JPS6365429B2 - - Google Patents

Info

Publication number
JPS6365429B2
JPS6365429B2 JP8565380A JP8565380A JPS6365429B2 JP S6365429 B2 JPS6365429 B2 JP S6365429B2 JP 8565380 A JP8565380 A JP 8565380A JP 8565380 A JP8565380 A JP 8565380A JP S6365429 B2 JPS6365429 B2 JP S6365429B2
Authority
JP
Japan
Prior art keywords
circuit
welding
arc
conduction period
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8565380A
Other languages
Japanese (ja)
Other versions
JPS5711772A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8565380A priority Critical patent/JPS5711772A/en
Publication of JPS5711772A publication Critical patent/JPS5711772A/en
Publication of JPS6365429B2 publication Critical patent/JPS6365429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 本発明は溶接電源出力制御装置に関するもの
で、その目的とするところはCO2溶接、MIG溶接
に代表される消耗電極アーク溶接装置の出力制御
装置において、短絡時の出力制御を電気的に行な
うことにより適正な溶接作業状態を容易に選択で
き、作業能率を向上することのできる装置を得よ
うとするものである。消耗電極アーク溶接用電源
としては、通常定電圧特性のものが用いられ最近
は出力制御に制御整流素子(以下サイリスタと記
す)を用いる場合が多い。又、出力制御方式とし
て、出力信号電圧を帰還制御し定電圧特性を得る
場合と、単に出力電圧値を指定制御する場合があ
る。しかしながらアーク溶接の場合、負荷状態は
短絡とアークを繰りかえし行うため短絡時におけ
る負荷電流の立ち上がりなどの短絡特性は溶接作
業性に大きな影響を与える。このため通常は溶接
出力回路中にインダクタンスを設け、短絡特性の
調整を行なうことにより作業性の改善をはかつて
いる。しかし、実際の溶接時は採用する溶接電
流、溶接速度、溶接姿勢などにより最適なインダ
クタンス量が異なるが、平均的使用状態に合わせ
てインダクタンス量を決定している。これはイン
ダクタンス量の調整が容易でないこと、重量が重
く高価になるために実際上インダクタンス量の調
整ができないためである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a welding power source output control device, and its purpose is to control the output power in the event of a short circuit in an output control device for consumable electrode arc welding devices such as CO 2 welding and MIG welding. The object of the present invention is to provide a device that can easily select an appropriate welding operation state by electrically controlling the welding operation and improve the operation efficiency. As a power source for consumable electrode arc welding, a power source with constant voltage characteristics is usually used, and recently a control rectifier element (hereinafter referred to as a thyristor) is often used for output control. Further, as the output control method, there are a case where the output signal voltage is feedback-controlled to obtain a constant voltage characteristic, and a case where the output voltage value is simply specified and controlled. However, in the case of arc welding, short-circuiting and arcing are repeated in the load state, so short-circuit characteristics such as the rise of load current during short-circuiting have a large effect on welding workability. For this reason, workability is usually improved by providing an inductance in the welding output circuit to adjust the short circuit characteristics. However, during actual welding, the optimal amount of inductance varies depending on the welding current, welding speed, welding posture, etc., but the inductance amount is determined according to the average usage conditions. This is because it is not easy to adjust the amount of inductance, and because it is heavy and expensive, it is practically impossible to adjust the amount of inductance.

