JPS60252951A - Generation of digital graphic signal - Google Patents
Generation of digital graphic signalInfo
- Publication number
- JPS60252951A JPS60252951A JP59109007A JP10900784A JPS60252951A JP S60252951 A JPS60252951 A JP S60252951A JP 59109007 A JP59109007 A JP 59109007A JP 10900784 A JP10900784 A JP 10900784A JP S60252951 A JPS60252951 A JP S60252951A
- Authority
- JP
- Japan
- Prior art keywords
- equation
- displacement
- oval
- starting point
- comparison method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/552—Powers or roots, e.g. Pythagorean sums
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Optimization (AREA)
- General Engineering & Computer Science (AREA)
- Controls And Circuits For Display Device (AREA)
- Processing Or Creating Images (AREA)
- Image Generation (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は、グラフィクディスプレイ装置や数値工作機械
勢に使用されるディジタル図形信号発生方法に関するも
のである。TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for generating digital graphic signals used in graphic display devices and numerical machine tools.
(従来技術)
円等の線図形を高速・高精度で発生する必要がある。こ
のため、これまで各種の図形発生アルゴリズムが研究さ
れ、それらをハードウェア化した線図形発生器が提案さ
れている。(Prior art) It is necessary to generate line figures such as circles at high speed and with high precision. For this reason, various graphic generation algorithms have been studied, and line graphic generators that incorporate these algorithms into hardware have been proposed.
従来の線図形発生法として、変位比較法がよく用いられ
ている。As a conventional line figure generation method, a displacement comparison method is often used.
変位比較法は、例えば■釜江、小杉、星野:1図形のド
ツト表示 信学論Vo1.56−A、 No、7. P
、40j(July。The displacement comparison method is, for example, ■Kamae, Kosugi, Hoshino: Dot display of one figure IEICE Theory Vol. 1.56-A, No. 7. P
, 40j (July.
1973) ■B、 W、 Jordan、 Jr、、
W、 J、 Lannon、 B、 D、 Ho1m
:”An improved a1gori仁hIII
for the generation of no
nparametriccurves” IEICE
Trans、 C−22,No、+2. P、+052
(Dec、、 +973)岬に記載されておシ、発生
すべき線図形の方程式%式%(1)
とした時、始点を含むすでに選択したドツトの次に選択
すべきドツトを
1f mtnl f(pgl = l f(pj)l
then take pj (2)(1,jCll l
=1,2909.8)K基づき、ひとつを順次選択し第
6図に示す各次候補ドツトの中から生成する方法である
(lについては第6図参照)。1973) ■B, W, Jordan, Jr.
W, J, Lannon, B, D, Ho1m
:”An improved a1gorijin hIII
for the generation of no
nparametric curves” IEICE
Trans, C-22, No, +2. P, +052
(Dec,, +973) When the equation of the line figure written on the cape and to be generated is % formula % (1), the dot to be selected next to the already selected dot including the starting point is 1f mtnl f( pgl = l f(pj)l
then take pj (2) (1,jCll l
=1,2909.8) This is a method of sequentially selecting one dot based on K and generating it from among the candidate dots of each degree shown in FIG. 6 (see FIG. 6 for l).
式(1)は、第7図に示すように%3次元物体* =
f(x+y) (3)
と17平面(z=0 )との交線と考えることができ、
f(Pl)はX7平面からのド、)PIKおける変位を
示している。そして式(2)で変位の絶対値を比較し、
最小の変位を有する候補ドツトを最適ドツトとして選択
する。Equation (1) is expressed as %3D object* = as shown in Figure 7.
It can be considered as the intersection line between f(x+y) (3) and the 17 plane (z=0),
f(Pl) indicates the displacement in )PIK from the X7 plane. Then, compare the absolute value of the displacement using equation (2),
The candidate dot with the smallest displacement is selected as the optimal dot.
特K f (X17)が2次曲線の場合でかつ、始点が
線図形上にある場合には、式(5)の2の値は、単純に
加減算のみで計算できるのが特徴である。When K f (X17) is a quadratic curve and the starting point is on a line figure, the value of 2 in equation (5) can be calculated simply by addition and subtraction.
