JPS58103661A - Signal processing unit for flaw detecting data - Google Patents

Signal processing unit for flaw detecting data

Info

Publication number
JPS58103661A
JPS58103661A JP56202953A JP20295381A JPS58103661A JP S58103661 A JPS58103661 A JP S58103661A JP 56202953 A JP56202953 A JP 56202953A JP 20295381 A JP20295381 A JP 20295381A JP S58103661 A JPS58103661 A JP S58103661A
Authority
JP
Japan
Prior art keywords
information
flaw
flaws
steel plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56202953A
Other languages
Japanese (ja)
Inventor
Muneo Matsutani
松谷 宗雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56202953A priority Critical patent/JPS58103661A/en
Publication of JPS58103661A publication Critical patent/JPS58103661A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To permit recording of existing places, length and width of flaws by X-scanning the surface of a plate material at a right angle to the rolling direction, drawing out the flaw information in unit positions, quantizing the same, then processing and storing the same as the flaw information in steel plate units and making logical judgement. CONSTITUTION:A steel plate 1 which is a material to be inspected is conveyed and controlled in an arrow direction. Ultrasonic probes 2A-2D are juxtaposed at equal intervals in the rolling direction of the plate 1, and are so driven as to scan the inside of the plate 1 in the X direction at a right angle to the rolling direction. A flaw detector 3 transmits ultrasonic signals to the plate 1 and extracts flow information from the reflected waves. A quantizing device 6 classifies the information in four stages; absence of flaws, light flaws, about middle flaws and heavy flaws, and applies said information as code information to a signal processing unit 7. The unit 7 adds the information from the unit section in the X direction, and applies the number of the unit sections having flaws as 8 sets of code information to a logical judging device 8. The device 8 has a device for storing the code information to be outputted by the unit 7 for one sheet of the steel plate, decides the existing places, and the length and width of the flaws in the rolling direction of the plate 1 and feeds the same to a recorder 9.

Description

【発明の詳細な説明】 この発明は、厚鋼板等の板材の主圧延方向と直角に超音
波探触子を走査させるいわゆるX走査の超音波自動探傷
装置における傷情報信号処理を高精度に行なうための方
式に関するものである1、 一般的に厚鋼板の超音波探傷では鋼板の圧延方向に平行
に超音波探触子を走査させるX走査方式と、圧延方向に
直角に超音波探触子を走査させるX走査方式の2方式が
あり、それぞれ一長一短がある。
[Detailed Description of the Invention] This invention performs flaw information signal processing with high accuracy in a so-called X-scan ultrasonic automatic flaw detection device that scans an ultrasonic probe perpendicular to the main rolling direction of a plate material such as a thick steel plate. 1. In general, ultrasonic testing of thick steel plates involves two methods: an X-scanning method in which an ultrasonic probe is scanned parallel to the rolling direction of the steel plate, and an There are two scanning methods, the X-scanning method, and each has its advantages and disadvantages.

圧延方向と傷の形態には深い関連があり、一般に圧延方
向に傷が伸展していることが知られているため、傷の長
さはX走査方式で検出するのが良い0他方、微細な傷を
十分な検出部にで検出するためKは、X走査方式の方が
すぐれている。
There is a close relationship between the rolling direction and the form of flaws, and it is generally known that flaws extend in the rolling direction, so it is best to detect the length of flaws using the X scanning method. For K, the X-scanning method is better because it detects flaws with sufficient detection parts.

従来、X走査方式の自動探傷装置では第1図に示すもの
があった。第1図において1xltj:被検査材の鋼板
で、搬送制御機構装置(図示せず)により矢印方向へ搬
送、停止の制御がされる。
Conventionally, there has been an automatic flaw detection device using the X-scanning method, as shown in FIG. In FIG. 1, 1xltj is a steel plate to be inspected, and is controlled to be transported and stopped in the direction of the arrow by a transport control mechanism (not shown).

