JPS6025228B2 - Arc welding equipment - Google Patents
Arc welding equipmentInfo
- Publication number
- JPS6025228B2 JPS6025228B2 JP51049220A JP4922076A JPS6025228B2 JP S6025228 B2 JPS6025228 B2 JP S6025228B2 JP 51049220 A JP51049220 A JP 51049220A JP 4922076 A JP4922076 A JP 4922076A JP S6025228 B2 JPS6025228 B2 JP S6025228B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- winding
- arc
- short
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Arc Welding Control (AREA)
Description
【発明の詳細な説明】
この発明は溶接電流出力回路に介挿する誘導リアクトル
の過渡電流抑制特性を改善したアーク溶接装置に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an arc welding device in which the transient current suppression characteristics of an inductive reactor inserted in a welding current output circuit are improved.
近時、炭酸ガスシールドを行いながら電極ワイヤを母材
に向けて連続的に送給し、電極ワイヤ先端と母材との間
にアークが発生するようにするとともに電極ワイヤが1
00回/秒前後の割で周期的に母材に短絡するようにし
、その短絡時に金属の移行が行われるようにした、いわ
ゆる短絡移行形C02アーク溶接方法が開発され、多用
されている。Recently, an electrode wire is continuously fed toward the base metal while shielding carbon dioxide gas, so that an arc is generated between the tip of the electrode wire and the base metal, and the electrode wire is
A so-called short-circuit transfer type C02 arc welding method has been developed and is widely used, in which a short circuit is periodically made to the base material at a rate of about 00 times/second, and metal transfer occurs during the short circuit.
この溶接方法はアークが連続しないため母材が過度に加
熱されて孔があいたり、溶接金属が溶け落ちたりするこ
とがないので、特に薄い母材の溶接に有効なものである
。ところで、このような溶接方法を通常アーク溶接電源
を用いて行った場合、短絡によって過大な短絡電流が流
れるため溶接スパッタの発生が著しく、いわゆるアーク
が著しく硬質で熔接作業が円滑に行えず、また溶接結果
も好ましいものにはならない。This welding method is particularly effective for welding thin base materials because the arc is not continuous, so the base metal will not be excessively heated and holes will not form or the weld metal will melt. By the way, when such a welding method is performed using a normal arc welding power source, an excessive short-circuit current flows due to a short circuit, resulting in significant welding spatter, and the so-called arc is extremely hard, making it difficult to perform welding work smoothly. The welding result is also not favorable.
このような問題を解決する手段として、溶接電流出力回
路に適当なィンダクタンス、つまり誘導リアクトルを直
列に介挿し、短絡電流の立上り速度を遅延させ、これに
よって短絡電流のピーク値を制限することが知られてい
る。As a means of solving this problem, it is possible to insert an appropriate inductance, that is, an inductive reactor, in series with the welding current output circuit to delay the rise speed of the short circuit current, thereby limiting the peak value of the short circuit current. Are known.
しかしながら短絡状態が破れるためには適当に大きな短
絡電流を必要とするため誘導リアクトルのィンダクタン
ス値が大きすぎると短絡状態が持続してアークが生じな
くなったり、短絡回数が減少して効率的な溶暖が行えな
くなる問題があり、また誘導リアクトルのィンダクタン
ス値が小さすぎると短絡電流のピーク値が高くなり溶接
スパッタの発生が増大する問題がある。このため、誘導
リアクトルとして鉄心に主巻線と補助巻線を巻装したも
のを使用し、溶接電流出力回路に主巻線を介挿し、その
主巻線に磁気的に結合した補助巻線に可変抵抗を接続し
、その可変抵抗を操作して主巻線に流れる電流の上昇、
減衰を適正の速さにすることも考えられている。However, a suitably large short-circuit current is required to break the short-circuit state, so if the inductance value of the inductive reactor is too large, the short-circuit state may persist and no arc will occur, or the number of short-circuits may be reduced, resulting in efficient melting. There is a problem that heating cannot be carried out, and if the inductance value of the inductive reactor is too small, the peak value of the short circuit current becomes high and there is a problem that the occurrence of welding spatter increases. For this reason, an inductive reactor with a main winding and an auxiliary winding wound around an iron core is used, the main winding is inserted into the welding current output circuit, and the auxiliary winding is magnetically coupled to the main winding. Connect a variable resistor and operate the variable resistor to increase the current flowing through the main winding.
