JPS6025234B2 - Method for measuring metal flow angle of welded part of ERW welded pipe - Google Patents
Method for measuring metal flow angle of welded part of ERW welded pipeInfo
- Publication number
- JPS6025234B2 JPS6025234B2 JP8881781A JP8881781A JPS6025234B2 JP S6025234 B2 JPS6025234 B2 JP S6025234B2 JP 8881781 A JP8881781 A JP 8881781A JP 8881781 A JP8881781 A JP 8881781A JP S6025234 B2 JPS6025234 B2 JP S6025234B2
- Authority
- JP
- Japan
- Prior art keywords
- bead
- metal flow
- welded
- flow angle
- welded part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
- B23K11/25—Monitoring devices
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
この発明は、電縫溶接管製造中において溶接直後の溶接
部のメタルフロー角度を実時間で測定する方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring in real time the metal flow angle of a weld immediately after welding during the manufacture of an electric resistance welded pipe.
電総溶接管において、溶接部のメタルフロー角度a‘ま
、第1図に電縫溶接管の断面を示す図から、下式のよう
に定義され、8=章(ひ・十82十83十ひ4)
そして、溶接部強度の一指標となることが知られている
。In electric resistance welded pipes, the metal flow angle a' at the welded part is defined as the following formula from the cross section of the electric resistance welded pipe in Figure 1, and H4) It is known to be an indicator of weld strength.
従って、電縫溶接管製造において、溶接直後の、溶接部
のメタルフロー角度を実時間で測定し、その測定結果に
基づいて溶接条件を管理、制御することができれば、不
良品発生を極4・に抑え、極めて無駄のない操業を行な
うことができることが明らかである。Therefore, in the manufacture of ERW welded pipes, if the metal flow angle of the welded part can be measured in real time immediately after welding, and the welding conditions can be managed and controlled based on the measurement results, the occurrence of defective products can be greatly reduced. It is clear that it is possible to suppress the amount of waste and perform extremely lean operations.
しかしながら、従来の函縫管製造においては、溶接部の
メタルフロー角度は、製造された、即ち、ビードカツト
され、所定長さに切断された管からしか測定することが
できず、従って、溶接直後の溶接部のメタルフロー角度
を実時間で測定することは不可能であった。However, in conventional box-stitched pipe manufacturing, the metal flow angle of the weld can only be measured from the manufactured, i.e., bead-cut, cut-to-length pipe; It has been impossible to measure the metal flow angle of the weld in real time.
そこで本発明者等は、以上のような問題を解消すべ〈研
究を行なった結果、次に示す通りの知見を得た。Therefore, the present inventors conducted research to solve the above-mentioned problems, and as a result, they obtained the following knowledge.
即ち、■ 光切断法を適用することによって、ビードカ
ット前の、溶接直後の溶接部の断面形状に対応した光切
断プロフィールを検出することができる。@ 一方、溶
接部の断面形状の一例を示す第2図のように、溶接ピー
ドの2つの立上り位置la,lbを基準として、溶接ビ
ード1の裾野部分と基準(水平)線との角度8L,8R
(a=季(OL+OR))と、その溶接部におけるメタ
ルフロー角度との間には、第3図に示すように、極めて
密な相関関係があることがわかった。That is, (1) By applying the optical cutting method, it is possible to detect an optical cutting profile corresponding to the cross-sectional shape of the welded part immediately after welding before bead cutting. On the other hand, as shown in Fig. 2, which shows an example of the cross-sectional shape of a welded part, the angle between the base of the weld bead 1 and the reference (horizontal) line is 8L, based on the two rising positions la and lb of the weld bead. 8R
It was found that there is an extremely close correlation between (a=season (OL+OR)) and the metal flow angle in the welded portion, as shown in FIG.