しかし、このやり方で、線図形として座標軸の回転を伴
った楕円を発生させる場合には、始点が必ずしも線図形
上にないため、始点の座標を式(5)に代入して、まず
変位2の初期値をめる必要がある。その際、乗算機能が
必要となりハードウェアが複雑化し好ましくない。すな
わち、座標軸の回転を伴った楕円の方程式を
f(X、y) = Ax2+By2+ Cxy+ G
== 0 (4)とし、始点の座標をP、(!、l y
、) とした時に、変位2の初期値2を
z、 = f(P、) = Ax、+By、 + Cx
、y、 + G (5)として、計算しなければならな
いという問題点がある。However, when using this method to generate an ellipse with rotation of the coordinate axes as a line figure, the starting point is not necessarily on the line figure, so by substituting the coordinates of the starting point into equation (5), first calculate the displacement 2. It is necessary to set the initial value. In this case, a multiplication function is required, which complicates the hardware, which is undesirable. In other words, the equation of an ellipse with rotation of the coordinate axes is f(X, y) = Ax2+By2+ Cxy+ G
== 0 (4), and the coordinates of the starting point are P, (!, l y
, ), then the initial value 2 of displacement 2 is z, = f(P,) = Ax, +By, + Cx
, y, + G (5).
(本発明の目的)
本発明は、この様な従来技術における問題点に鑑みてな
されたもので、その目的は、方程式t(x、y) =A
x2+By2+Cxy+G= 0 (ただしGは整数)
で記述される座標軸の回転を伴ったディジタル楕円信号
を、変位比較法を用い、単純に加減算機能のみで高速・
高精度でかつ、できるだけ簡単な構成で発生できる図形
発生方法を提供しようとするものである。(Object of the present invention) The present invention was made in view of the problems in the prior art, and its purpose is to solve the equation t (x, y) = A
x2+By2+Cxy+G= 0 (G is an integer)
Using the displacement comparison method, a digital ellipse signal with rotation of the coordinate axes described in
The purpose of this invention is to provide a graphic generation method that is highly accurate and can be generated with as simple a configuration as possible.
(本発明の構成)
この様な目的を達成する本発明の構成は、117を変数
、実数A、B、C,整数Gを既知の係数とする第1の方
程式z、 == f、(:ly) = Ax2+ By
2+Cxy+ c=:0で記述される座標軸の回転を伴
ったディジタル図形信号を次の(a)〜(e)の工程を
含んで発生することを特徴としている。(Configuration of the present invention) The configuration of the present invention to achieve such an object is as follows: The first equation z, == f, (: ly) = Ax2+ By
The present invention is characterized in that a digital graphic signal accompanied by rotation of the coordinate axes described by 2+Cxy+c=:0 is generated by including the following steps (a) to (e).
(1)係数Aと係数Bの絶対値の大小比較を行なう工程
。(1) A step of comparing the absolute values of coefficient A and coefficient B.
(b) (a)の工程において、IAI≧IB+の場合
にはX、uを変数、 A、Gを係数とする第2の方程式
%式%
はy、マを変数、B、Gを係数とする第5の方程式”5
=’3(y+す= By2+Q−y == 0 を定
義し、これらよシ、+2 (x、u ) == Qの近
傍点で、u==oを満足するX軸上の最も真値に近いデ
ィジタル値x+またけ、’3 (y+v) = Oの近
傍点で、マ=0を満足するy軸上の最も真値に近いディ
ジタル値yを、第2の方程式の場合には、+2 (3C
r ” ) ;oを満足+6点Q、2(0,c )を、
第5の方程式3の場合には、is (y 、v ) :
= Oを満足する点9.5 (0,Q )をそれぞれ始
点として与え、変位比較法にて順次最適ドツトを発生す
る工程。(b) In the step (a), if IAI≧IB+, the second equation with X and u as variables and A and G as coefficients is expressed as y and Ma as variables and B and G as coefficients. The fifth equation “5
='3(y+su= By2+Q-y == 0 is defined, and from these, +2 (x, u) == At the neighboring points of Q, the truest value on the X axis that satisfies u==o Nearest digital value 3C
r ” ); satisfies o + 6 points Q, 2 (0, c ),
In the case of the fifth equation 3, is (y, v):
A process in which each point that satisfies 9.5 (0, Q) is given as a starting point, and optimal dots are sequentially generated using a displacement comparison method.
