A, 63B are scratches 2X output waveform 64B, '65B are scratches 2Y output waveform 66D
The device that moves the scratches 2z 2A to 2D in the X direction or Y' force direction of the steel plate 1 records scratches in the scanning direction of the X direction or the Y direction. 75i, steel plate 1 inspection standard (JI'
5-G-osot, 09'61, etc.), it is difficult to judge whether or not this flaw is on a specific scan line. □ [Summary of the invention] ゛The purpose of this invention is to improve the above-mentioned drawbacks of the conventional device. This method extracts only the flaws on specific scanning lines specified in the inspection standards for steel plates, processes the data, and uses this to determine pass/fail for the steel plate. As a result, regarding the through-hole scratches specified in the steel plate inspection standards,
Embodiments of the Invention Embodiments of the invention will be described below with reference to the drawings.

第3図は、この発明の一実施例である超音波探傷データ
処理方法において、超音波自動探傷装置のシステムを示
す構成図で、第1図と同一部分は同一符号を用いて表示
してあシ、その詳細な説明は省略する。図において、6
は量子化装置で6.?、この量子化装置6は、探傷装置
3から送られて来る鋼板1の傷で、一番高い波高値の傷
情報を、下記の表に示す様に4段階に分類してコード清
報で表わし、単位区分の傷情報をディジタル化して出力
するものである。
FIG. 3 is a configuration diagram showing a system of an automatic ultrasonic flaw detection device in an ultrasonic flaw detection data processing method that is an embodiment of the present invention, and the same parts as in FIG. 1 are indicated using the same symbols. However, detailed explanation thereof will be omitted. In the figure, 6
is a quantizer and 6. ? , this quantization device 6 classifies the flaw information of the highest wave height value of the flaws on the steel plate 1 sent from the flaw detection device 3 into four levels as shown in the table below and expresses them in code information. , which digitizes and outputs flaw information in unit categories.

7は信号処理装置であり、この信号処理装置7は、量子
化装置6から順次に出力する鋼板1のX走査方向、単位
区分のディジタル化した傷情報を順次に入力、保持して
、連続した所定数、例えば25ケの単位区分からの傷情
報を傷のレベルごとに加算して、傷の最高位レベルと傷
の有った単位区分数を、8つの情報へコード化して出力
するものである。8は計算機システムであり、この計算
機システム8は、信号処理装置7で発生する傷情報を鋼
板1の1枚分保持しておけるメモリを持ち・鋼板1に存
在する傷の長さと位置を判断し、鋼板1の合否判定を行
を機能を持っている。
7 is a signal processing device, and this signal processing device 7 sequentially inputs and holds the digitized flaw information of the unit division in the X scanning direction of the steel plate 1 that is sequentially output from the quantizer 6, and The flaw information from a predetermined number of unit categories, for example 25, is added for each flaw level, and the highest flaw level and the number of flawed unit categories are encoded into eight pieces of information and output. be. Reference numeral 8 denotes a computer system, and this computer system 8 has a memory that can hold information on flaws generated in the signal processing device 7 for one steel plate 1, and judges the length and position of flaws existing in the steel plate 1. , has the function of making a pass/fail judgment for the steel plate 1.

次に、上記第3図に示す超音波自動探傷装置の動作につ
いて説明する。第3図に示す装置の探傷動作は、上記し
た従来例と同じであシ、また、探傷装置3までの信号処
理も上記従来例と同じであるから、ここでは、この発明
による特長とする信号処理について述べる。探傷装置3
が出力する鋼板1の傷アナログ信号は、量子化装置6に
入力され、単位区分ごとに傷のレベルによシデイジタル
化されると共に、信号処理装置7に順次に出力する。信
号処理装置7では、ディジタル化された傷情報を所定数
、例えば25ケの単位区分だけの図示されない信号保持
レジスタに、各レベル別に加算して、25ケの単位区分
中の最高位傷レベルと傷の有った単位区分数を計算機シ
ステム8へ出力する。
Next, the operation of the automatic ultrasonic flaw detection apparatus shown in FIG. 3 will be explained. The flaw detection operation of the apparatus shown in FIG. 3 is the same as that of the above-mentioned conventional example, and the signal processing up to the flaw detection apparatus 3 is also the same as that of the above-mentioned conventional example. Let's talk about processing. Flaw detection device 3
The flaw analog signal of the steel plate 1 outputted by the quantizer 6 is input to the quantization device 6, where it is digitized by the flaw level for each unit division, and is sequentially output to the signal processing device 7. The signal processing device 7 adds a predetermined number of digitized flaw information to a signal holding register (not shown) of only 25 unit divisions for each level, and calculates the highest flaw level in the 25 unit divisions. The number of unit sections with scratches is output to the computer system 8.