It is also being considered to make the attenuation at an appropriate speed.
しかしながら、可変抵抗にて主巻線と補助巻線の磁気的
結合をコントロールして溶接電流のピーク値を抑えるこ
とができたとしても、この誘導リアクトルには可変抵抗
によって或る程度の抵抗分が当初から含まれているので
、全体としてインピーダンスが高く、しかも短絡初期か
ら抵抗とィンダクタンスのベクトル和で熔接電流が上昇
するため、短絡時の溶接電流の応答性、つまり立上り勾
配が悪いものとなり、アークが不安定であるために、実
用化されるに至っていない。何故なら、理想的なアーク
溶接では短絡した瞬間に溶接電流がアークを発生するレ
ベルまで急激に立上つて該アーク発生を確実とし、その
後は熔接電流の立上りを抑制し、ピンチ効果にて綾滴が
移行するまでピーク前に向けて緩やかな勾配で上昇させ
、溶滴の移行がスパッタを伴わず円滑に行われれること
が望まれる。また、後に詳述するように溶接電流の立上
り勾配は回路のィンダクタンスと抵抗に左右され、ィン
ダクタンスで決まる立上り勾配と抵抗で決まる立上り勾
配とのベクトル和が溶接電流の実質的な立上り勾配とな
る。従って、短絡直後は、誘導リアクトルがむしろ純抵
抗に近い働きをし、そしてその抵抗値が小さい程1=V
/Rの関係から明らかなように溶接電流の立上りが急激
で、大きい電流値になるといえる。たとえば、印加電圧
20V、溶接電流をアーク発生点付近で130A(ピー
ク値で200A)程度といった実用的な溶接装置を考え
た場合、上記抵抗値は0.10〜0.20あたりの値が
最も適切である。しかるに前述の補助巻線方式では始め
から譲導リアクトルに可変抵抗の抵抗分がはいっている
ため、短絡時の抵抗値を上記0.10〜0.20のよう
に小さな値に抑えることが困難である。換言すれば、補
助巻線方式には、短絡直後に誘導リアクトルを純抵抗と
して働かせる忠想はないのであって、アーク発生レベル
までの溶接電流の増大(引上げ)をもってばら誘導リア
クトルの主としてインダクタンス分に依存してしており
、そのため溶接電流の立上り勾配が緩やかなものとなっ
て、アーク発生が不安定となるものであった。さらに誘
導リアクトルとして、鉄心に主巻線とそれと略同数の補
助巻線を巻回した構成が複雑で、また可変抵抗として電
流容量の大きい大型のものを使用しなければならないの
で、装置が複雑かつ大型化し、高価になってしまうため
、通常の特に汎用形アーク溶接装置として収用できなか
つた。このため、現在汎用形のアーク溶接装置に多用さ
れている譲導リアクトルは開磁路形、たとえば1形鉄心
に巻線を施したものが一般的である。However, even if it is possible to suppress the peak value of the welding current by controlling the magnetic coupling between the main winding and the auxiliary winding using a variable resistor, a certain amount of resistance is still present in the inductive reactor due to the variable resistor. Since it is included from the beginning, the impedance is high as a whole, and the welding current increases due to the vector sum of resistance and inductance from the beginning of a short circuit, so the response of the welding current at the time of a short circuit, that is, the rising slope becomes poor. It has not been put into practical use because the arc is unstable. This is because, in ideal arc welding, the moment a short circuit occurs, the welding current rapidly rises to a level that generates an arc, ensuring the generation of the arc, and then suppressing the rise of the welding current and causing the welding droplets to form due to the pinch effect. It is desired that the droplets be raised at a gentle gradient toward before the peak until they are transferred, so that the transfer of the droplets is performed smoothly without spatter. Furthermore, as will be explained in detail later, the rising slope of the welding current depends on the inductance and resistance of the circuit, and the vector sum of the rising slope determined by the inductance and the rising slope determined by the resistance is the actual rising slope of the welding current. Become. Therefore, immediately after a short circuit, the inductive reactor acts rather like a pure resistance, and the smaller the resistance value, the more 1=V
As is clear from the relationship /R, the welding current rises rapidly and can be said to have a large current value. For example, when considering a practical welding device with an applied voltage of 20 V and a welding current of about 130 A (peak value 200 A) near the arc generation point, the most appropriate resistance value is between 0.10 and 0.20. It is. However, in the above-mentioned auxiliary winding method, since the variable resistance is included in the transfer reactor from the beginning, it is difficult to suppress the resistance value at the time of a short circuit to a small value such as the above 0.10 to 0.20. be. In other words, the auxiliary winding method does not have the idea of making the inductive reactor act as a pure resistor immediately after a short circuit, but increases the