(6)第1の方程式において、P、1 (x、+ O)
tたはp、2(o、y、)を始点、上記のX、または
y、の算出する時に得られた、既知のf2 (xlo
)またはf3(0+ 3’a)をそれぞれの場合の始点
の初期変位として与え、これを基に1変位比較法にて順
次最適ドツトを発生する工種。(6) In the first equation, P, 1 (x, + O)
The starting point is t or p, 2(o, y,), and the known f2 (xlo
) or f3(0+3'a) is given as the initial displacement of the starting point in each case, and based on this, the optimal dots are sequentially generated using the one-displacement comparison method.
(実施例)
第1図は、本発明の方法を実現するための装置の構成ブ
ロック図である0この装置は、入力制御部1.出力部2
、レジスタ演算部3及びマイクロプログラム制御部4の
各主要部分で構成されている。(Embodiment) FIG. 1 is a block diagram of the configuration of an apparatus for implementing the method of the present invention. This apparatus includes an input control section 1. Output section 2
, a register operation section 3, and a microprogram control section 4.
入力制御部1、出力部2、レジスタ演算部3の各部分は
、内部バスABKよって相互に連結されている。The input control section 1, the output section 2, and the register operation section 3 are interconnected by an internal bus ABK.
入力制御部1は、システムバス8Bを経由して上位の計
算機(図示せず)から与えられ九初期値、コマンド等を
制御する部分である。The input control section 1 is a section that controls initial values, commands, etc. given from a host computer (not shown) via the system bus 8B.
出力部2は、画儂メモリ等の外部表示装置(図示せず)
K % X Y座標値を出力する部分で、Xレジスタ
21.Yレジスタ22を有し、x、yレジスタへは内部
バスABを経由して、それぞれの値がセ、トされる。The output unit 2 is an external display device (not shown) such as an image memory.
K % X This is the part that outputs the Y coordinate values, and the X register 21. It has a Y register 22, and respective values are set to the x and y registers via an internal bus AB.
レジスタ演算部5は、数値演算を行なう部分であり、R
ALU(レジスタ&アリスメティ、り・ロジカル・ユニ
ット)slとスティタスレジスタ32より形成される。The register calculation unit 5 is a part that performs numerical calculations, and R
It is formed by an ALU (register & logical unit) sl and a status register 32.
RALU 3 +は、複数個の内部レジスタS5を有し
、レジスタ間で、論理算術演算(例えば、加減算、アン
ド、オア、シフト演算等)が実行可能である。スティタ
スレジスタ32は、RALU31での演算結果における
各糧スティタス(オーバーフロー、キャリー、サイン、
ゼロフラグ等)を一時、保持し後述のマイクロプログラ
ム制御部4に入力するものである。RALU 3 + has a plurality of internal registers S5, and logical arithmetic operations (eg, addition/subtraction, AND, OR, shift operations, etc.) can be executed between the registers. The status register 32 stores each status (overflow, carry, sign,
(zero flag, etc.) is temporarily held and input to the microprogram control section 4, which will be described later.
マイクロプログツム制御部4は、全体の制御及び図形発
生のアルゴリズムを実行する部分で、パイプライン・レ
ジスタ41、マイクロプログラムメモリ42及びアドレ
スシーケンサ43及びレジスタ演算部5のスティタスレ
ジスタ52からの信号を切換入力するiルナプレクサ4
4を含んで構成されている。The microprogram control section 4 is a section that executes the overall control and graphic generation algorithm, and switches signals from the pipeline register 41, the microprogram memory 42, the address sequencer 43, and the status register 52 of the register operation section 5. Enter i Lunaplexer 4
It is composed of 4.
パイプライン・レジスタ41は、マイクロプログラムメ
モリ42からの出力を保持し、上述の入力制御部1、出
力部2、レジスタ演算部5の各部分へ!イクロ命令を供
給するものである。マイクロプログラムでの条件付分岐
は、マルチプレクサ44においてスティタス・レジスタ
32からの各種スティタスの内、1つを選択し、アドレ
ス・シーケンサ45に入力し、判定することによりて行
なわれる。The pipeline register 41 holds the output from the microprogram memory 42 and sends it to each of the above-mentioned input control section 1, output section 2, and register calculation section 5! It supplies macro instructions. A conditional branch in a microprogram is performed by selecting one of the various statuses from the status register 32 in the multiplexer 44, inputting it to the address sequencer 45, and making a decision.
