JPS60251206A - Method for controlling blast furnace heat - Google Patents

Method for controlling blast furnace heat

Info

Publication number
JPS60251206A
JPS60251206A JP10795184A JP10795184A JPS60251206A JP S60251206 A JPS60251206 A JP S60251206A JP 10795184 A JP10795184 A JP 10795184A JP 10795184 A JP10795184 A JP 10795184A JP S60251206 A JPS60251206 A JP S60251206A
Authority
JP
Japan
Prior art keywords
furnace heat
heat
molten iron
hot metal
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10795184A
Other languages
Japanese (ja)
Inventor
Kanji Takeda
武田 幹治
Seiji Taguchi
田口 整司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10795184A priority Critical patent/JPS60251206A/en
Publication of JPS60251206A publication Critical patent/JPS60251206A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To enable control of blast furnace heat when said heat fluctuates in short time by predicting continuously the change of the furnace heat and adjusting conditions in front of tuyeres so as to maintain the specified heat. CONSTITUTION:A laser light emission analyzer 10 is installed to the flow behind a skimmer 6 for a molten iron 4 which is tapped from a tap hole 1 and flows in a tapping spout 2. A laser is then projected on the surface of the molten iron 4 through the inside of a pipe 7 in which clean N2 is passed from an introducing pipe 9. The analyzer 10 measures continuously the components in the molten iron 4 by an emission spectrochemical analysis method. When the measured value is transmitted to a microcomputer 11, the microcomputer 11 predicts the furnace heat after specified time from the continuously obtd. components of the molten iron 4 and adjust the conditions in front of the tuyere so as to maintain the specified furnace heat which is predicted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉の炉熱制御方法に関し、さらに詳しく述べ
ると、溶銑成分の連続的分析によって一定時間後の炉熱
を予測し、これを制御する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling the furnace heat of a blast furnace. More specifically, the present invention relates to a method for controlling the furnace heat of a blast furnace, and more specifically, a method for predicting the furnace heat after a certain period of time by continuous analysis of hot metal components, and controlling the furnace heat. Regarding how to.

〔従来の技術〕[Conventional technology]

溶銑中の(Si)は、従来炉熱を表わす指数として用い
られ、一定値以上に管理する炉熱制御が行われてきた。
Conventionally, (Si) in hot metal has been used as an index representing furnace heat, and furnace heat control has been performed to keep it above a certain value.

しかし最近では、製鋼プロセスの要求の変化に応じて、
溶銑温度は高く、(Si)濃度の低い溶銑を作ることが
必要となっている。
However, recently, in response to changes in the requirements of the steelmaking process,
The hot metal temperature is high, and it is necessary to produce hot metal with a low (Si) concentration.

日々の操業においては、各種の操業アクションおよびス
リップ等の炉内変化が動的に生じており、溶銑温度や(
S i)濃度も口内、日間で変動している。この種の変
動を制御することも低(Si)製造において重要なポイ
ントである。
In daily operations, various operational actions and changes in the furnace such as slip occur dynamically, resulting in changes in the hot metal temperature and (
S i) Concentration also varies within the mouth and from day to day. Controlling this type of variation is also an important point in low (Si) manufacturing.

また、最近では、高炉は製鉄所におけるガス供給設備と
しても重要な役割を果している。このため、所内におけ
るガス・バランスに応じて高炉の生産量を日内で大きく
変更する操業を行う場合がある。例えば、外部からの買
電単価が昼夜間で異なる場合には、買電単価の高い昼間
には、高コークス比操業を行って自家発電量を増加させ
、夜間には低コークス比操業を行うことがある。
Recently, blast furnaces have also played an important role as gas supply equipment in steel plants. For this reason, blast furnace production volume may be changed significantly within the day depending on the gas balance within the plant. For example, if the unit price of electricity purchased from outside differs between day and night, it is possible to operate at a high coke ratio during the day when the unit price of electricity is high to increase the amount of in-house power generation, and at night to operate at a low coke ratio. There is.

このような大幅な操業因子の短時間の変化に対しては従
来の炉熱制御システムでは制御困難な面が多い。従来の
炉熱制御システムは、1回の出銑サイクル内にl〜数回
サンプリングした銑鉄な機器分析により分析し、(St
)等の成分を知る。
Conventional furnace heat control systems often find it difficult to control such large changes in operating factors over a short period of time. The conventional furnace heat control system analyzes the pig iron sampled several times during one tapping cycle, and
) and other ingredients.