(2ム)S(2D)Fi超音波探触子で鋼板の圧延方向
に等間隔に4個並べられ、探触子ブロック追従機構装置
(図示せず)IICよりて鋼板の内部を圧延方向と直角
に、即ちX方向に走査する。ここで探触+ (2A) 
、−(21))の個数は4個として説明(たが、いくつ
かの探触子をブロック化して構成したり、あるいは探触
子数を増加したシ、又ブロック間の距離は小さくすれば
1回のX走査でカバーする探傷領域が大きくなるため、
探傷能率を向上させる性能を持つ。
Four (2mm)S(2D)Fi ultrasonic probes are arranged at equal intervals in the rolling direction of the steel plate, and the interior of the steel plate is aligned with the rolling direction by a probe block tracking mechanism device (IIC) (not shown). Scan at right angles, ie in the X direction. Probe here + (2A)
, -(21)) is explained as 4 (however, if some probes are configured as blocks, or if the number of probes is increased, or if the distance between blocks is reduced) Since the flaw detection area covered by one X scan becomes larger,
It has the ability to improve flaw detection efficiency.

(31ti探傷装置であり、探触子(2A) −= (
2D)が銅板(11へ送信する超音波信号の制御と共に
、探触子(2A) 、−(2D)が鋼板(りから受信す
る反射波の中から銅板内部傷であり、かつもつとも波高
の高い傷情報をサンプリングして抽出するものである。
(31ti flaw detection device, probe (2A) -= (
2D) controls the ultrasonic signals sent to the copper plate (11), and the probes (2A) and -(2D) detect internal flaws in the copper plate from among the reflected waves received from the steel plate (11), and the wave height is also high. This is to sample and extract flaw information.

(4A) S<4D) Fi送受信ケーブルで、探触子
(2A) 、−(2p)と探傷装置(3)との上記信号
の送受信を行なう。F)) Fi記録装置で、探傷装置
(3)で抽出した傷情報を走査速度に応じて記録速度を
変化させながら、各探触子(2ム) 5(2D)毎に記
録するものである。
(4A) S<4D) The above signals are transmitted and received between the probes (2A), -(2p) and the flaw detection device (3) using the Fi transmission/reception cable. F)) The Fi recording device records the flaw information extracted by the flaw detection device (3) for each probe (2D) while changing the recording speed according to the scanning speed. .

次に動作について輯明する。鋼板(1)を第1図の装置
に送り込み、鋼板トップ端の検出信号によって鋼板を停
止させる。探触子(2A) −(2D) if鋼板表面
へ水膜を介して接触すると共に、第2図(a) K示す
ように鋼板トップ端及び8エツジ端を検出するまで、鋼
板の外側へ移動する。この後探触子(2A)−(2D)
 Fi鋼板Nエツジ側へ圧延方向に直角走査即ちX走査
して、Nエツジ端部まで移動して1回の探傷が終了する
。次に探触子(2A)−(2D)各々を、鋼板ボトム側
へ1ブロック分だけ圧延方向にずらして、Nエツジ端よ
り8エツジ端へX走査探傷の2回目が終了する0これら
1往復分の探傷が終了したところで、探傷済の部分を搬
送し、隣接した゛部分を2往復目に探傷する。これらの
繰り返しを銅板ボトム端まで行う。
Next, we will explain the operation. A steel plate (1) is fed into the apparatus shown in FIG. 1, and the steel plate is stopped by a detection signal from the top end of the steel plate. Probes (2A) - (2D) contact the steel plate surface through the water film and move to the outside of the steel plate until they detect the top edge and 8th edge of the steel plate as shown in Figure 2 (a) K. do. After this, probe (2A)-(2D)
One flaw detection is completed by scanning perpendicularly to the rolling direction, ie, X scanning, to the N edge side of the Fi steel plate and moving to the N edge end. Next, each of the probes (2A) to (2D) is shifted in the rolling direction by one block toward the bottom side of the steel plate, and the second X-scan flaw detection is completed from the N edge end to the 8 edge end. When the flaw detection for the first part is completed, the flaw-detected part is transported, and the adjacent part is flaw-detected on the second round trip. Repeat these steps until you reach the bottom edge of the copper plate.