第1図は一般的な溶接用電源装置の全体構成の
一例を示したものである。T1は一次巻線と二次
巻線とを有する主変圧器で、二次側は二重星型結
線とされ各星型結線間に相間リアクトルL1が配
置されている。SCR1〜SCR6は制御整流素子(サ
イリスタ)、G1〜G6はそれぞれサイリスタSCR1
〜SCR6のゲート、K1〜K6はサイリスタSCR1
SCR6のカソード、L1は相間リアクトル、L2はリ
アクトル、1は消耗電極、2は被溶接母材、3は
アークである。現在サイリスタを用いた溶接電源
装置は通常200Vの三相交流を入力とし、主変圧
器T1を介しての直流出力回路には、溶接中に起
こる消耗電極1と被溶接母材2の短絡に際し適当
な電流立上がりを設定できるリアクトルL2を配
置している。第1図においてサイリスタのゲート
回路はK1―G1とK4―G4、K2―G2とK5―G5、K3
―G3とK6―G6を組とする位相の異なつた三種類
が必要である。
FIG. 1 shows an example of the overall configuration of a general welding power supply device. T 1 is a main transformer having a primary winding and a secondary winding, and the secondary side has a double star connection, and an interphase reactor L 1 is arranged between each star connection. SCR 1 to SCR 6 are controlled rectifying elements (thyristors), G 1 to G 6 are each thyristor SCR 1
~ Gate of SCR 6 , K 1 ~ K 6 is thyristor SCR 1 ~
The cathode of SCR 6 , L 1 is an interphase reactor, L 2 is a reactor, 1 is a consumable electrode, 2 is a base material to be welded, and 3 is an arc. Currently, welding power supplies using thyristors usually input 200V three-phase AC, and the DC output circuit via the main transformer T1 has a power supply that is connected to Reactor L2 is installed to set an appropriate current rise. In Figure 1, the gate circuit of the thyristor is K 1 - G 1 and K 4 - G 4 , K 2 - G 2 and K 5 - G 5 , K 3
-G 3 and K 6 -G 6 are required as a set of three types with different phases.

従来のこのようなサイリスタ式電源において、
ゲート回路構成としては、各サイリスタを定位相
で動作させ平均出力制御を行なうオープンループ
制御と、溶接中の出力電圧を帰還して設定した平
均出力を得るための制御を行なうフイードバツク
制御が行なわれているが、通常このような制御は
系の安定性を確保するため制御応答時間を大体
6msec以下にすることは不可能であつた。しかし
ながら溶接時における短絡時間は大体3〜
15msecが適当であるため、短絡時の電流立上が
り抑制用として直流側に調整困難なリアクトルを
必要としていた。即ち、このようにリアクトルを
用いて短絡時の溶接電流の立上がりを調整する方
式においては、前述のように溶接電流や溶接速
度、溶接姿勢などにより最適な値に調整すること
は極めて困難であつた。
In a conventional thyristor power supply like this,
The gate circuit configuration includes open-loop control in which each thyristor operates in constant phase to control the average output, and feedback control in which the output voltage during welding is fed back to obtain the set average output. However, this type of control usually shortens the control response time to ensure system stability.
It was impossible to reduce the time to 6 msec or less. However, the short circuit time during welding is approximately 3~
Since 15 msec is appropriate, a reactor that is difficult to adjust was required on the DC side to suppress the current rise in the event of a short circuit. In other words, in this method of adjusting the rise of the welding current in the event of a short circuit using a reactor, it is extremely difficult to adjust the welding current to the optimum value depending on the welding current, welding speed, welding posture, etc., as described above. .