■ 従って、光切断法によって得られた、溶接直後の溶
接部の光切断プロフィール検出情報に基づいて、溶接直
後の溶接部のメタルフロー角度を実時間で極めて高精度
に求めることができる。この発明は、上記知見に基づい
てなされたもので、ビードカット前の、移動中の秦管の
溶接部にスリット光を照射し、前記溶接部に得られた光
切断プロフィールを、光学的受像手段により受像し、前
記光学的受像手段により得られた光切断プロフィール受
像信号から、前記溶接部のビードの立上り位置を基準と
する前記ビードの最大高さの3/4〜1/3の範囲内の
所定高さに該当する前記ビードの表面位置を検出し、か
くして得られた前記所定高さに該当する前記ビードの表
面位置における前記立上り位置からの水平距離と前記所
定高さとに基づいて、前記溶接部のメタルフロー角度を
演算する霞縫溶接管の溶接部メタルフロー角度測定方法
としたことに特徴を有する。(2) Therefore, based on the optical cutting profile detection information of the welded part immediately after welding obtained by the optical cutting method, the metal flow angle of the welded part immediately after welding can be determined in real time with extremely high accuracy. This invention has been made based on the above findings, and includes irradiating a slit light onto a welded part of a moving Qin pipe before bead cutting, and transmitting the light cutting profile obtained at the welded part to an optical image receiving means. and from the optical cutting profile image reception signal obtained by the optical image receiving means, the maximum height of the bead in the welded portion is within the range of 3/4 to 1/3 of the maximum height of the bead with reference to the rising position of the bead of the welding part. The surface position of the bead corresponding to a predetermined height is detected, and the welding is performed based on the horizontal distance from the rising position at the surface position of the bead corresponding to the predetermined height obtained in this way and the predetermined height. The present invention is characterized in that it is a method for measuring a metal flow angle at a welded part of a welded welded pipe in which the metal flow angle at the welded part is calculated.
以下この発明を実施例により図面を参照しながら説明す
る。The present invention will be explained below by way of examples with reference to the drawings.
第4図はこの発明を実施するための、電縫溶接鋼管の溶
接部メタルフロー角度測定装置の一態様を示す説明図で
ある。FIG. 4 is an explanatory view showing one embodiment of a weld metal flow angle measuring device for an electric resistance welded steel pipe for carrying out the present invention.
図示されるように、板材を管状に成形し、その突合部を
亀縫溶接することによって得られた素管2は、矢印aの
方向に進行し、その上部のビード1が、所定温度を保っ
ているうちに、図示しないカツタにより肖り落される。
素管2の溶接直後のビード1およびその周辺部(溶接部
)に、秦管2の直上に設けてあるシリンドリカレンズ3
から単一波長のスリット光4が照射される。5はしーザ
光発生装置であり、ここから例えば4416Aの波長の
He−Cdレーザ光がオプチカルフアィバ6を通してシ
リンドリカルレンズ3に供給され、スリット光4となり
、例えば秦管2の管軸に対して10〜40℃の角度で斜
めに、かつ管周にそって黍管2の溶接部に照謝される。As shown in the figure, a blank pipe 2 obtained by forming a plate material into a tubular shape and welding the abutting portions with a locking stitch moves in the direction of arrow a, and the bead 1 on the top thereof maintains a predetermined temperature. While he is doing so, his portrait is destroyed by a cutlet (not shown).
A cylindrical lens 3 is provided directly above the Qin pipe 2 at the bead 1 and the surrounding area (welded part) of the raw pipe 2 immediately after welding.
A slit light 4 of a single wavelength is irradiated from. 5 is a laser light generator, from which He-Cd laser light with a wavelength of, for example, 4416A is supplied to the cylindrical lens 3 through an optical fiber 6, and becomes a slit light 4, which is e.g. The welded portion of the millet pipe 2 is irradiated obliquely at an angle of 10 to 40° C. and along the circumference of the pipe.