welding current (pulling up) to the arc generation level to mainly reduce the inductance of the bulk inductive reactor. As a result, the rising slope of the welding current becomes gentle, making arc generation unstable. Furthermore, the inductive reactor has a complicated configuration in which a main winding and approximately the same number of auxiliary windings are wound around the iron core, and a large variable resistor with a large current capacity must be used, making the device complex and Because it was large and expensive, it could not be used as a regular, especially general-purpose, arc welding device. For this reason, the concession reactors currently widely used in general-purpose arc welding apparatuses are generally of the open magnetic path type, for example, those in which a type 1 iron core is wound.
そしてそのィンダクタンス値を整定するため中間タップ
を複数設け、組立て終了後にその中間タップの選択接続
を行ってィンダクタンスを適正値に近いものにしている
のが実状である。しかしながら、この種のものでは開磁
路形の鉄心を使用しているので磁気飽和のおそれがなく
小形化できる利点を有するが、その反面ィンダクタンス
値が不安定で、したがって組立作業時における調整作業
が面倒であり、周囲に磁性体の有る無いこよりィンダク
タンスが変るため使用時に動作が不安定になる問題があ
った。この発明はこのような事情に鑑みてなされたもの
で、使用する誘導リアクトルが従来の開磁路形鉄心に巻
線を施したものと同様構成簡単な小形なものでよく汎用
形として使用することができ、しかもアークをいわゆる
軟し、状態に維持することができ、短絡回数を多くでき
、溶接スパッタの発生を少なくでき、かつアークスター
ト時に瞬時にアークスタートをミスなく行うことができ
るきわめて安定した溶接作業が行えるアーク溶接装置を
提供するものである。In reality, a plurality of intermediate taps are provided in order to set the inductance value, and after assembly is completed, the intermediate taps are selectively connected to bring the inductance close to an appropriate value. However, since this type of iron core uses an open magnetic path type, it has the advantage of being able to be made smaller without the risk of magnetic saturation, but on the other hand, the inductance value is unstable and therefore requires adjustment during assembly work. This is troublesome, and the inductance changes depending on the presence or absence of magnetic material around the device, resulting in unstable operation during use. This invention was made in view of these circumstances, and the inductive reactor to be used is a small one with a simple structure similar to that of a conventional open magnetic path iron core wound with wires, and can be used as a general-purpose type. In addition, it is possible to maintain the arc in a so-called soft state, increase the number of short circuits, reduce the occurrence of welding spatter, and achieve an extremely stable arc start that can be performed instantaneously without mistakes. The present invention provides an arc welding device that can perform welding work.
以下、この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
母材1に向けて溶接ワイヤ2をワイヤ送給機構3によっ
て給電チップ4を通して連続的に送給するようにしてい
る。A welding wire 2 is continuously fed toward the base material 1 by a wire feeding mechanism 3 through a power feeding tip 4.
そして、直流ァーク溶接電源5の負極出力端子を誘導リ
アクトル6を直列に介して母材1に直接接続するととも
に正極出力端子を給電チップ4に接続し、母村1と溶接
ワイヤ2との間にァーク電圧を給電するとともに溶接電
流が通電するようにしている。なお、直流アーク溶接電
源5は、たとえば三相交流電圧を摺動変圧器で調整し、
その調整した電圧を三相整流器で整流し、出力するよう
にしたもので、内部インピーダンスが小さく、出力電圧
額度が小さい直流定電圧電源である。Then, the negative output terminal of the DC arc welding power source 5 is directly connected to the base metal 1 via the inductive reactor 6 in series, and the positive output terminal is connected to the power supply tip 4, and between the base metal 1 and the welding wire 2. The arc voltage is supplied and the welding current is applied. Note that the DC arc welding power source 5 adjusts, for example, a three-phase AC voltage with a sliding transformer,
The adjusted voltage is rectified by a three-phase rectifier and then output, making it a DC constant voltage power supply with low internal impedance and low output voltage.