計算機システム8では、まず、25ケの単位区分にまと
められた傷情報を、後記するデータ処理メツシュとして
、鋼板1全体での位置付けを考慮して、図示されない計
算機メモリの所定エリアへ格納する。次いで、格納され
た各探触子2八〜2Dの傷情報を、計算機メモリ上で探
傷方向、探傷位置を考慮して、実際の鋼板イメージへ2
次元に展開する。この処理を鋼板101枚分行った上で
、鋼板lの検査規格によりあらかじめ定められた特定走
査線上にかかるデータ処理メツシュ上の傷を選び出す。
The computer system 8 first stores the flaw information organized into 25 units into a predetermined area of the computer memory (not shown) as a data processing mesh, which will be described later, in consideration of its positioning in the entire steel plate 1. Next, the stored flaw information of each of the probes 28 to 2D is transferred to the actual steel plate image on the computer memory, taking into account the flaw detection direction and flaw detection position.
Expand into dimensions. After performing this process for 101 steel plates, flaws on the data processing mesh on a specific scanning line predetermined according to the inspection standard for the steel plate I are selected.

ここで選び出された傷は、上記検査規格にしたがって評
価されなければならない傷であるとして、以降の傷の評
価と合否判定の処理を行う。
The flaws selected here are considered to be flaws that must be evaluated according to the above-mentioned inspection standards, and are subsequently subjected to flaw evaluation and pass/fail determination processing.

これとは逆に、上記特定走査線上にかかるデータ処理メ
ツシュ上にない傷は、別途の基準によって評価されるか
、場合によっては、その対象より除外することもできる
On the contrary, flaws that are not on the data processing mesh on the specific scanning line may be evaluated based on separate criteria, or may be excluded from the evaluation as the case may be.

第4図は、第3図の超音波自動探傷装置において、鋼板
の特定走査線上にかかる傷とかからない傷とを区分する
傷の選択態様を示す図である。図において、8AはX方
向の基準線、8BはY方向の基準線であり、この各基準
線8A、8Bにより囲まれるエリアがデータ処理メツシ
ュ8CTβる。
FIG. 4 is a diagram illustrating how flaws are selected in the automatic ultrasonic flaw detection apparatus of FIG. 3 to distinguish between flaws that occur on a specific scanning line of a steel plate and flaws that do not occur. In the figure, 8A is a reference line in the X direction, 8B is a reference line in the Y direction, and the area surrounded by each of the reference lines 8A and 8B is a data processing mesh 8CTβ.

8DtiX方向に一定間隔の検査規格で指示された特定
走査線、8EFi特定走査線8Dを含むX方向のデータ
処理メッシュタ1jである。8F〜8Hは鋼板1の傷で
おり、との各偶8F〜8Hの個々の傷がデータ処理メツ
シュ列8Eと重なる場合のみ、検査規格上で第1位に取
シ上げる傷であると判断する。第4図に示す様に、傷8
Fと傷8Gが特定走査線8D上にかかる傷であり、傷8
Hが特定走査線8D上にかからない傷である。
This is a data processing mesh 1j in the X direction that includes specific scanning lines 8Dti specified by the inspection standard at constant intervals in the X direction, and 8EFi specific scanning lines 8D. 8F to 8H are flaws on steel plate 1, and only when the individual flaws in each even 8F to 8H overlap with data processing mesh row 8E, it is determined that the flaws are ranked first according to the inspection standards. . As shown in Figure 4, scratch 8
F and scratch 8G are scratches on specific scanning line 8D, and scratch 8
H is a scratch that does not overlap the specific scanning line 8D.

なお、上記実施例では、鋼板1の超音波自動探傷装置に
実施した場合について説明したが、この超音波自動探傷
装置に限定されることなく、X線やレーザ光線を使用し
たもの、及び鋼板1以外の板状形状物の非破壊検査を実
施して、データ処理を行うものにも適用可能な方式であ
る。
In addition, in the above embodiment, a case was explained in which the automatic ultrasonic flaw detection apparatus for steel plate 1 was used, but the invention is not limited to this automatic ultrasonic flaw detection apparatus, and it can also be applied to those using X-rays or laser beams, and to the automatic ultrasonic flaw detection apparatus for steel plate 1. This method can also be applied to non-destructive inspections of other plate-shaped objects and data processing.