かくして、葵管2の溶接部に生じた単一波長のスリット
光4照射による溶接部断面形状に対応した光切断プロフ
ィール7(からの反射光)は、秦管2の上方に設けられ
た、スリット光4の持つ波長を通過中心帯域としている
狭帯域干渉フィル夕8を通って、ITVカメラ9で受像
される。ITVカメラ9からの光切断プロフィール受像
信号は、フレームメモリ1O‘こ送られ、ここでそのプ
ロフィールに対応した画像データが記録される。フレー
ムメモリ10における光切断プロフィール7の受像画像
の一例を第5図イに示す。そして、サンプリングライン
選択信号発生回路11から、第5図イの×鞠方向にN(
数)の走査を行なう縦走査信号が、フレームメモリ1O
‘こ入力され、各縦走査信号毎に最大輝度検出回路12
によって、フレームメモリ10‘こおける画像座標のX
軸の各座標の最大輝度(Y軸座標上)、即ち、光切断プ
ロフィール7の受像画像が検出される。例えば、第5図
イにおいて、X軸上の座標幻の縦走査信号によって、Y
軸上の座標幻が最大輝度を与えるY軸上の座標として検
出される(第5図口参照)。かくして、フレームメモリ
1川こおける画像座標の最大輝度を与えるY軸上座榛が
、縦走査信号の数Nに等しい容量の一次元メモリ13に
記憶され、ついで形状指数演算回路14によって、一次
元メモリ13の隣接記憶データの差分が下式に基づいて
演算される。△の=yi+,一yi(1ミi<N−1)
このように、画像処理とはいえ、実質的に1次元のデー
タ処理であるから、実時間でメタルフロー角度の演算(
測定)を行なうことができる。In this way, the light cutting profile 7 (reflected light from) corresponding to the cross-sectional shape of the welded part caused by the irradiation of the single-wavelength slit light 4 at the welded part of the Aoi pipe 2 is The light passes through a narrowband interference filter 8 whose center band is the wavelength of the light 4, and is received by an ITV camera 9. The optical cutting profile image reception signal from the ITV camera 9 is sent to the frame memory 1O', where image data corresponding to the profile is recorded. An example of the received image of the light cutting profile 7 in the frame memory 10 is shown in FIG. 5A. Then, from the sampling line selection signal generation circuit 11, N(
The vertical scanning signal for scanning (number) is stored in the frame memory 1O.
'This is input to the maximum brightness detection circuit 12 for each vertical scanning signal.
The image coordinates X in the frame memory 10' are
The maximum brightness of each coordinate of the axis (on the Y-axis coordinate), that is, the received image of the light cutting profile 7 is detected. For example, in Fig. 5A, Y
The phantom coordinates on the axis are detected as the coordinates on the Y axis that give the maximum brightness (see Figure 5). In this way, the Y-axis upper coordinate giving the maximum brightness of the image coordinates in the frame memory 1 is stored in the one-dimensional memory 13 with a capacity equal to the number N of vertical scanning signals, and then the shape index calculation circuit 14 stores it in the one-dimensional memory 13. The difference between the 13 adjacent stored data is calculated based on the following formula. △=yi+, yi (1mii<N-1)
In this way, even though it is image processing, it is essentially one-dimensional data processing, so it is possible to calculate the metal flow angle in real time (
measurement).
かくして得られたデータによって、さらに形状指数演算
回路14において、ビード両端の立上り位置の座標(x
L,yL),(xR,yR)(第5図イ参照)が、下式
に基づいて演算される。△yL>△y*△yl<△y*
(1SISL−1)
△yR−,く一△y*
△ym>−△y*(Rミm<N−1)
(ただし、△y*は適当な定数)
加えて、形状指数演算回路14において、1次九メモリ
13の記憶データから、最大のY軸上の座標を与える座
標(xT,yT)が求められ、第5図イに示すようにこ
の座標(x’,yT)の3′4〜1/3の範囲内の所定
高さの座標くれ,y′T)および(x″,,y″T)に
該当するビード高さのHLおよびHR(第7図)が、次
のように求められる。Based on the data thus obtained, the shape index calculation circuit 14 calculates the coordinates (x
L, yL) and (xR, yR) (see Fig. 5A) are calculated based on the following formula. △yL>△y*△yl<△y*
(1SISL-1) △yR-, Kuichi △y* △ym>-△y* (Rmi m<N-1) (However, △y* is an appropriate constant) In addition, in the shape index calculation circuit 14 , from the data stored in the primary nine memory 13, the coordinates (xT, yT) that give the maximum coordinates on the Y axis are found, and as shown in FIG. The bead heights HL and HR (Fig. 7) corresponding to the coordinates of the predetermined height within the range of ~1/3, y′T) and (x″,,y″T) are as follows: Desired.
すなわち、第6図に示すように、ビード位魔における管
外面を通る接線に対して、ビードへの入射光4が角度?
,をなし、ITVカメラ9への反射光4′が角度ぐ2を
なす位置関係にあるときに、前記高さHL弐のビード部
分を、第8図に示すように、線分ABで表わし、これを
通る光源からの入射光を線分DC,EBで、そのITV
カメラへの反射光を線分AF,CGで表わすと、ビード
は小さいから、前記線分DCとEB、AFとCGとはそ
れぞれ平行であるとみなせる。すると、<DCPニ<E
BP:の. ・・・■であるから、
<DCGニ中一(の,十の2 ) ...■
となる。That is, as shown in FIG. 6, the angle of the incident light 4 to the bead with respect to the tangent passing through the outer surface of the tube at the bead level?