誘導リアクトル6は、開磁路形鉄心7に巻線8を巻回し
、その巻線8の中央部外周にたとえばアルミニウム、銅
などの良導電村製の帯状導体からなる補償リング9を上
記巻線8と絶縁して套鼓し、これを巻線8の長手方向へ
位置移動可能としている。The inductive reactor 6 includes a winding 8 wound around an open magnetic path iron core 7, and a compensation ring 9 made of a band-shaped conductor made of a highly conductive material such as aluminum or copper placed around the central part of the winding 8. The winding 8 is insulated from the winding 8, and the winding 8 is insulated from the winding 8.
その補償リング9は帯状導体の両端部を重合しボルト、
ナットー川こよって機械的に接合したものである。この
ような構成であると、溶接電流の立上り勾配、ピーク値
の制限、およびその後の溶後電流の立下り勾配を補償リ
ング9によって自由に選択かつ改善できる。即ち、短絡
移行アーク溶接では、母村とワイヤとが短絡する期間と
、その短絡が解消し、母材と溶接ワイヤとの間にアーク
が発生するアーク期間とが交互に繰返えされるのである
が、この短絡移行領域での熔接電流は、理想的には第4
図に示す波形のように短絡開始と共に急激に立上つてア
ークが発生し、ピンチ効果による溶滴の移行まで緩やか
に上昇し、その後に急速に0点に向い低下するものが良
く、溶綾電流が急激に立上ればアーク発生が確実となる
。The compensation ring 9 overlaps both ends of the strip conductor and bolts,
It was mechanically connected across the Nhatto River. With such a configuration, the rising slope of the welding current, the restriction of the peak value, and the subsequent falling slope of the post-melting current can be freely selected and improved by the compensation ring 9. That is, in short-circuit transition arc welding, a period in which the base metal and the wire are short-circuited, and an arc period in which the short-circuit is resolved and an arc is generated between the base metal and the welding wire are alternately repeated. However, the welding current in this short-circuit transition region is ideally
Like the waveform shown in the figure, it is best to have a waveform that rises rapidly at the start of a short circuit to generate an arc, then gradually rises until the transfer of droplets due to the pinch effect, and then quickly decreases toward the 0 point. If the voltage rises rapidly, arcing is certain to occur.
一方前に述べたとおり、溶接電流の立上り勾配は回路中
のインダクタンスと抵抗に依存しており、ィンダクタン
スと抵抗とのベクトル和で溶接電流の実質的な立上り勾
配が決定される。換言すれば、短絡時、誘導IJァクト
ルが純抵抗として働く程立上り勾配はきつくなり、さら
に抵抗値が4・さい程、1=V/Rの関係でアーク発生
レベルb点まで一起に溶接電流は上昇する。上記構成の
誘導リアクトル6の補償リング9は短絡した一瞬は巻線
8の磁束に鎖交し、誘起電圧によって流れる誘起電流に
よって発熱する。On the other hand, as described above, the rising slope of the welding current depends on the inductance and resistance in the circuit, and the substantial rising slope of the welding current is determined by the vector sum of the inductance and resistance. In other words, at the time of a short circuit, the more the induced IJ factor acts as a pure resistance, the steeper the rising slope will be, and as the resistance value increases to 4, the welding current will suddenly reach the arc generation level point b due to the relationship 1=V/R. Rise. The compensating ring 9 of the inductive reactor 6 configured as described above is momentarily linked to the magnetic flux of the winding 8 when short-circuited, and generates heat due to the induced current flowing due to the induced voltage.