本発明は出力状態が短絡時か、アーク時かを区
別し、溶接作業に重要な影響を与える短絡時、及
びアーク発生時のそれぞれに適した出力制御をを
電気的に行なうことにより短絡特性を調整し適正
な溶接作業状態を簡単に得ようとしたもので、以
下実施例として示した図面に従つてその構成を説
明する。第2図は溶接電源出力制御装置の制御部
回路の一例を示したもので、SCRは主回路部に
配置されたサイリスタ群、1は消耗電極、2は被
溶接母材、3はアーク、4は溶接電源出力端がア
ークか短絡かを検出する出力状態検出回路、5は
平均出力制御回路、6は短絡及びアーク特性改善
回路、7はサイリスタに制御信号を送るゲート回
路、8は消耗電極1の通電部と溶接母材2間の電
圧に比例した電圧信号を発生するアーク電圧検出
回路である。上記構成において、検出回路4によ
つて出力状態がアーク時か短絡時かを検出し、そ
の結果が短絡及びアーク特性改善回路6に入力さ
れる。また、アーク電圧検出回路6により消耗電
極1の通電部と溶接母材間の電圧が検出され、そ
の結果が特性改善回路6に入力される。特性改善
回路6は検出回路4から入力される信号により出
力状態がアーク時から短絡時に移行したことが検
出された時に、アーク電圧検出回路8から入力さ
れる信号に対応して出力低下量を決定するサイリ
スタの導通期間αを決定するとともに、このαを
時間の経過につれて小さくするように制御して出
力する。ゲート回路7は特性改善回路6の出力お
よび平均出力制御回路5の出力に従つてサイリス
タSCRを制御する。また、特性改善回路6は検
出回路4から入力される信号により出力状態が短
絡時かアーク時へ移行したことが検出された時
に、アーク電圧検出回路4から入力される信号に
対応して出力増加量を決定するサイリスタの導通
期間βを決定するとともに、こβを時間の経過に
つれて小さくするように制御して出力する。すな
わち出力状態が短絡時か、アーク時かを検出回路
4によつて検出し、短絡時には短絡後ただちに設
定された平均出力(溶接電流に適合した溶接電
圧)よりも出力を低下させる。この出力低下量は
サイリスタの導通期間αである。この後短絡期間
中徐々に平均設定出力に向つて出力を増大させる
制御を行なう。即ち短絡時の出力低下量導通期間
α及びその後の出力増加度合により短絡時の出力
電流を適正に制御するものである。
The present invention distinguishes whether the output state is a short circuit or an arc, and electrically controls the output appropriately for the short circuit and arc occurrence, which have an important effect on welding work, thereby improving short circuit characteristics. This is an attempt to easily obtain an appropriate welding working condition through adjustment, and its configuration will be explained below with reference to the drawings shown as examples. Figure 2 shows an example of the control circuit of a welding power source output control device, where SCR is a group of thyristors arranged in the main circuit, 1 is a consumable electrode, 2 is the base material to be welded, 3 is an arc, 4 5 is an average output control circuit, 6 is a short circuit and arc characteristic improvement circuit, 7 is a gate circuit that sends a control signal to the thyristor, 8 is a consumable electrode 1 This is an arc voltage detection circuit that generates a voltage signal proportional to the voltage between the current-carrying part and the welding base material 2. In the above configuration, the detection circuit 4 detects whether the output state is an arc or a short circuit, and the result is input to the short circuit and arc characteristic improvement circuit 6. Further, the arc voltage detection circuit 6 detects the voltage between the current-carrying part of the consumable electrode 1 and the welding base material, and the result is input to the characteristic improvement circuit 6. The characteristic improvement circuit 6 determines the amount of output reduction in response to the signal input from the arc voltage detection circuit 8 when it is detected by the signal input from the detection circuit 4 that the output state has shifted from an arc state to a short circuit state. The conduction period α of the thyristor is determined, and this α is controlled and outputted so as to become smaller as time passes. The gate circuit 7 controls the thyristor SCR according to the output of the characteristic improvement circuit 6 and the output of the average output control circuit 5. In addition, the characteristic improvement circuit 6 increases the output in response to the signal input from the arc voltage detection circuit 4 when it is detected by the signal input from the detection circuit 4 that the output state has shifted to short-circuit or arcing. The conduction period β of the thyristor that determines the amount of electricity is determined, and this β is controlled and outputted so as to become smaller as time passes. That is, the detection circuit 4 detects whether the output state is a short circuit or an arc, and in the case of a short circuit, the output is immediately lowered than the set average output (welding voltage suitable for the welding current) after the short circuit. This amount of output reduction is the conduction period α of the thyristor. Thereafter, control is performed to gradually increase the output toward the average set output during the short-circuit period. That is, the output current at the time of a short circuit is appropriately controlled based on the amount of output reduction during the short circuit, the conduction period α, and the degree of increase in output thereafter.

次にアーク時には、アーク発生後ただちに設定
された平均出力より出力を増大させる。この出力
増加量はサイリスタの導通期間βである。その後
アーク発生期間中徐々に平均設定出力に向つて出
力を減少させる制御を行なう。即ちアーク発生時
の出力増加量、導通期間β及びその後の出力減少
度合によりアーク時の出力電流を適正に制御する
ものである。アーク電圧検出回路8の溶接電圧信
号は消耗電極1の通電部と溶接母材2間の距離の
増大にともなつてほぼ比例的に増大するととも
に、溶接条件が同一、かつ消耗電極1の通電部と
溶接母材2間の距離が同一であれば、出力状態が
短絡状態の場合もアーク状態の場合も消耗電極1
の通電部と溶接母材2間の電圧はほぼ同一であ
り、その出力は短絡及びアーク特性改善回路6に
接続され、前記電極1通電部と母材2間の距離の
大きさによつて短絡後の出力低下量(サイリスタ
の導通期間α)及びアーク発生後の出力増加量
(サイリスタの導通期間β)の値を自動的に制御
することができる。出力状態が短絡時であるか、
アーク発生時であるかによつて変化するサイリス
タの点弧位相の変化状態を第3図によつて説明す
る。
Next, when an arc occurs, the output is increased from the set average output immediately after the arc occurs. This output increase amount is the conduction period β of the thyristor. Thereafter, control is performed to gradually reduce the output toward the average set output during the arc generation period. That is, the output current at the time of arcing is appropriately controlled by the amount of increase in output at the time of arc occurrence, the conduction period β, and the degree of decrease in output thereafter. The welding voltage signal of the arc voltage detection circuit 8 increases almost proportionally as the distance between the current-carrying part of the consumable electrode 1 and the welding base metal 2 increases, and when the welding conditions are the same and the current-carrying part of the consumable electrode 1 If the distance between the welding base metal 2 and the welding base metal 2 is the same, the consumable electrode 1
The voltage between the current-carrying part of the electrode 1 and the welding base metal 2 is almost the same, and its output is connected to a short-circuit and arc characteristic improvement circuit 6. It is possible to automatically control the amount of subsequent output decrease (thyristor conduction period α) and the output increase amount after arc occurrence (thyristor conduction period β). Is the output state short-circuited?
The state of change in the firing phase of the thyristor, which changes depending on whether an arc is occurring or not, will be explained with reference to FIG.