これら探傷動作と同時に、探傷装置(3)は探触子(2
A) 5(2D)に超音波信号を発生させ、鋼板内部へ
超音波を送信させると共に、送信波に対応して入力する
反射波の中から、鋼板内部傷情報を抽出し、傷内からの
反射波の大きさをアナログ情報として、記録装置(5)
へ出力する。
Simultaneously with these flaw detection operations, the flaw detection device (3)
A) 5 (2D) generates an ultrasonic signal and transmits the ultrasonic wave inside the steel plate, and extracts information on the internal flaws in the steel plate from the reflected waves that are input in response to the transmitted waves. A recording device (5) that records the magnitude of the reflected wave as analog information.
Output to.

記録装置(5)とは2例えばペンレコーダで構成され、
探触子(2A) 5(2D)の走査速度に応じて記録速
度を変化させ、各探触子(2ム)−(2D)毎に記録す
ると、第2図(1))のようになる〇第2図(a) 、
 (′b)において、(1ム)−(1111)は鋼板上
の探触子の走査面であり、(1ム)−(ID)がそれぞ
れ探触子(2ム) 5(2D)の8エツジ端よりNエツ
ジ端へのX走査* (1K) −= (IB)がそれぞ
れ探触子(2ム) 5(2D)のNエツジ端より8エツ
ジ端へのX走査に対応する。(2x)S(2z)は鋼板
の傷でありこの傷を探触子が走査した時のペンレコーダ
出力が(3ム)−(3D)であり、それぞれ探触子(2
ム)−(2D)の出力に対応する。
The recording device (5) is composed of, for example, a pen recorder,
If you change the recording speed according to the scanning speed of probes (2A) 5 (2D) and record for each probe (2M) - (2D), the result will be as shown in Figure 2 (1)) 〇Figure 2 (a),
In ('b), (1 MU) - (1111) is the scanning plane of the probe on the steel plate, (1 MU) - (ID) is the probe (2 MU), 5 (2D), and 8. X scanning from the edge end to the N edge end* (1K) -= (IB) corresponds to the X scanning from the N edge end to the 8th edge end of the probe (2M) 5 (2D). (2x)S(2z) is a scratch on the steel plate, and when the probe scans this scratch, the pen recorder output is (3mm) - (3D), and the probe (2z) is the scratch on the steel plate.
(2D).

(4)はペンレコーダ装置であり、(5)がペンレコー
ダ用紙で矢印の方向に紙送9される。ペンレコーダ出力
波形(61A) 5(66D)と傷(2:[)−(2Z
)との対応は波形(61ム1(62ム) 、 (65B
)が傷(2X) Vc 、波形(64B) e (65
B)が傷(2Y)に、波形(66D)が傷(2z)に各
々対応する0従来の自動探傷で、探触子をX方向に走査
させる装置では、X走査方向の傷情報をそのままアナロ
グ配録していたため、傷の有無はわかるが、圧延方向の
長さと、各探触子が検出した傷相互の関連位置が記録紙
を見た・、だけではわからなかりた〇 この発明は上記のような欠点を解消するためになされた
もので、記録された傷情報から傷の長さ、相互関連位置
が直視できるように、データ処理し、記録するようにし
た鋼板の探傷データ処理装置を提供することを目的とし
ている。
(4) is a pen recorder device, and (5) is pen recorder paper, which is fed 9 in the direction of the arrow. Pen recorder output waveform (61A) 5 (66D) and scratches (2: [) - (2Z
) is the waveform (61mu1 (62mu), (65B
) is scratched (2X) Vc, waveform (64B) e (65
B) corresponds to the flaw (2Y), and the waveform (66D) corresponds to the flaw (2z).0 In conventional automatic flaw detection, in devices that scan the probe in the X direction, the flaw information in the X scanning direction is directly analog. Since the recording paper was recorded, the presence or absence of scratches could be known, but the length in the rolling direction and the relative position of the scratches detected by each probe could not be determined just by looking at the recording paper. This was developed in order to solve the above drawbacks, and it is a steel plate flaw detection data processing device that processes and records data so that the flaw length and mutually related positions can be directly observed from the recorded flaw information. is intended to provide.