つまり補償リング9は溶接電流出力回路に直列に介挿し
た巻線8のィンダクタンスと等価回路的に並列に接続さ
れた抵抗回路として働く。また、補償リング9は巻線8
に対する位置によって上記磁束との鎖交度が異なる。た
とえば第2図のように巻線長手方向のほぼ中央に位置す
れば全磁束と鎖交し、誘導リアクトル6は短絡した瞬間
は純抵抗として働き、ィンダクタンスはほとんど作用し
ない。逆に補償リング9を巻線8の端に寄せてゆけば純
抵抗としての働きは小さくなり、ィンダクタンスとして
の働きが増大する。故に、溶接ワイヤ2が母材1に接触
する毎に溶接電流の立上りが適正なものとなる抵抗値が
縛られるように補償リング9の位置を選択しておけば、
第4図の如くa点からb点まで瞬時に立上らせ、その都
度アークの発生を確実なものにできる。誘導リアクトル
6の純抵抗としての働きは−藤であって、その後補償リ
ング9は、巻線8に流れる電流を阻止しようとして磁束
を押し返えすため、巻線8の入力側と補償リング9との
間、および補償リング9と出力側の間に漏洩磁束が発生
し、ここにィンダクタンスを生じ、このィンダクタンス
と抵抗とのベクトル和で第4図の如くb点からc点にか
けて溶接電流を緩やかな角度で上昇させ、スパッタが発
生しないようにする。このため、ピン効果による渚滴の
移行がスパッタを伴わず円滑に行われる。上記漏洩磁束
によるインダクタンスの大きさは補償リング9の位置に
よって決定される。In other words, the compensation ring 9 functions as a resistance circuit connected in parallel with the inductance of the winding 8 inserted in series with the welding current output circuit in terms of an equivalent circuit. Also, the compensation ring 9 is connected to the winding 8
The degree of linkage with the magnetic flux differs depending on the position relative to the magnetic flux. For example, if it is located approximately at the center in the longitudinal direction of the winding as shown in FIG. 2, it interlinks with the total magnetic flux, and the moment the inductive reactor 6 is short-circuited, it acts as a pure resistance and almost no inductance acts. On the other hand, if the compensation ring 9 is brought closer to the end of the winding 8, its function as a pure resistance becomes smaller and its function as an inductance increases. Therefore, if the position of the compensation ring 9 is selected so that the resistance value that makes the rise of the welding current appropriate every time the welding wire 2 contacts the base metal 1 is selected,
As shown in FIG. 4, the arc can be instantaneously raised from point a to point b, and arc generation can be ensured each time. The inductive reactor 6 acts as a pure resistor, and then the compensation ring 9 connects the input side of the winding 8 with the compensation ring 9 in order to push back the magnetic flux in an attempt to block the current flowing through the winding 8. A leakage magnetic flux is generated between the compensation ring 9 and the output side, and an inductance is generated there, and the vector sum of this inductance and resistance causes the welding current to flow from point b to point c as shown in Figure 4. Raise at a gentle angle to avoid spatter. Therefore, the transfer of the droplets due to the pin effect is performed smoothly without spatter. The magnitude of the inductance due to the leakage magnetic flux is determined by the position of the compensation ring 9.
つまり、第8図イにおいて補償リング9が巻線8の中央
に位置したとすると、この補償リング9の左側と右側の
巻数は同数である。そしてィンダクタンスの大きさは巻
数の2案に比例するからN2十N2に比例する値となる
。これに対し第8図口のように補償リング9の位置を端
に寄せれば巻数はN′>nとなって(N′)2十〆に比
例する値を示す。そして、この両者では(N′)2十n
2>N2十N2のために前者の方がインダクタンスが小
さい。このように補償リング9の位置は短絡直後の純抵
抗としての働きを、その後のィンダクタンス分としての
働きを考慮して選定されるものとなる。また、溶接電圧
は第4図に見られるように、溶接電流のピーク値、つま
りc点で立上がつて無負荷電圧(アークが続かない電圧
)に落ち着こうとするが、この電圧には巻線8に蓄積さ
れたェネルギが重畳されるために破線のような緩かな低
下をきたして、無負荷電圧までに時間がかかり、その間
アークを持続しようとする。That is, if the compensation ring 9 is located at the center of the winding 8 in FIG. 8A, the number of turns on the left and right sides of the compensation ring 9 is the same. Since the magnitude of the inductance is proportional to the two cases of the number of turns, it becomes a value proportional to N20N2. On the other hand, if the compensating ring 9 is moved to the edge as shown in FIG. And for both of them, (N')20n
Since 2>N20N2, the former has a smaller inductance. In this way, the position of the compensation ring 9 is selected in consideration of its function as a pure resistance immediately after a short circuit and its subsequent function as an inductance component. In addition, as shown in Figure 4, the welding voltage rises at the peak value of the welding current, that is, at point c, and then tries to settle down to a no-load voltage (voltage at which the arc does not continue). 8 is superimposed, causing a gradual drop as shown by the broken line, and it takes time to reach the no-load voltage, during which time the arc is maintained.