第3図においてaは短絡期間、bはアーク発生
期間、θは溶接出力に応じた基準導通期間Tを与
える点弧位相を示す。時限t1について短絡が開始
されたとすると、サイリスタの点弧位相を導通期
間αだけ遅らせて点弧位相をθ1にし、その後短絡
期間中は点弧位相をθ位相に向けて徐々に進める
(第3図A線)。このようにして短絡後の出力を減
少させ溶接電流の立上がりを抑える。次にアーク
が発生した時限t2においてはサイリスタの点弧位
相をθ位相よりβだけ進めてθ2とし、その後徐々
に第3図B線に添つてサイリスタの点弧位相をθ
位相に近づけることによりアーク発生後の出力を
増大させ溶接アークを維持する。
In FIG. 3, a indicates a short circuit period, b indicates an arc generation period, and θ indicates an ignition phase that provides a reference conduction period T depending on the welding output. Assuming that the short-circuit is initiated for time t 1 , the firing phase of the thyristor is delayed by the conduction period α to bring the firing phase to θ 1 , and then during the short-circuit period the firing phase is gradually advanced towards the θ phase (the Figure 3, line A). In this way, the output after a short circuit is reduced and the rise of the welding current is suppressed. Next, at time t 2 when an arc occurs, the firing phase of the thyristor is advanced by β from the θ phase to θ 2 , and then the firing phase of the thyristor is gradually changed to θ along line B in Figure 3.
By bringing the welding arc closer to the phase, the output after arc generation is increased and the welding arc is maintained.

上記のように短絡直後の出力増加量を抑える方
式の場合、短絡が良好に開放されないことがあ
り、極端な場合にはハジキが生じることがある。
なお、ハジキとは短絡からアークへ移行せずに、
ワイヤーが溶融飛散してしまうことをいう。これ
は短絡直後の出力抑制量に適正値が存在すること
を示しており、この適正値は溶接トーチの消耗電
極通電部と溶接母材金属との距離によつて変化す
る。詳細な実験結果によれば、消耗電極通電部と
溶接母材との距離が大きくなるに従つて短絡時の
抑制量(即ちα)の値を小さくすることが溶接特
性上好ましいことが判明した。このような電極通
電部と母材間の距離による影響はトーチを手で保
持して溶接を行なうため手のふれによつて前記距
離が変化する、いわゆる半自動溶接において影響
が大きく溶接アークがハジキを生ずることがあ
る。
In the case of the above-mentioned method of suppressing the amount of increase in output immediately after a short circuit, the short circuit may not be opened satisfactorily, and in extreme cases, repelling may occur.
In addition, cissing means that without transitioning from a short circuit to an arc,
This refers to the wire melting and scattering. This indicates that there is an appropriate value for the amount of output suppression immediately after a short circuit, and this appropriate value changes depending on the distance between the consumable electrode current-carrying part of the welding torch and the weld base metal. According to detailed experimental results, it has been found that as the distance between the consumable electrode current-carrying part and the weld base metal increases, it is preferable in terms of welding characteristics to decrease the value of the suppression amount (i.e., α) at the time of a short circuit. The effect of the distance between the electrode current-carrying part and the base metal is large in so-called semi-automatic welding, where the torch is held in the hand during welding, and the distance changes depending on the movement of the hand. This may occur.