以下、この発明の一実施例を図について説明する。第3
図゛において、第1図と同一符号は同−又は相轟部分を
表わす0 (6)ハ量子化装置で、探傷装置(3)から送られてく
る銅板内部の傷のうち、一番高い波高の傷信号をウィン
ドコンパレータ等、を用いて傷無し。
An embodiment of the present invention will be described below with reference to the drawings. Third
In Fig. 1, the same reference numerals as in Fig. 1 represent the same or phased parts. Using a window comparator, etc. to detect the scratch signal without scratches.

軽い傷、中程、度の傷9重い傷の4段階に分類し。Classified into four levels: light, moderate, severe, and 9 severe.

第1表に示すような傷の程度に応じた4つのコード情報
で表わして、単位区分の傷情報をデイジタル信号に変換
して出力するものである。
The flaw information in unit categories is expressed by four code information according to the degree of flaw as shown in Table 1, and is converted into a digital signal and output.

第  1  表 (7)は信号処理装置で、量子化装置(6)から順次出
力する鋼板0)のX走査方向単位区分のディジタル傷情
報を順次入力、保持して、連続した所定数、たとえば2
5個の単位区分からの傷情報を御名コード別に加算して
傷のレベルの最高位のものと、傷の有った単位区分数を
、8つのコード情報に表わして出力するものとする。
Table 1 (7) shows a signal processing device that sequentially inputs and holds the digital flaw information of unit divisions in the X-scanning direction of the steel plate 0) sequentially output from the quantizer (6), and processes a predetermined number of continuous data, for example, 2
The flaw information from five unit categories is added for each name code, and the highest flaw level and the number of flawed unit categories are output as eight code information.

(8)は論理判断装置であり、信号処理装置 (7)で
発生する傷の8つのコード情報を鋼板1枚分記憶してお
ける記憶装置を持ち、探触子(2人)−(2D)のX走
査往彷探傷による傷情報を、鋼板(1)の各部分(IA
) 5(IH)に展開、接続して、鋼板(1)のどこに
どの程度の長さの傷が存在するかを判断し、記録装置(
9)へ出力する機能を持つ0(9)は記録装置で、論理
判断装置(8)が判定した傷の存在個所−1長さを実際
の鋼板上にレイアウトしてディジタル記録する印字装置
である。
(8) is a logic judgment device, which has a memory device that can store eight code information of the scratches generated by the signal processing device (7) for one steel plate, and the probe (2 people) - (2D). The flaw information obtained by the
) 5 (IH), determine where and how long the flaw is on the steel plate (1), and connect it to the recording device (
0 (9) is a recording device that has the function of outputting to 9), and is a printing device that lays out the flaw location minus 1 length determined by the logic judgment device (8) on the actual steel plate and records it digitally. .

次に動作について説明する。鋼板(1)を第3図の装置
に送り込み、鋼板トップ端の検出信号によって鋼板を停
止させる。探触子ブロック(2ム)−= (2D)は鋼
板表面へ水膜を介して接触すると共に、鋼板トラフ端及
びSエツジ端を検出するまで、鋼板の外側へ移動する。
Next, the operation will be explained. A steel plate (1) is fed into the apparatus shown in FIG. 3, and the steel plate is stopped by a detection signal from the top end of the steel plate. The probe block (2M) -= (2D) comes into contact with the surface of the steel plate through the water film and moves to the outside of the steel plate until it detects the trough end and S edge end of the steel plate.