故に溶接電流もc点からの立下りが緩かになる。しかし
上記構成の誘導リアクトルにあっては、巻線8に蓄積さ
れたェネルギが補償リング9によって熱分として吸収さ
れ、かつ消費される結果、溶接電圧に対する窒積ェネル
ギの重畳がなくなって、溶接電圧は急速に無負荷電圧に
落ち着き、これに対応し溶接電流はc点から急角度で減
衰し、次の短絡移行に備えることにより、単位時間内に
おける短絡回数を増加せしめる。したがって、この装置
によれば短絡特に電流がァーク発生レベルまで急激に立
上るので短絡が確実、かつ比較的短時間で破れるし、ま
た電流のピーク値が適当に制限されるから溶接スパッタ
の発生が少なく、安定した換言すれば軟し、状態のアー
クが得られ、従来装置では達成困難であったきわめて多
数回の短絡移行回数が容易、かつ安定して得られる。Therefore, the welding current also falls slowly from point c. However, in the inductive reactor configured as described above, the energy accumulated in the winding 8 is absorbed and consumed as heat by the compensation ring 9, and as a result, the superposition of nitrogen energy on the welding voltage is eliminated, and the welding voltage quickly settles down to the no-load voltage, and correspondingly, the welding current attenuates at a steep angle from point c to prepare for the next short circuit transition, thereby increasing the number of short circuits within a unit time. Therefore, with this device, short circuits can be reliably broken, especially since the current rises rapidly to the arc generation level, and short circuits can be broken in a relatively short time, and the peak value of the current is appropriately limited, so welding spatter can be prevented. In other words, a stable arc with a small number of arcs can be obtained, and a very large number of short-circuit transitions, which has been difficult to achieve with conventional devices, can be easily and stably achieved.
第5図は巻回数31ターンの巻線を1形鉄心に巻回した
誘導IJァクトルを使用して従来の半自動C02アーク
溶接装置における溶接電流の記録波形を示すものである
。第6図は巻回数31ターンの巻線を1形鉄′けこ巻回
し、その外側に補償リングを巻回した誘導リアクトルを
使用したこの発明による半自動のC02アーク溶接装置
における熔接電流の記録波形を示すものである。FIG. 5 shows a recorded waveform of a welding current in a conventional semi-automatic C02 arc welding device using an induction IJ vector in which a 31-turn wire is wound around a type 1 iron core. Figure 6 shows the recorded waveform of welding current in a semi-automatic C02 arc welding device according to the present invention, which uses an induction reactor in which a 31-turn winding is wound around a type 1 iron pole and a compensation ring is wound around the outside of the inductive reactor. This shows that.
なお、第5図、第6図とも溶接電流値を15船とし、1
.2帆◇の溶接ワイヤを使用した場合における溶接電流
を50肌/secで走行する記録紙に記録したものであ
る。In addition, in both Figures 5 and 6, the welding current value is 15 ships, and 1
.. The welding current when using a 2 sail ◇ welding wire was recorded on a recording paper running at 50 skins/sec.
この第5図、第6図の比較から明らかなように、この発
明装置による場合は短絡移行回数を従来装置による場合
に比して大中に増加することができるうえ、溶接スパッ
タの発生が少ない安定した溶接が行える。As is clear from the comparison between Figures 5 and 6, the device of this invention can increase the number of short-circuit transitions compared to the conventional device, and also reduces the occurrence of welding spatter. Stable welding can be performed.