このような消耗電極通電部と溶接母材間の距離
lの変動による溶接アークの不安定さを防ぐため
に、短絡直後の出力抑制量(導通期間α)を前記
の距離lに応じて変化させ良好な溶接アークを維
持する場合の変化制御量について説明する。
In order to prevent instability of the welding arc due to variations in the distance l between the consumable electrode current-carrying part and the welding base metal, the output suppression amount (conduction period α) immediately after a short circuit is varied in accordance with the distance l, so that a good The change control amount when maintaining a stable welding arc will be explained.

第4図は消耗電極通電部と溶接母材間の距離l
の値と短絡時の適正抑制量(導通期間α)との関
係を示している。溶接出力電流値に相当した通電
部と母材間の標準距離l1における適正抑制量(導
通期間α)の値は、距離lの増大にともない小さ
い値となる。又短絡時の適正抑制量の変化にとも
ないアーク時の適正キツク量(即ち導通期間β)
も異なり、抑制量αの減少と同時にキツク量βも
減少するように制御される。
Figure 4 shows the distance l between the current-carrying part of the consumable electrode and the welding base metal.
The relationship between the value of and the appropriate suppression amount (conduction period α) at the time of short circuit is shown. The value of the appropriate suppression amount (conduction period α) at the standard distance l 1 between the current-carrying part and the base metal corresponding to the welding output current value becomes smaller as the distance l increases. Also, as the appropriate suppression amount during short circuit changes, the appropriate kick amount during arcing (i.e. conduction period β)
It is controlled so that the stiffness amount β is also reduced at the same time as the suppression amount α is reduced.

なお消耗電極通電部と溶接母材の距離lが大き
くなるに従つて短絡時の抑制量αの値を小さく
し、それに伴ないアーク発生時のキツク量βの値
を小さくすると溶接アークが安定してハジキが生
じにくいことが実験結果により確認された。
Note that as the distance l between the current-carrying part of the consumable electrode and the welding base metal increases, the value of the suppression amount α at the time of short circuit is decreased, and the value of the kick amount β at the time of arc generation is accordingly decreased to stabilize the welding arc. Experimental results have confirmed that repellency is less likely to occur.

すなわち、第5図は抑制量αの値をα1,α2,α3
(第4図のようにα1>α2>α3)に設定し、キツク
量βの値をβ1,β2,β3(第4図のようにβ1>β2
β3)に設定し、電極と母材間の距離lを変えた時
のハジキの確率を示し、距離lをl1からl2まで変
化させた時、抑制量がα1、キツク量がβ1であれば
100回の電極母材間距離変化に対し13回のハジキ
が発生(ハジキ確率13%)し、抑制量α2、キツク
量β2であればハジキは生じなかつた。
That is, FIG. 5 shows the values of the suppression amount α as α 1 , α 2 , α 3
(as shown in Fig. 4, α 1 > α 2 > α 3 ), and the values of the stiffness β are set as β 1 , β 2 , β 3 (as shown in Fig. 4, β 1 > β 2 >
β 3 ), and shows the probability of repelling when the distance l between the electrode and the base material is changed. When the distance l is changed from l 1 to l 2 , the amount of suppression is α 1 and the amount of kick is β If it is 1
Repelling occurred 13 times for 100 changes in the distance between the electrode base materials (repelling probability 13%), and no repelling occurred if the suppression amount α 2 and the sharpness amount β 2 were used.

なお、上記実験において、l1は15mm、l2は18mm、
l3は22mmとし、α1=18゜、α2=10゜、α3=2゜、β1

18゜、β2=9゜、β2=1゜とした。また、実験条件は、
溶接電流120A、溶接電圧19V、直径1.2mmの通常
のソリツドワイヤ、シールドガスはCO2ガスとし
た。
In addition, in the above experiment, l 1 is 15 mm, l 2 is 18 mm,
l 3 is 22mm, α 1 = 18°, α 2 = 10°, α 3 = 2°, β 1
=
18°, β 2 = 9°, and β 2 = 1°. In addition, the experimental conditions are
The welding current was 120 A, the welding voltage was 19 V, a normal solid wire with a diameter of 1.2 mm, and the shielding gas was CO 2 gas.