, and when the reflected light 4' to the ITV camera 9 is in a positional relationship forming an angle 2, the bead portion of the height HL2 is represented by a line segment AB as shown in FIG. The incident light from the light source passing through this is the line segment DC, EB, and its ITV
When the reflected light to the camera is represented by line segments AF and CG, since the bead is small, the line segments DC and EB and AF and CG can be considered to be parallel, respectively. Then, <DCPni<E
BP: of. ...■, so
<DCG Junior High School 1 (No, 2 of 10). .. .. ■
becomes.
このとき線分FGの長さをhLとすると、hL=IAC
lsinくび℃ニIAClsin{汀一(の,十の2
)}ニIAClsin(の,十の2 ) …■で
あるから、IACI=hL/sin(の,十の2 )
…@となる。At this time, if the length of line segment FG is hL, hL=IAC
lsin neck ℃ Ni IAClsin {Tenichi (of, tenth two)
)} NiIAClsin(of, 2 of 10) ...■, so IACI=hL/sin(of, 2 of 10)
…becomes @.
また、線分ABの長さHLは■式より、HLニIABI
ニIAClsinの. ・・・■となる。従っ
て、■式を■式に代入して、HLニhLslnの,/s
in(の,十の2)=K(y′T−yL)sinの./
sin(の.十の2)
...■ただし、Kはフレームメモリにおける画像の座
標上の高さy′T−yLを実寸法hLに換算する係数。In addition, the length HL of the line segment AB is calculated from the formula (■) by HLdIABI
2.IAClsin. ... becomes ■. Therefore, by substituting the formula (■) into the formula (■),
in(of, 2 of 10)=K(y′T−yL)sin. /
sin (no. 10 2)
.. .. .. (2) However, K is a coefficient for converting the coordinate height y'T-yL of the image in the frame memory into the actual size hL.
となる。ここで、の,,の2は光源ならびにITVカメ
ラの設置位置によって定まる定数であるから、■式でk
sinの,/sin(の,十の2)=k′とおけば、■
式は更にHL=k′(y′T−yL)
…■■式のようにもかける。becomes. Here, , , and 2 are constants determined by the light source and the installation position of the ITV camera, so in equation (■), k
If we set sin's, /sin ('s, 2 of 10) = k', ■
The formula is further expressed as HL=k'(y'T-yL)
...■■It can also be multiplied like the expression.
他方の高さHRについても同様に、
HR=k(y″T−yR)sinの,/のsin(の,
十の2) …■あるいは、
HR=k′(y″T一yR) …■の
ように求めらる。Similarly, for the other height HR, HR=k(y″T−yR)sin,/sin(of,
2 of 10) ...■Or, HR=k'(y''T-yR) ...■.
さらに加えて、形状指数演算回路14において、座標(
x′,,y′,)および(x″,,y″T)における、
ビードの立上り位置(xL,yL)および(xR,yR
)からの水平距離BL,BRが、BLニズT一×L
および
BR=xR一x″,
によって求められる(第7図参照)。In addition, the shape index calculation circuit 14 calculates the coordinates (
x′,,y′,) and (x″,,y″T),
The rising position of the bead (xL, yL) and (xR, yR
) are determined by BL niz T1 x L and BR=xR1 x'' (see Fig. 7).
かくして得られた、HLおよびBL、ならびにHRおよ
びBR‘こ地、aL帆−・器の肘側・鼓ミ形雌数演胸馴
化よつ縦触
れてOL,ORが得られ、この演算結果ほ基づいて、同
回路14によってメタルフ。Thus obtained HL and BL, HR and BR', aL sail, elbow side of the vessel, drum-shaped female number chest familiarization, and vertical touching to obtain OL and OR, and the result of this calculation is Based on the same circuit 14, metallization is performed.