この後、探触子ブロック(2ム)−(2D)は−板Nエ
ツジ側へ圧処方向に直角走査即ちX走査してNエツジ端
部まで移動して1回の探傷が終了する。次に探触子ブロ
ック(2ム)−(2D)各々を、銅板ボトム側へ1ブロ
ック分圧延方向にずらして、Nエツジ端より8エツジ端
へX゛走査探傷の2回目が終了する。これら1往俵分の
探傷が終了したところで、探傷済の部分を搬送し、1i
il接した部分を2往゛復目に探傷する。これらの繰り
返しを行う。
Thereafter, the probe block (2M)-(2D) is moved toward the N edge side of the plate at right angles in the pressure direction, that is, X scanning, to the end of the N edge, and one flaw detection is completed. Next, each of the probe blocks (2M) to (2D) is shifted one block toward the bottom of the copper plate in the rolling direction, and the second X' scan flaw detection is completed from the N edge end to the 8 edge end. When the flaw detection for one bale is completed, the inspected part is transported and 1i
The part in contact with the il should be inspected twice. Repeat these steps.

これら探傷動作と同時に、探傷装置(31a探触子(2
A)−(2D)に超音波信号を発生させ、鋼板内部へ超
音波を送信させると共に、送信波に対応して入力する反
射波の中から、鋼板内部傷情報を抽出し、傷内からの反
射波の大きさをアナログ情報として、量子化回路(6)
へ出力する0量子化回路(6)では単位区分毎に傷のレ
ベルによりディジタル化すると共に信号処理装置(7)
に順次出力する。信号処理装置(7)では、順次入力さ
れる単位区分毎のコード化された傷情報を所定数、たと
えば250単位区分だ社の信号保持回路(図示せず)の
レジスタに各コード別に加算して25単位区分中の最高
位レベルの傷と。
At the same time as these flaw detection operations, the flaw detection device (31a probe (2)
A) - (2D) generates an ultrasonic signal and transmits the ultrasonic wave inside the steel plate, and extracts information on the internal flaws in the steel plate from the reflected waves that are input in response to the transmitted waves. A quantization circuit (6) uses the magnitude of the reflected wave as analog information.
The zero quantization circuit (6) outputs data to the signal processing device (7), which digitizes each unit section according to the flaw level.
output sequentially. The signal processing device (7) adds a predetermined number of coded flaw information for each unit category, which is input sequentially, to a register of a signal holding circuit (not shown) of a 250 unit category, for each code. The highest level of damage in the 25 credit category.

傷の有った単位区分数を25単位区分のデータが集まり
た時点で論理判断装置(8)へ出力する。
The number of damaged unit sections is output to the logical judgment device (8) when data for 25 unit sections are collected.

論理判断装置(8)では25単位区分のまとめられた傷
情報を、鋼板全体での位置付けを考慮して、記憶装置(
図示せず)の所定のエリアに格納するが、記憶装置上の
傷情報の構成は、鋼板(1)の各部分(1人)−(IH
)に展開、接続して鋼板(1)上の傷°の長さと位置を
把握出来る様に記憶する。
The logic judgment device (8) stores the collected flaw information in 25 unit categories in the storage device (
(not shown), but the structure of the scratch information on the storage device is as follows: each part (one person) of the steel plate (1) - (IH
) and connect it to the steel plate (1) and memorize it so that you can understand the length and position of the flaw on the steel plate (1).