上記のような距離lの長さに応じて短絡後の抑
制量(導通期間α)及びアーク発生後のキツク量
(導通期間β)の値は、距離lとほぼ直線的な関
係を有する溶接電圧信号によつて自動的に制御さ
れ安定した溶接アークを維持することができる。
Depending on the length of the distance l as described above, the suppression amount after short circuit (conduction period α) and the value of the kick amount after arc generation (conduction period β) are determined by the welding voltage, which has a nearly linear relationship with the distance l. It is automatically controlled by signals and can maintain a stable welding arc.

本発明は上記のように構成及び作用を有し、短
絡時には積極的に溶接出力の増大を抑制し、一方
アーク発生時には溶接出力を増大させて溶接アー
クを維持する制御を加え、主サイリスタの点弧位
相を制御し溶接電源の動的特性を最適値にするこ
とにより、溶接アークによる溶接特性は大幅に改
善でき、しかも短絡後の出力低下量及びアーク発
生後の出力増加量の値は消耗電極通電部と溶接母
材との距離に応じて変えることにより、制御を自
動的に行なうことができる。シールドガスとして
CO2を用いるCOO2溶接法においては消耗電極が
母材金属との短絡を繰返すことにより消耗電極が
溶融して母材金属に移行する、いわゆる短絡移行
と消耗電極が溶融状態となつて母材金属に移行す
る、いわゆるグロビユール移行とが不安定に入り
交つた中電流領域において特にその効果は顕著で
あり、溶接ビートの縁部は大幅に改善され、コー
ルドラツプやヒゲのない良好な溶接ビードを得る
ことができ、且つ溶接スパツタも極めて少ない。
従つて極めて良好な溶接状態を得ることができ作
業能率を向上できる等の効果を有する。
The present invention has the configuration and operation as described above, and adds control to actively suppress the increase in welding output in the event of a short circuit, while increasing the welding output to maintain the welding arc in the event of an arc, and to control the main thyristor point. By controlling the arc phase and optimizing the dynamic characteristics of the welding power source, the welding characteristics of the welding arc can be significantly improved, and the amount of output decrease after short circuit and the amount of output increase after arc occurrence are smaller than those of the consumable electrode. Control can be performed automatically by changing the distance depending on the distance between the current-carrying part and the base metal to be welded. As a shielding gas
In the COO 2 welding method using CO 2 , the consumable electrode melts and transfers to the base metal due to repeated short circuits with the base metal, so-called short-circuit transfer, and the consumable electrode becomes molten and transfers to the base metal. The effect is particularly remarkable in the medium current range where so-called globule migration, which transfers to metal, is unstable, and the edges of the weld bead are greatly improved, resulting in a good weld bead without cold laps or whiskers. and welding spatter is extremely small.
Therefore, it is possible to obtain extremely good welding conditions and to improve work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接用電源装置の一例を示した回路
図、第2図は本願発明による溶接電源出力制御装
置の一実施例を示したブロツク図、第3図は本願
発明装置におけるアーク発生時、及び短絡時の点
弧位相の変化状態図、第4図は本願発明装置にお
ける消耗電極通電部と溶接母材の距離lの値と、
短絡時の抑制量(導通期間α)及びアーク時のキ
ツク量(導通期間β)との関係を示す図、第5図
は電極母材間距離とハジキ確率の関係を示す特性
図である。 1……消耗電極、2……被溶接母材、4……出
力状態検出回路、5……平均出力制御回路、6…
…短絡及びアーク特性改善回路、8……アーク電
圧検出回路。
FIG. 1 is a circuit diagram showing an example of a welding power supply device, FIG. 2 is a block diagram showing an embodiment of a welding power source output control device according to the present invention, and FIG. FIG. 4 shows the value of the distance l between the consumable electrode current-carrying part and the welding base material in the device of the present invention, and
FIG. 5 is a diagram showing the relationship between the amount of suppression at the time of short circuit (conduction period α) and the amount of kick at the time of arc (conduction period β), and FIG. 5 is a characteristic diagram showing the relationship between the distance between the electrode base materials and the repellency probability. DESCRIPTION OF SYMBOLS 1...Consumable electrode, 2...Base material to be welded, 4...Output state detection circuit, 5...Average output control circuit, 6...
...Short circuit and arc characteristic improvement circuit, 8...Arc voltage detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 消耗電極を用い、出力制御手段として複数個
の制御整流素子を用いたアーク溶接装置におい
て、溶接出力状態がアーク状態か短絡状態かを検
知する出力状態検出回路と、溶接出力に応じて前
記制御整流素子の基準導通期間Tを与える平均出
力制御回路と、短絡発生直後に前記制御整流素子
の導通期間を前記基準導通期間Tよりαだけ短か
くし、短絡が発生してから時間の経過とともに前
記導通期間を徐々に前記基準導通期間Tに近づけ
る短絡特性改善回路と、アーク発生直後に前記導
通期間を前記基準導通期間Tよりβだけ長くし、
アークが発生してから時間の経過とともに前記導
通期間を徐々に前記基準導通期間Tに近づけるア
ーク特性改善回路と、アーク電圧検出回路によつ
て検出された電圧値の増大にともない前記αの値
を小さく制御する適正抑制量制御回路および前記
βの値を小さく制御するキツク電圧制御回路とを
備えてなる溶接用電源出力制御装置。
1. In an arc welding device using a consumable electrode and using a plurality of control rectifying elements as an output control means, an output state detection circuit detects whether the welding output state is an arc state or a short circuit state, and the control according to the welding output An average output control circuit that provides a reference conduction period T of a rectifying element; and an average output control circuit that makes the conduction period of the control rectifier element shorter by α than the reference conduction period T immediately after a short circuit occurs, and increases the conduction period as time passes after the short circuit occurs. a short-circuit characteristic improving circuit that gradually approaches the reference conduction period T; and immediately after an arc occurs, the conduction period is made longer than the reference conduction period T by β;
an arc characteristic improvement circuit that gradually brings the conduction period closer to the reference conduction period T with the passage of time after the arc occurs; and the value of α as the voltage value detected by the arc voltage detection circuit increases. A welding power source output control device comprising an appropriate suppression amount control circuit that controls the value of β to a small value and a tight voltage control circuit that controls the value of β to a small value.
JP8565380A 1980-06-23 1980-06-23 Controller for output of welding power source Granted JPS5711772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8565380A JPS5711772A (en) 1980-06-23 1980-06-23 Controller for output of welding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8565380A JPS5711772A (en) 1980-06-23 1980-06-23 Controller for output of welding power source