また、上記実施例において、鋼板1の傷の内で、検査規
格に定められている特定走査線上にかかる傷とかからな
い傷とを、視覚的に表現するものとして、2次元に展開
した鋼板イメージで、各単位部位と傷の位置、長さ全C
RT表示装置あるいは印字用紙上に出力することが可能
である。
In addition, in the above embodiment, among the flaws on the steel plate 1, a two-dimensional image of the steel plate is used to visually express the flaws that fall on the specific scanning line specified in the inspection standard and those that do not fall on the specific scanning line. , each unit part, the position of the wound, and the total length C
It is possible to output on an RT display device or on printing paper.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した様に、超音波探傷データ処理方
法において、鋼板の検査規格に定められている特定走査
線上の傷だけを抽出して、データ処理を行い、これによ
シ、鋼板の合否判定を行う様にしたので、鋼板の検査規
格に定められた通9の傷について、極めて容易に、かつ
精確に検査が実施でき、特に、鋼板の所要探傷箇所ある
いは探傷走査密度に応じて、鋼板の内質欠陥に対しても
正確な評価1判定ができるなどの優れた効果を奏するも
のである。
As explained above, in the ultrasonic flaw detection data processing method, this invention extracts only flaws on a specific scanning line specified in the inspection standards for steel plates and processes the data, thereby determining whether the steel plate passes or fails. Since the judgment is made, it is possible to carry out the inspection extremely easily and accurately for the nine flaws specified in the steel plate inspection standards. This method has excellent effects such as being able to accurately evaluate 1-1 judgment even for internal quality defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のX走査方式による超音波自動探傷装置の
システムを示す構成図、第2図(a)及び(b)は、そ
れぞれ第1図の超音波自動探傷装置において、鋼板上の
探触子走査面及び傷の出力波形を示す図、第3図は、こ
の発明の一実施例である超音波探傷データ処理方法にお
いて、超音波自動探傷装置のシステムを示す構成図、第
4図は、第3図の超音波自動探傷装置において、鋼板の
特定走査線上にかかる傷とかからない傷とを区分する傷
の選択態様を示す図である。 図において、1・・・鋼板、IA〜IH・・・探触子走
査面、2A〜2D・・・探触子、2X〜2Z 、8F〜
8H・・・傷、3・・・探傷装置、3A〜3D・・・出
力、 4A〜4D・・・送受信ケーブル、5・・・記録
装置、5a・・・用紙、6・・・量子化装置、7・・・
信号処理装置、8・・・計算機システム、8A、8B・
・・基準線、8C・・・データ処理メツシュ、8D・・
・特定走査線、8E・・・データ処理メツシュ列、61
A 、”62A 、 63B 、 64B 。 65B 、 66D・・・出力波形、T・・・トップ端
、B・・・ボトム端、S、N・・・エツジ端である。 なお、各図中、同一符号は同一、又は相当部分を示す。 代理人 大岩増雄 第1図 第2図 (a) 又」 第3図
Figure 1 is a block diagram showing the system of a conventional automatic ultrasonic flaw detection system using the X-scanning method. FIG. 3 is a diagram showing the output waveform of the probe scanning surface and flaws, and FIG. 3 is a configuration diagram showing the system of an automatic ultrasonic flaw detection device in an ultrasonic flaw detection data processing method that is an embodiment of the present invention. FIG. 4 is a diagram showing a flaw selection mode for classifying flaws on a specific scanning line of a steel plate and flaws that do not occur in the automatic ultrasonic flaw detection apparatus shown in FIG. 3. In the figure, 1... Steel plate, IA-IH... Probe scanning surface, 2A-2D... Probe, 2X-2Z, 8F-
8H...Flaw, 3...Flaw detection device, 3A-3D...Output, 4A-4D...Transmission/reception cable, 5...Recording device, 5a...Paper, 6...Quantization device ,7...
Signal processing device, 8... Computer system, 8A, 8B.
...Reference line, 8C...Data processing mesh, 8D...
・Specific scanning line, 8E...Data processing mesh column, 61
A, "62A, 63B, 64B. 65B, 66D...Output waveform, T...Top end, B...Bottom end, S, N...Edge end. In each figure, the same Reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1 Figure 2 (a) Also Figure 3

Claims (1)