その実施方法を順を追って説明すると、信号処理装置(
7)からの25単位区分のまとめられた傷情報は第4図
の様に各探触子(2A) 、−(2D)毎に単位区分当
たりの傷情報で構成された(AI)−(ムn) I (
H)−(In) I (B1)−(Bn) 、 (11
)−=(Fn) I(01) 、−(On) 、 (G
1) 5(Gn) 、 (DI) −(Dn) 、 (
Hl) −=(Hn)からなり論理判断装置(8)によ
り計算機メモリに順次大”力される。−相入力した傷情
報を第5図のように計算機メモリ上で鋼板(1)の各部
分に対応して展開した鋼板イメージに変換を行う0これ
を鋼板(1)1枚分行う。
To explain the implementation method step by step, the signal processing device (
The flaw information summarized in 25 unit categories from 7) is composed of flaw information per unit category for each probe (2A) and -(2D) as shown in Figure 4. n) I (
H)-(In) I (B1)-(Bn), (11
)−=(Fn) I(01) , −(On) , (G
1) 5(Gn), (DI) −(Dn), (
Hl) - = (Hn), which is sequentially inputted into the computer memory by the logical judgment device (8). -The input flaw information is stored in the computer memory for each part of the steel plate (1) as shown in Convert to the developed steel plate image corresponding to 0 This is done for one steel plate (1).

鋼板イメージに変換された計算機メモリ上の鋼板(1)
1枚分のデータを元に論理判断装置(8)が傷の巾及び
長さを求めることが出来る。
Steel plate on computer memory converted to steel plate image (1)
Based on the data for one sheet, the logical judgment device (8) can determine the width and length of the scratch.

傷の巾及び長さを求める方法としては、第5図の計算機
メモリデータより(Aす* (”) * (”)(IF
F) 、 (01)・・・、 (A2) I (15)
 I (B2) I (F5) 、 (02)・・・、
(ム’) * (El)t (”s) s (Fすe 
(’6)・・・、の順に傷情報を取り出し傷の連続性を
判断することにより傷のY方向の長さが判断出来る。又
(ムリ。
The width and length of the wound can be determined by using the computer memory data shown in Figure 5 (Asu * (”) * (”) (IF
F) , (01)..., (A2) I (15)
I (B2) I (F5) , (02)...,
(Mu') * (El)t (”s) s (Fse
By extracting the flaw information in the order of ('6)... and determining the continuity of the flaw, the length of the flaw in the Y direction can be determined. Again (I can’t do it.

(A2)、(ム5) 、  (A4) 、  (A5)
・・・(B1) 、  (B2) 、  (B3) 。
(A2), (Mu5), (A4), (A5)
...(B1), (B2), (B3).

(B4) t (B5)・・・の順に傷の情報を取シ出
し傷の連続性を判断することKより傷のX方向の巾が判
断出来る。
(B4) The width of the scratch in the X direction can be determined from K by extracting the scratch information in the order of (B5) and determining the continuity of the scratch.

尚、ここで第4図の実施例において鋼板X方向の分割は
6となっているが、これは単位区分の大きさの探触子個
数及び鋼板の板巾等から規定されるもので6に限らない
In the example shown in Fig. 4, the steel plate is divided into 6 in the X direction, but this is determined by the number of probes of the unit division size, the width of the steel plate, etc. Not exclusively.

記録装置(9)では、1枚の鋼板全面を長方形に展開し
た形を印字用紙上にレイアウトして、その長方形上のど
こに、どれだけの巾及び長さの傷があるかを一目でわか
るように記録する。その記録例を第6図に示す0 第6図について説明する。 (9’)は記録用紙であり
高速ディジタル印字され、矢印の方向へ紙送りされるo
(9ム)は超音波探傷を行なった鋼板の名称・仕様など
の鋼板情報である。(9B)は傷なし箇所で(・)で記
録出力されている。(9X) −=(9z)は傷あり箇
所で凶で記録出力されている。
In the recording device (9), a rectangular shape of the entire surface of a steel plate is laid out on printing paper so that it can be seen at a glance where on the rectangle, and how wide and how long the flaw is. to be recorded. An example of the recording is shown in FIG. 6. FIG. 6 will be explained below. (9') is a recording paper that is printed digitally at high speed and is fed in the direction of the arrow.
(9m) is steel plate information such as the name and specifications of the steel plate that was subjected to ultrasonic flaw detection. (9B) is a spot with no scratches and is recorded and output as (.). (9X) -=(9z) is a damaged area and is recorded and output as bad.