このようなことは、溶接電流が15船の場合に限ったこ
とではなく、溶接電流値を変えた場合でも同様である。This is not limited to the case where the welding current is 15 ships, but also applies when the welding current value is changed.
第7図は溶接電流値と短絡移行回数の関係を示すもので
、点線で従来装置の場合を示し、実線がこの発明装置の
場合を示す。この図から明らかなようにこの発明装置に
よるものは低電流から高電流域にわたってその短絡移行
回数が従来装置に比して顕著に増加する。しかも、この
発明装置によつて達成し得る短絡移行回数は従釆装置で
は到底達成することの困難なものであって、この点にお
いてこの発明の従来装置では得られないきわめて優れた
機能を発揮し得るものである。なお、実験によれば、溶
接電流が150Aの場合に補償リングに通流する電流に
よるアンペアターンが300〜200MTになるように
、更に望ましくは600〜1000ATになるように設
定した場合にもっとも望ましい特性の得られることが判
明している。FIG. 7 shows the relationship between the welding current value and the number of short-circuit transitions, where the dotted line shows the case of the conventional device, and the solid line shows the case of the present invention device. As is clear from this figure, the number of short-circuit transitions in the device according to the present invention is significantly increased over the range from low current to high current, compared to the conventional device. Moreover, the number of short-circuit transitions that can be achieved by the device of this invention is something that would be difficult to achieve with a secondary device, and in this respect, the device of this invention exhibits an extremely superior function that cannot be obtained with the conventional device. It's something you get. According to experiments, the most desirable characteristics are obtained when the ampere-turn due to the current flowing through the compensation ring is set to 300 to 200 MT when the welding current is 150 A, and more preferably 600 to 1000 AT. It has been found that the following results can be obtained.
また、補償リングの巻線に対する巻回&畳を開磁路形鉄
′○の軸万向に移動調整することによってその補償リン
グに対する磁束の鎖交状態を調整し、特性を調整できる
ことが判明している。In addition, it was found that by adjusting the winding of the compensation ring around the winding and moving it in all directions of the axis of the open magnetic path type iron'○, the interlinkage state of the magnetic flux with respect to the compensation ring can be adjusted and the characteristics can be adjusted. ing.
以上で明らかなように、この発明によれば、誘導リアク
トルとして開磁路形鉄心に巻線を巻回し、その巻線の外
周に良導電材製の補償リングを絶縁して巻回した構成簡
単で、小形なものを使用するので構成的に従釆の汎用装
置と略同等なものであって、しかも等価回路的には鉄心
に主巻線と補助巻線を巻回し、その補助巻線に抵抗を接
続誘導リアクトルを使用したものと略同等なので、従来
の汎用装置と略同等の構成簡単な小形のものであって、
従来の汎用装置では到底得ることのできないきわめて優
れた機能を発揮するアーク溶接装置を提供できるもので
ある。As is clear from the above, according to the present invention, a winding is wound around an open magnetic path type iron core as an inductive reactor, and a compensating ring made of a good conductive material is insulated and wound around the outer periphery of the winding. Since a small device is used, the configuration is almost the same as the general-purpose device of the auxiliary, and in terms of an equivalent circuit, the main winding and auxiliary winding are wound around the iron core, and the auxiliary winding is It is almost the same as using an inductive reactor with a resistor connected, so it is a small and simple device that is almost the same as a conventional general-purpose device.
It is possible to provide an arc welding device that exhibits extremely superior functions that cannot be obtained with conventional general-purpose devices.