このsK構成した装置における動作を次に説明する。The operation of this sK configured device will now be described.
ここでは、第2図0)、(ロ)に示すような、原点を中
心とし、方程式f(x、y) = AX2+B72−G
: O(ただしGは整数)で記述される楕円を、原点
を中心に、座標軸X、 7のまわりに回転させた場合を
扱うものとする。Here, as shown in Figure 2 0) and (b), centering on the origin, the equation f(x, y) = AX2+B72-G
: We will deal with the case where an ellipse described by O (where G is an integer) is rotated around the coordinate axes X and 7, centering on the origin.
座標軸回転を伴った楕円の方程式は、(6)式で与えら
れる。The equation of an ellipse with coordinate axis rotation is given by equation (6).
*1= fl(xry) = Ax2+By2+cxy
+ c = O(6)次に、第1図に示す図形発生装
置の動作を第5図のフローチャートを用いて説明する。*1=fl(xry)=Ax2+By2+cxy
+c=O(6) Next, the operation of the figure generator shown in FIG. 1 will be explained using the flowchart shown in FIG.
■ 上位の計算機等より、システムバス8Bを経由して
、(6)式に示す各パラメータA、 B、 C,Gをコ
マンドレジスタ11にセ、トシ、入力制御部1に対して
、楕円発生コマンドをかける。■ From a host computer, etc., send each parameter A, B, C, and G shown in equation (6) to the command register 11 via the system bus 8B, and issue an ellipse generation command to the input control unit 1. multiply.
楕円発生コマンドがかかると、マイクロプログラム制御
部4では、コマンドレジスタ11にセットされた各パラ
メータ、A、B、C,Gを内部バスABを経由して、レ
ジスタ演算部3内の内部レジスタに格納する。When the ellipse generation command is applied, the microprogram control unit 4 stores the parameters A, B, C, and G set in the command register 11 into an internal register in the register calculation unit 3 via the internal bus AB. do.
■ 次に、パラメータ人とBの絶対値比較を行々い、I
AI≧IB+であれば、第3図(ロ)に示すように、X
軸上の点で楕円に最も近接するドツトP 、1(x、O
)を、IAI < IBI−1iレバ、第3図(イ)K
示すように、y軸上の点で楕円に最も近接するド、 )
P、2(0,y ”)をめる。IAI≧IB1゜IAI
< IBIいずれも同様な手順となるので、ここでは
IAI≧IB+の場合について説明する。■ Next, we compare the absolute values of the parameter person and B, and
If AI≧IB+, as shown in Figure 3 (b),
The dot closest to the ellipse at the point on the axis P, 1(x, O
), IAI < IBI-1i lever, Figure 3 (a) K
The closest point to the ellipse at the point on the y-axis, as shown, is
Add P, 2(0, y ”).IAI≧IB1゜IAI
<IBI Since the procedure is the same for both cases, the case where IAI≧IB+ will be explained here.
■ 放物線z2=f2 (x、u) = kx’ +
G −u = 0を新たに定義し、始点をQs2(O2
0)、始点の変位t、2. = f2(0,G ) =
0を初期値として、変位比較法を用すて第4図←)K
示すように始点Qa2よシ順次1ド、トずつ、最適ドツ
トをu = Oとなるまで発生させる。■ Parabola z2=f2 (x, u) = kx' +
G −u = 0 is newly defined and the starting point is Qs2(O2
0), displacement t of the starting point, 2. = f2(0,G) =
Using the displacement comparison method with 0 as the initial value, Figure 4←)K
As shown, optimal dots are generated one dot at a time from the starting point Qa2 until u=O.
■ u=0となった時点で放物線の発生を停止し、その
時のX座標をx1変位を”2e =f2(x、O)とす
る。(2) Stop the generation of the parabola when u=0, and set the x1 displacement of the X coordinate at that time to ``2e = f2 (x, O).