なお9以上は厚鋼板の超音波探傷装置の実施例について
説明したが、超音波探傷装置に限定されることなく、X
#を使用したもの、厚鋼板以外の板状形状物等の非破壊
検査を実施する場合にX走査して得られる信号をデータ
処理するものに適用可能な方式である。また得られた傷
の位置、長さを記録するため、高速印字装置として説明
したが、 CRT等画面画面表示ことも可能である。
In addition, although the embodiments of the ultrasonic flaw detection apparatus for thick steel plates have been described above, the examples are not limited to ultrasonic flaw detection apparatuses.
This method is applicable to those using #, and those that process signals obtained by X scanning when performing non-destructive inspection of plate-shaped objects other than thick steel plates. Furthermore, in order to record the position and length of the scratches obtained, although the description has been made using a high-speed printing device, it is also possible to display the results on a screen such as a CRT.

以上のように、この発明によって機械の動きは、探触子
の傷検出能の点で有利なX走査方式を行いながら、傷情
報のデータ処理によって本来9判定したいY方向の傷の
長さと位置を論理判断して算出することが出来る。
As described above, with this invention, the movement of the machine uses the X scanning method, which is advantageous in terms of the flaw detection ability of the probe, while processing the flaw information to determine the length and position of flaws in the Y direction. can be calculated by logical judgment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なX走査の超音波自動探傷システムの構
成図、第2図(!L)は一般的な探傷方法を説明する図
、第2図(b)は一般的システムでの傷の出力例を示す
図、第3@は本発明を実現するためのX走査の超音波自
動探傷システムの構成図、第4図は鋼板上の探触子走査
パターンと単位区分データ図、第5図は第4図の傷デー
タをメモリ上に展開、接続したデータ図、第6図は本発
甲で傷を記録用紙に出力した例を示す図である 図において、(1)は厚鋼板、(2)は探触子、(3)
は探傷装置、(41ti探傷データ送受信ケーブル、(
6)は量子化回路、(7)は信号処理装置、(8)は論
理判断装置、(9)はディジタル記録装置である。なお
図中−−符号は同一または相当部分を示す0代理人゛葛
 野 信 − 第1図 ぐ ト 署 第4図 第5図 /A   IE    IB   IF   ICtケ
  It)   1111にM
Figure 1 is a configuration diagram of a general X-scanning ultrasonic automatic flaw detection system, Figure 2 (!L) is a diagram explaining a general flaw detection method, and Figure 2 (b) shows flaws in a general system. Figure 3 shows an example of the output of The figure shows a data diagram in which the scratch data in Figure 4 is developed and connected in memory, and Figure 6 is a diagram showing an example of outputting scratches on recording paper using this method. (2) is the probe, (3)
is flaw detection equipment, (41ti flaw detection data transmission/reception cable, (
6) is a quantization circuit, (7) is a signal processing device, (8) is a logic judgment device, and (9) is a digital recording device. In addition, in the figure -- the code indicates the same or equivalent part 0 Agent Shin Kuzuno - Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 板材表面を圧延方向に直角にX走査し、単位部位に関す
る傷情報を取り出す自動探傷装置と。 上記傷情報をディジタル化し、1次情報として出力する
量子化装置と、上記1次情報を順次入力保持し、所定数
の1次情報を単位として信号処理した後、傷の2次情報
を出力する信号処理装置と、上記2次情報を鋼板単位に
記憶する装置と、その記憶装置上の傷情報を検索するこ
とによって、実際の傷の存在個所と傷の圧延方向の長さ
及び巾を判定する論理判断装置と、それらの傷の存在個
所と傷の長さ及び巾を記録する記録装置とを備えた板材
の探傷データ信号処理装置。
[Scope of Claims] An automatic flaw detection device that X-scans the surface of a plate material perpendicular to the rolling direction and extracts flaw information regarding a unit part. A quantization device that digitizes the flaw information and outputs it as primary information; and a quantization device that sequentially inputs and holds the above primary information, performs signal processing on a predetermined number of primary information units, and then outputs secondary information about the flaw. A signal processing device, a device that stores the above-mentioned secondary information for each steel plate, and a device that searches the flaw information on the storage device to determine the actual location of the flaw and the length and width of the flaw in the rolling direction. A flaw detection data signal processing device for plate material, comprising a logic judgment device and a recording device for recording the locations of flaws and the length and width of the flaws.
JP56202953A 1981-12-16 1981-12-16 Signal processing unit for flaw detecting data Pending JPS58103661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56202953A JPS58103661A (en) 1981-12-16 1981-12-16 Signal processing unit for flaw detecting data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56202953A JPS58103661A (en) 1981-12-16 1981-12-16 Signal processing unit for flaw detecting data