Publications (2)

Publication Number Publication Date
JPS5711772A JPS5711772A (en) 1982-01-21
JPS6365429B2 true JPS6365429B2 (en) 1988-12-15

Family

ID=13864780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8565380A Granted JPS5711772A (en) 1980-06-23 1980-06-23 Controller for output of welding power source

Country Status (1)

Country Link
JP (1) JPS5711772A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143626A (en) * 1983-02-07 1984-08-17 Japan Steel Works Ltd:The Extremely low temperature plasticizing device of injection molding machine
JPS59192322U (en) * 1983-06-06 1984-12-20 日精樹脂工業株式会社 injection device
JPS59192324U (en) * 1983-06-09 1984-12-20 日精樹脂工業株式会社 Injection device heating cylinder
JPH04136102U (en) * 1991-06-07 1992-12-17 ヤマハ株式会社 athletic shoes

Also Published As

Publication number Publication date
JPS5711772A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
US5225660A (en) Consumable-electrode ac gas shield arc welding method and apparatus therefor
US4247752A (en) Constant current arc welder
US3904846A (en) Adaptive control for arc welding
US6207927B1 (en) Gas-shielded AC arc welding method and machine making use of consumable electrode
Ueyama et al. Solution to problems of arc interruption and arc length control in tandem pulsed gas metal arc welding
JPH07116839A (en) Consumable electrode dc arc welding machine
JPS6365429B2 (en)
US3665149A (en) Direct-current arc welder
Chae et al. A novel mixed current and voltage control scheme for inverter arc welding machines
JPS6365430B2 (en)
JPS6316868A (en) Low electric current welding method
US3911243A (en) Welding power source
JP5051345B2 (en) Electric power supply for arc furnace
JP2978598B2 (en) Pulse arc welding method
JP2686183B2 (en) AC TIG welding machine
JPS6217162Y2 (en)
JPS58224070A (en) Arc welding
JPH0356146B2 (en)
JP4826138B2 (en) Arc welding machine
JPH05237657A (en) Dc tig arc welding machine
JPS6351792B2 (en)
JPS5814049Y2 (en) DC arc welding machine
JP2023035727A (en) Power supply unit
JP3011736B2 (en) Consumable electrode arc welding machine
JPH0622758B2 (en) DC arc welding machine