第1図はこの発明の一実施例を示す回路図、第2図は同
実施例の誘導IJァクトルを拡大し、一部切欠して示す
正面図、第3図は同じく側面図、第4図は同実施例にお
ける溶接電圧波形および溶接電流波形をモデル化して示
す図、第5図は従釆装置における溶酸電流の波形記録図
、第6図はこの発明の装置における溶接電流の波形記録
図、第7図は溶接電流に対する短絡移行回数の関係を示
す特性図、第8図イ,口は漏洩ィンダクタンスの大きさ
を説明する概略図である。
1.・・・・・母材、2・・・・・・電極ワイヤ、3・
・…・ワイヤ送給機構、4・・・・・・給電チップ、5
・・・・・・直流アーク溶接電源、6・・・・・・誘導
リアクトル、7・・・・・・鉄心、8・・・・・・巻線
、9・・・・・・補償リング。
第1図第2図
第3図
第4図
第5図
第6図
第7図
第8図Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is an enlarged front view showing an inductive IJ vector of the same embodiment, with a portion cut away, Fig. 3 is a side view, and Fig. 4 5 is a diagram showing a model of the welding voltage waveform and welding current waveform in the same example, FIG. 5 is a waveform record diagram of the molten acid current in the subordinate device, and FIG. 6 is a waveform record diagram of the welding current in the device of the present invention. , FIG. 7 is a characteristic diagram showing the relationship between the number of short-circuit transitions and the welding current, and FIG. 1. ... Base material, 2 ... Electrode wire, 3.
...Wire feeding mechanism, 4...Power feeding chip, 5
....DC arc welding power source, 6..Induction reactor, 7.. Iron core, 8.. Winding wire, 9.. Compensation ring. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8
Claims (1)
巻線長手方向に位置移動可能である良導電材製の補償リ
ングを上記巻線と絶縁して巻回した誘導リアクトルを設
け、この誘導リアクトルの巻線を直流アーク溶接電源の
溶接電流出力回路中に直列に介挿してなることを特徴と
するアーク溶接装置。1. A winding is wound around an open magnetic path iron core, and around the outer circumference of the winding,
An inductive reactor is provided in which a compensating ring made of a highly conductive material that can be moved in the longitudinal direction of the winding is wound insulated from the above winding, and the winding of this inductive reactor is connected to the welding current output circuit of a DC arc welding power source. An arc welding device characterized by being inserted in series with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51049220A JPS6025228B2 (en) | 1976-04-28 | 1976-04-28 | Arc welding equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51049220A JPS6025228B2 (en) | 1976-04-28 | 1976-04-28 | Arc welding equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52131951A JPS52131951A (en) | 1977-11-05 |
JPS6025228B2 true JPS6025228B2 (en) | 1985-06-17 |
Family
ID=12824851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51049220A Expired JPS6025228B2 (en) | 1976-04-28 | 1976-04-28 | Arc welding equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6025228B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02194603A (en) * | 1989-01-24 | 1990-08-01 | Top Denshi Kk | Choke coil |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4217702Y1 (en) * | 1964-03-10 | 1967-10-13 |
-
1976
- 1976-04-28 JP JP51049220A patent/JPS6025228B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4217702Y1 (en) * | 1964-03-10 | 1967-10-13 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02194603A (en) * | 1989-01-24 | 1990-08-01 | Top Denshi Kk | Choke coil |
Also Published As
Publication number | Publication date |
---|---|
JPS52131951A (en) | 1977-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4438317A (en) | Pulse arc welding machine | |
US5363035A (en) | Phase controlled transformer | |
JPS63136608A (en) | Variable transformation ratio type transformer for arc and plasma | |
US3657724A (en) | Method of and power supply for electric arc welding | |
US6410885B1 (en) | MIG brazing power source | |
US3237051A (en) | Direct current welder with variable reactor | |
JPS6025228B2 (en) | Arc welding equipment | |
US10086463B2 (en) | Arc welding apparatus | |
US6037566A (en) | Arc welding apparatus for constant current and voltage characteristics cost and weight of which being reduced | |
JPS6344470B2 (en) | ||
US3911243A (en) | Welding power source | |
US4398080A (en) | Arc welding power source | |
JPS6316868A (en) | Low electric current welding method | |
JPH08126198A (en) | Phase adjuster | |
JPS6233024B2 (en) | ||
JPS637872B2 (en) | ||
JPH0356146B2 (en) | ||
JPS6365429B2 (en) | ||
JP3527579B2 (en) | Arc processing equipment | |
JPS6350077Y2 (en) | ||
JPS6343197B2 (en) | ||
SU1087282A1 (en) | Apparatus for stabilization of welding current in d.c.welding with regular short-circuits | |
JPS55103279A (en) | Direct current arc welding machine | |
JPH0313945B2 (en) | ||
KR101290522B1 (en) | Flyback transformer |