一角度8:裏(8L+aR)が演算される。なお、HL
およびHRを求さめる際にこれを(xT,y’)の3/
4〜1/3の範囲内の所定高さの座標から求めることに
したのは、上記範囲を外されることによって、実際のメ
タルフロー角度と、演算の結果との誤差が許容できる限
度を越えてしまうからである。15,16は、かくして
形状指数演算回路14によって演算された、溶接直後の
溶接部のメタルフロー角度演算結果を、アナログ出力、
デジタル出力するための端子、17は、ITVカメラ9
および、フレームメモリ10の映像を監視するためのC
RTである。One angle 8: Back (8L+aR) is calculated. In addition, H.L.
and when calculating HR, use this as 3/3 of (xT, y')
The reason why we decided to calculate it from the coordinates of a predetermined height within the range of 4 to 1/3 is that if the above range is excluded, the error between the actual metal flow angle and the calculation result will exceed the allowable limit. This is because 15 and 16 are analog outputs of the metal flow angle calculation results of the welded part immediately after welding, which are thus calculated by the shape index calculation circuit 14;
Terminal 17 for digital output is ITV camera 9
and C for monitoring the video in the frame memory 10.
It is RT.
以上説明したように、この発明においては、溶接直後の
溶接部の断面形状を検出し、そのビードの中、高さの検
出結果から溶接部のメタルフロー角度を実時間で求める
ことができ、理想的な亀縫管製造に寄与することができ
る。As explained above, in this invention, the cross-sectional shape of the weld immediately after welding can be detected, and the metal flow angle of the weld can be determined in real time from the detection results of the height inside the bead. This can contribute to the production of hemlocked tubes.
第1図は露縫熔鞍管の断面を示す図、第2図および第7
図は電総溶接管の溶接部の断面形状の一例を示す図、第
3図はメタルフロー角度と、ビート高さおよび中との関
係の一例を示す図、第4図はこの発明を実施するための
、亀縫溶接管の溶接部メタルフロー角度測定装置の一態
様を示す説明図、第5図イはフレームメモリにおける光
切断プロフィールの受像画像の一例を示す図、第5図口
は最大輝度検出回路による検出態様の一例を示す図、第
6図はスリット光とITVカメラと素菅との関係の一例
を示す図、第8図は所定のビート高さの求め方を説明す
るための説明図である。
1・・・・・・ビード、2・・・・・・素替、3・・・
・・・シリンドリカルレンズ、4・・・・・・スリット
光、5・・・・・・し−ザ光発生装置、6・・・・・・
オブチカルフアィバ、7・・・・・・光切断プロフィー
ル、8・・…・狭帯城干渉フィル夕、9・・・・・・I
TVカメラ、1 0……フレームメモリ、I1・・・・
・・サンプリングライン選択信号発生回路、12・・・
・・・最大輝度検出回路、13・…・・1次元メモリ、
14......決状指数演算回路、15,16・・.
・・・端子、17・・・・・・CRT。
発’図
第2図
第3図
努ア図
図
寸
蛾
第5図
第6図
第8図Figure 1 is a cross-sectional view of the saddle canal, Figures 2 and 7.
The figure shows an example of the cross-sectional shape of a welded part of an electrically welded pipe, Fig. 3 shows an example of the relationship between the metal flow angle and the beat height and center, and Fig. 4 shows an example of the relationship between the metal flow angle and the beat height and inside. An explanatory diagram showing one aspect of a metal flow angle measuring device for a welded part of a lock-stitch welded pipe, Fig. 5 A is a diagram showing an example of a received image of a light cutting profile in a frame memory, and Fig. 5 A shows an example of a received image of a light cutting profile in a frame memory. A diagram showing an example of the detection mode by the detection circuit, FIG. 6 is a diagram showing an example of the relationship between the slit light, the ITV camera, and the tube, and FIG. 8 is an explanation for explaining how to obtain a predetermined beat height. It is a diagram. 1...bead, 2...substitute, 3...
...Cylindrical lens, 4...Slit light, 5...Shi-za light generator, 6...
Optical fiber, 7... Optical cutting profile, 8... Narrow band interference filter, 9... I
TV camera, 1 0...Frame memory, I1...
...Sampling line selection signal generation circuit, 12...
... Maximum brightness detection circuit, 13... One-dimensional memory,
14. .. .. .. .. .. Decision index calculation circuit, 15, 16...