■ ”m” ”2aよシ、始点をPa、(z、0 )、
始点の変位’1g =’1 (”s” ) = ”2m
とし、変位比較法を用いて、始点P、、よシ順次1ド、
トずつ、最適ドツトを生成し、最適ドツトのXrY座標
値をその都度、出力部のX、Yレジスタにセットし、最
適ドツトをプロ、トする。■ “m” “2a, start point Pa, (z, 0),
Displacement of starting point '1g = '1 ("s") = "2m
Then, using the displacement comparison method, the starting point P, , sequentially 1 do,
The optimum dot is generated for each point, and the XrY coordinate values of the optimum dot are set in the X and Y registers of the output section each time, and the optimum dot is printed.
オ ■ 終点到達牌で、手順■を繰p返す。O ■ Repeat step ■ with the tile that has reached the final point.
以上の動作よシ、座標軸回転を伴った楕円を単純な加減
算機能のみで高速・高精度に発生することができる。Based on the above operations, an ellipse with rotation of the coordinate axes can be generated at high speed and with high accuracy using only simple addition and subtraction functions.
(本発明の効果)
以上説明したように本発明の方法は、2.=f1(z、
y) =Ax2+By2+Cxy+G= o で記述さ
れる楕円の方程式に対して、新たに放物@* =f (
x、u ) =2
Ax2+ G −u = 0または13=f5 ()’
l ’I ) = n、2 ”G−マ=0を定義し、こ
の放物線に対して変位比較法を適用し、乗算機能を用い
ることなく単純な加減算機能のみで、楕円の始点及び始
点の変位金簡単に算出することができるので、本発明の
方法によれば、座標軸の回転を伴った楕円を単純な加減
算機能のみで高速に発生できる。(Effects of the present invention) As explained above, the method of the present invention has 2. =f1(z,
y) =Ax2+By2+Cxy+G= o For the elliptic equation described by
x, u ) = 2 Ax2+ G −u = 0 or 13 = f5 ()'
l'I) = n, 2'' Define G-ma = 0, apply the displacement comparison method to this parabola, and calculate the starting point of the ellipse and the displacement of the starting point using only simple addition and subtraction functions without using a multiplication function. Since the value can be easily calculated, according to the method of the present invention, an ellipse with rotation of the coordinate axes can be generated at high speed using only simple addition and subtraction functions.
また、係数AとBの絶対値の大小比較を行ない、IAI
≧IB+の場合にはX軸上K、IAI < IB+の場
合K B y軸上に、始点を選択するように切換えてい
るのでいずれかの軸上に固定するのに較べて、始点及び
始点の変位の算出時間をよシ短かくすることができる。Also, by comparing the absolute values of coefficients A and B, IAI
When ≧IB+, K on the X-axis, and when IAI < IB+, K B on the y-axis.Since the starting point is switched to be selected on the y-axis, compared to fixing it on either axis, the starting point and starting point are The time required to calculate the displacement can be further shortened.
第1図は、本発明の方法を実現するための装置の構成プ
ロ、り図、第2図〜第4図は動作説明のための線図、t
g5図は本発明方法のアルゴリズムの一例を示すフロー
チャート、第6図及び第7図は従来方法を説明するため
の説明図である。
1・・・入力制御部、2・・・出力部、3・・・レジス
タ演算部、4・・・マイクロプログラム制御部、8B・
・・シ;、−ハス、AB・・・内部バス。
第3図
第4図
第5図FIG. 1 is a diagram showing the configuration of the apparatus for realizing the method of the present invention, and FIGS. 2 to 4 are diagrams for explaining the operation.
Figure g5 is a flowchart showing an example of the algorithm of the method of the present invention, and Figures 6 and 7 are explanatory diagrams for explaining the conventional method. DESCRIPTION OF SYMBOLS 1... Input control part, 2... Output part, 3... Register calculation part, 4... Microprogram control part, 8B.