Publications (1)

Publication Number Publication Date
JPS58103661A true JPS58103661A (en) 1983-06-20

Family

ID=16465893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56202953A Pending JPS58103661A (en) 1981-12-16 1981-12-16 Signal processing unit for flaw detecting data

Country Status (1)

Country Link
JP (1) JPS58103661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253865A (en) * 1984-05-30 1985-12-14 Nippon Kokan Kk <Nkk> Processing method of ultrasonic flaw detection data
JPS6162859A (en) * 1984-09-05 1986-03-31 Nippon Kokan Kk <Nkk> Ultrasonic flaw detection data processing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392186A (en) * 1977-01-25 1978-08-12 Nippon Steel Corp Surface wave process ultrasonic flaw detector
JPS5433086A (en) * 1977-08-19 1979-03-10 Hitachi Ltd Defect area rate measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392186A (en) * 1977-01-25 1978-08-12 Nippon Steel Corp Surface wave process ultrasonic flaw detector
JPS5433086A (en) * 1977-08-19 1979-03-10 Hitachi Ltd Defect area rate measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253865A (en) * 1984-05-30 1985-12-14 Nippon Kokan Kk <Nkk> Processing method of ultrasonic flaw detection data
JPS6162859A (en) * 1984-09-05 1986-03-31 Nippon Kokan Kk <Nkk> Ultrasonic flaw detection data processing system

Similar Documents

Publication Publication Date Title
Ejiri et al. A process for detecting defects in complicated patterns
US4448532A (en) Automatic photomask inspection method and system
US5345514A (en) Method for inspecting components having complex geometric shapes
US4794647A (en) Automatic optical inspection system
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
US5635645A (en) Method of compressing data in an ultrasonic pipe inspection probe
US4537073A (en) Inspection method of square billet using electronic scanning
JPH07318498A (en) Non-contact surface-flaw detecting method and non-contact surface-flaw detecting device
JPS6361612B2 (en)
JPS6317184B2 (en)
JPS58103661A (en) Signal processing unit for flaw detecting data
JPS58134372A (en) Pattern checking device
RU2171469C1 (en) Technology of nondestructive test of quality of object and gear for its implementation
JPS60253865A (en) Processing method of ultrasonic flaw detection data
JPH0763699A (en) Flaw inspection apparatus
JPS60253866A (en) Processing method of ultrasonic flaw detection data
JPS63222244A (en) Surface inspector
JPH09145694A (en) Method and apparatus for automatic multichannel ultrasonic flaw detection of rolled metal plate
JP2633673B2 (en) Surface inspection equipment
JPH102887A (en) Method and apparatus for discriminating flaw in object to be inspected
JPH1082766A (en) Ultrasonic flaw detector and unit for assisting discrimination of defect
JPS59197854A (en) Ultrasonic flaw detector
JPH0199174A (en) Shape recognizing device
JPS5860253A (en) Ultrasonic flaw detector
JPH04332855A (en) Inspecting apparatus of surface defect of steel plate