【特許請求の範囲】[Claims] 超音波自動探傷装置を用いて、鋼板の表面に探触子を走
査させて、前記鋼板の単位部位に関する傷情報を取シ出
し、この傷情報を、量子化装置によりディジタル化して
1次情報として出力させ、この1次情報を、信号処理装
置によシ順次に入力保持し、所定数の前記1次情報を単
位として信号処理した後、2次情報として出力させ、こ
の2次情報を、計算機システムによシ鋼板単位に記憶し
て2次元に展開することによって・、前記鋼板の決めら
れた特定走査線上にある傷とそうでない傷とに区別し、
それぞれの傷の評価基準圧したがって、前記鋼板の合否
判定を行う様にしたことを特徴とする超音波探傷データ
処理方法。
Using an ultrasonic automatic flaw detection device, a probe is scanned over the surface of the steel plate to extract flaw information regarding unit parts of the steel plate, and this flaw information is digitized by a quantization device as primary information. This primary information is sequentially input and held in a signal processing device, and after signal processing is performed on a predetermined number of the primary information as a unit, the secondary information is output as secondary information. The system stores each steel plate and develops it two-dimensionally, distinguishing between scratches that are on a specific scanning line of the steel plate and scratches that are not.
An ultrasonic flaw detection data processing method characterized in that a pass/fail determination of the steel plate is made based on the evaluation reference pressure of each flaw.
JP59109813A 1984-05-30 1984-05-30 Processing method of ultrasonic flaw detection data Pending JPS60253865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59109813A JPS60253865A (en) 1984-05-30 1984-05-30 Processing method of ultrasonic flaw detection data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109813A JPS60253865A (en) 1984-05-30 1984-05-30 Processing method of ultrasonic flaw detection data

Publications (1)

Publication Number Publication Date
JPS60253865A true JPS60253865A (en) 1985-12-14

Family

ID=14519855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109813A Pending JPS60253865A (en) 1984-05-30 1984-05-30 Processing method of ultrasonic flaw detection data

Country Status (1)

Country Link
JP (1) JPS60253865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0961045A2 (en) 1998-05-29 1999-12-01 Deutsche Star GmbH Chain cage for rolling members

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119980A (en) * 1976-04-01 1977-10-07 Tokyo Keiki Kk Method of and apparatus for processing ultrasonic flaw detection data
JPS58103661A (en) * 1981-12-16 1983-06-20 Mitsubishi Electric Corp Signal processing unit for flaw detecting data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119980A (en) * 1976-04-01 1977-10-07 Tokyo Keiki Kk Method of and apparatus for processing ultrasonic flaw detection data
JPS58103661A (en) * 1981-12-16 1983-06-20 Mitsubishi Electric Corp Signal processing unit for flaw detecting data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0961045A2 (en) 1998-05-29 1999-12-01 Deutsche Star GmbH Chain cage for rolling members

Similar Documents

Publication Publication Date Title
US4441369A (en) Ultrasonic detection of extended flaws
US4947351A (en) Ultrasonic scan system for nondestructive inspection
KR860001348A (en) Ultrasonic Scanning Methods and Devices
US3715914A (en) On site pressure vessel inspection device
JPS6317184B2 (en)
JPS60253865A (en) Processing method of ultrasonic flaw detection data
JPS60253866A (en) Processing method of ultrasonic flaw detection data
KR870001259B1 (en) Steel piece inspection using electronic beam
JPH1078416A (en) Method and device for multi-channel automatic ultrasonic flaw detection of metal plate
JPS58103661A (en) Signal processing unit for flaw detecting data
JP4527216B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2002139478A (en) Creep damage detection method and device of structural material
JPH09145694A (en) Method and apparatus for automatic multichannel ultrasonic flaw detection of rolled metal plate
Schmitz et al. Practical experiences with LSAFT
JPS61138160A (en) Ultrasonic flaw detector
JP2507417B2 (en) Ultrasonic flaw detection method
JPH102887A (en) Method and apparatus for discriminating flaw in object to be inspected
Murugaiyan Time of flight diffraction (TOFD), an advanced non-destructive testing technique for inspection of welds for heavy walled pressure vessels
Gruber et al. Imaging of fatigue cracks in cladded pressure vessels with the SLIC-50
JPH075155A (en) Ultrasonic method for deciding type of flaw automatically
JPS6162859A (en) Ultrasonic flaw detection data processing system
JP2004012369A (en) Ultrasonic flaw detection equipment and ultrasonic flaw detection method
Hall et al. A Real-Time SAFT System Applied to the Ultrasonic Inspection of Nuclear Reactor Components
Wycherley Non-destructive Testing of Billets for Internal and Surface Defects
JPS6249254A (en) Processing of non-destructive flaw detection data