...Si;, -Has, AB...Internal bus. Figure 3 Figure 4 Figure 5
Claims (1)
係数とする1Ii1の方糧式 %式% で記述される座標軸の回転を伴りたディジタル図形信号
を次の(a)〜(、)の工程を含んで発生生ずるディジ
タル図形信号発生方法。 (&) 係数Aと係fiBの絶対値の大小比較を行なう
工程 (b) (、)の工程において、IAI≧IB1の場合
にはX、11を変数、A、Gを係数とする第2の方程式
z2 =f2(x + u)==Ax2+ G −u
=O+ l A l (IB+の場合にはy、マを変
数、B、Gを係数とする第5の方程式 ycs =f3
(y+v)=B、2 +G−v=o を定義し、これら
より、f2(x、u)=0の近傍点で、u=0を満足す
るX軸上の最も真値に近いディジタル値x、、または、
f5c!pマ)=0の近傍点で、マ=0を満足するy軸
上の最も真値に近いディジタル値y、を、第2の方程式
の場合には、f2(x、u) == 0を満をそれぞれ
始点として与え、変位比較法にて順次最適ドツトを発生
する工程0 (c)第1の方程式において、Psl (”@ * O
) iたはP、□(’ + ys )を始点、上記のx
、tたはyの算出する時に得られた、既知の t2(xs 、’ ) i九は’3(0pys)をそれ
ぞれの場合の始点の初期変位として与え、これを基に1
変位比較法にて順次最適ドツトを発生する工程。(1) A digital figure signal with rotation of the coordinate axes described by the formula % formula of 1Ii1 with x, y as variables and real numbers A, B, C, and integer G as known coefficients is expressed as follows ( A method of generating a digital graphic signal including the steps of a) to (,). (&) Step (b) of comparing the magnitudes of the absolute values of coefficient A and coefficient fiB. In the step (,), if IAI≧IB1, a second Equation z2 = f2 (x + u) ==Ax2+ G -u
=O+ l A l (In the case of IB+, the fifth equation uses y and Ma as variables, and B and G as coefficients ycs = f3
(y+v)=B, 2 +G-v=o, and from these, at points near f2(x, u)=0, the digital value x closest to the true value on the X axis that satisfies u=0. ,,or,
f5c! At points near pma) = 0, the digital value y on the y-axis that satisfies ma = 0 is closest to the true value, and in the case of the second equation, f2(x, u) == 0. (c) In the first equation, Psl ("@*O
) i or P, □(' + ys) as the starting point, x above
, t or y, the known t2(xs,')i9 is given '3(0pys) as the initial displacement of the starting point in each case, and based on this, 1
A process of sequentially generating optimal dots using the displacement comparison method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59109007A JPS60252951A (en) | 1984-05-29 | 1984-05-29 | Generation of digital graphic signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59109007A JPS60252951A (en) | 1984-05-29 | 1984-05-29 | Generation of digital graphic signal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60252951A true JPS60252951A (en) | 1985-12-13 |
JPH0587869B2 JPH0587869B2 (en) | 1993-12-20 |
Family
ID=14499199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59109007A Granted JPS60252951A (en) | 1984-05-29 | 1984-05-29 | Generation of digital graphic signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60252951A (en) |
-
1984
- 1984-05-29 JP JP59109007A patent/JPS60252951A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0587869B2 (en) | 1993-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5309521A (en) | Method and apparatus for generating a character curve by dividing and developing a bezier curve | |
JPH05266146A (en) | Representing device for body shape | |
JPH02278290A (en) | Method for applying curve to shape shown by linear short vector train | |
JPS60252951A (en) | Generation of digital graphic signal | |
JPH0368086A (en) | Linear interpolating circuit | |
JP3139008B2 (en) | Line segment pixel generator | |
JPH0721155A (en) | Central arithmetic processor | |
JPH04168581A (en) | Approximate curve generating method for hyperellipse | |
JPH0453318B2 (en) | ||
JP4089806B2 (en) | Curve generating device and method, and storage medium | |
JPH0210476A (en) | Polygonal line approximating device for curve | |
JPH04167082A (en) | Polygonal approximation system for curved section | |
SU734703A1 (en) | Device for converting tensor components | |
JPH01311383A (en) | Vector drawing system | |
JPS62249068A (en) | Straight line approximating method | |
JPS6120002B2 (en) | ||
Aspragathos et al. | Rational Ruled surfaces construction by interpolating dual unit vectors representing lines | |
JPH0640349B2 (en) | Digital figure processing method | |
JPS63184881A (en) | Face painting processing system for parallelogram | |
Lai et al. | Parallel algorithm and VLSI architecture for a robot's inverse kinematics | |
HWANG et al. | Hardware accelerator for outline font generation | |
JPH01150988A (en) | Device for coordinate transforming circular arc by approximating it as cubic curve | |
JPS6270984A (en) | Clipping processing method | |
Forrest | Marine engineering | |
JPH03147190A (en) | Straight line drawing method |