...Terminal, 17...CRT. Figure 2 Figure 3 Figure 5 Figure 6 Figure 8
Claims (1)
ト光を照射し、 前記溶接部に得られた光切断プロフイ
ールを、光学的受像手段により受像し、 前記光学的受
像手段により得られた光切断プロフイール受像信号から
、前記溶接部のビードの立上り位置を基準とする前記ビ
ードの最大高さの3/4〜1/3の範囲内の所定高さに
該当する前記ビードの表面位置を検出し、 かくして得
られた前記所定高さに該当する前記ビードの表面位置に
おける前記立上り位置からの水平距離と前記所定高さと
に基づいて、前記溶接部のメタルフロー角度を演算する
ことを特徴とする電縫溶接管の溶接部メタルフロー角度
測定方法。1. Irradiating the welded part of the moving blank pipe before bead cutting with slit light, receiving the light cutting profile obtained at the welded part by an optical image receiving means, and receiving the light obtained by the optical image receiving means. Detecting a surface position of the bead corresponding to a predetermined height within a range of 3/4 to 1/3 of the maximum height of the bead based on the rising position of the bead of the welding part from the cutting profile image reception signal. , The metal flow angle of the welding part is calculated based on the horizontal distance from the rising position at the surface position of the bead corresponding to the predetermined height obtained in this way and the predetermined height. Method for measuring metal flow angle at welded part of sewn welded pipe.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8881781A JPS6025234B2 (en) | 1981-06-11 | 1981-06-11 | Method for measuring metal flow angle of welded part of ERW welded pipe |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8881781A JPS6025234B2 (en) | 1981-06-11 | 1981-06-11 | Method for measuring metal flow angle of welded part of ERW welded pipe |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS57206583A JPS57206583A (en) | 1982-12-17 |
| JPS6025234B2 true JPS6025234B2 (en) | 1985-06-17 |
Family
ID=13953461
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8881781A Expired JPS6025234B2 (en) | 1981-06-11 | 1981-06-11 | Method for measuring metal flow angle of welded part of ERW welded pipe |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6025234B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3238767A1 (en) * | 1982-10-20 | 1984-07-12 | Hoesch Werke Ag, 4600 Dortmund | METHOD AND DEVICE FOR CONTROLLING THE WELDING PROCESS IN THE MANUFACTURE OF LENGTH SEW TUBES |
| US4920249A (en) * | 1989-05-08 | 1990-04-24 | General Electric Company | Weld bead wetting angle detection and control |
| MY137246A (en) * | 2002-04-30 | 2009-01-30 | Jfe Steel Corp | Method and instrument for measuring bead cutting shape of electric welded tube |
-
1981
- 1981-06-11 JP JP8881781A patent/JPS6025234B2/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS57206583A (en) | 1982-12-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100685206B1 (en) | Method and device for measuring bead cutting shape of electric welding tube | |
| CN107186319A (en) | A kind of online tracking of welding robot cosmetic welding based on laser sensor | |
| US4453083A (en) | Apparatus for the determination of the position of a surface | |
| CN110849882A (en) | Equipment and method for identifying, positioning and detecting pipeline welding seam | |
| CN116664508A (en) | Weld surface quality detection method and computer readable storage medium | |
| JPH0355764B2 (en) | ||
| JPS6025234B2 (en) | Method for measuring metal flow angle of welded part of ERW welded pipe | |
| JP2004117053A (en) | Method and apparatus for detecting bead shape of ERW pipe | |
| JPS59108903A (en) | Method for detecting seamed position of seam welded steel pipe | |
| CN119175453A (en) | Welding bead identification method for laser sealing machine | |
| JP2008107156A (en) | Cross-sectional shape detection method and apparatus | |
| JPH09267186A (en) | Seam copying method in laser welding pipe manufacturing method | |
| JPS604402B2 (en) | Surface shape measuring device | |
| JPH05240621A (en) | Instrument for measuring outer diameter and wall thickness of pipe | |
| JPH05261564A (en) | Manufacture of electric resistance welded tube | |
| JPH0371946B2 (en) | ||
| JPS58160805A (en) | Measurement method for dimensions and shape of large diameter steel pipes | |
| JPS601138B2 (en) | How to determine the cutting status of the inner bead of an ERW welded pipe | |
| JPS607586B2 (en) | Method for measuring metal flow angle of welded part of ERW welded pipe | |
| CN207215038U (en) | A kind of gauge or diameter of wire on-line measuring device | |
| JPS608143B2 (en) | Welding heat input control method in ERW pipe manufacturing | |
| JPS607587B2 (en) | Welding heat input control method in ERW pipe manufacturing | |
| JP2768053B2 (en) | Seam position detection device for ERW steel pipes | |
| JPS61186180A (en) | Method for detecting butted angle of blank material in manufacture of electric welded pipe | |
| JPH05240619A (en) | Instrument for measuring outer diameter and wall thickness of pipe |