一方過去数十時間の(Si)の変化、およびセンサー情
報から(St)に対する各因子の寄与を係数としてめ、
各因子の最近の変化から、一定時間後の(S i)の変
化を予測している。従来技術では、最も重要な情報であ
る(Si)が自己回帰式の中に含まれているものの、1
回の出銑サイクル内に1〜数データであり、時間的に不
連続である。また最新の分析値は、サンプリング時間、
機器分析の時間を考慮すると最低でも20分程廉の時間
遅れがある。このため従来の技術では、1間のゆっくり
とした(S i)の変動は防止できても操業因子の日内
の大幅な変動に対しては、(Si)変動防止機能を有し
ていないのが現状である。
On the other hand, from the changes in (Si) over the past several tens of hours and the contribution of each factor to (St) from the sensor information,
The change in (S i) after a certain period of time is predicted from the recent changes in each factor. In the conventional technology, although (Si), which is the most important information, is included in the autoregressive equation, 1
There is one to several data within one tapping cycle, and it is discontinuous in time. In addition, the latest analysis values are based on the sampling time,
Considering the time required for instrumental analysis, there is a time delay of at least 20 minutes. For this reason, with conventional technology, although it is possible to prevent slow fluctuations in (Si) over a period of 1 hour, it does not have a (Si) fluctuation prevention function against large fluctuations in operating factors within a day. This is the current situation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来技術の欠点を克服するために、高炉操業
因子の短時間変化における(S i)変動を予測制御す
ることを目的とする。
The present invention aims at predictively controlling (S i ) fluctuations in short-term changes in blast furnace operating factors in order to overcome the drawbacks of the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は−1−記目的を達成するために、出銑樋−Lに
レーザ発光分光分析計を設置して、樋中を流れる溶銑の
(S i)を連続的に測定し、その測定値を用いて、一
定時間後の〔Si〕を予測し、(S i)を一定に保つ
ように羽目前条件、例えば送風温度、送風量、微粉炭吹
込量等を変更することにより、操業因子の変更による炉
熱変動を防止する炉熱制御方法である。
In order to achieve the object stated in -1-, the present invention installs a laser emission spectrometer in the tapping trough-L, continuously measures (S i) of the hot metal flowing in the trough, and calculates the measured value. The operating factors can be adjusted by predicting [Si] after a certain period of time using This is a furnace heat control method that prevents furnace heat fluctuations due to changes.

第1図は本発明の説明図であって、この図について説明
すると、出銑口lから出銑され出銑樋2中を流れる溶銑
4に対し、スキンマロの後流にレーザ発光分析計10を
設置し、このレーザ発光分析計とこれにつながるマイク
ロコンピュータ11とによって分析系統を構成し、この
ような分析系統を利用するものである。分析計10の設
置位置は、スキンマロによってスラグ5が排除された後
の溶銑表面が露出している部分であれば、どこでも良く
1例えば、傾斜樋3上に設置してもよい。
FIG. 1 is an explanatory diagram of the present invention, and to explain this diagram, a laser emission spectrometer 10 is installed downstream of the skin mallow with respect to hot metal 4 that is tapped from the taphole 1 and flows through the taphole 2. This laser emission spectrometer and the microcomputer 11 connected thereto constitute an analysis system, and such an analysis system is utilized. The analyzer 10 may be installed anywhere as long as the surface of the hot metal after the slag 5 has been removed by the skin mallow is exposed.For example, the analyzer 10 may be installed on the inclined trough 3.

レーザは、防熱板8によって遮蔽された発光分光分析計
lOから溶銑上に放射される。大気中のダスト等による
レーザの散乱および発光による信号雑音比(S/N比)
の低下を防止するため、清浄なるN2を導入管9から流
したパイプ7の中を通して溶銑4の表面に投射する。
A laser beam is emitted onto the hot metal from an optical emission spectrometer lO shielded by a heat shield plate 8. Signal-to-noise ratio (S/N ratio) due to laser scattering and emission due to dust in the atmosphere
In order to prevent a drop in the temperature, clean N2 is passed through the pipe 7 from the introduction pipe 9 and projected onto the surface of the hot metal 4.

N2導入管9からのN2は、また、同時に溶銑4の上面
の[のるかす」等を吹飛ばし、常に溶銑表面が露出して
いるように保つ役割を果す。
The N2 from the N2 introduction pipe 9 also serves to simultaneously blow away the scum and the like on the top surface of the hot metal 4, thereby keeping the surface of the hot metal exposed at all times.

分析計lOで測定された信号はマイクロコンピュータ1
1に伝送され、検量線により(St]濃度に換算され、
さらに1分間のデータとして平均化され、中央計算機1
7に伝送される。第2図は本発明の演算系統のシステム
構成図である。マイクロコンピュータ11から伝送され
たデータは中央計算機17では、他のセンサ(温度、圧
力、ガス成分・・・等)13からのデータとともに一時
データベース14に貯えられる。中央計算機17では、
5分間に1回、データベース14、最新の(St)値、
タイプライタ18から入力された今後の操業変更予定に
関するデータから、以下に示す方法にて、2日間の(S
i)の予測値をCRTディスプレイ15または帳票16
に出力する。
The signal measured by the analyzer IO is transmitted to the microcomputer 1.
1 and converted to (St) concentration using a calibration curve,
Furthermore, the data is averaged for 1 minute, and the central computer 1
7. FIG. 2 is a system configuration diagram of the arithmetic system of the present invention. The data transmitted from the microcomputer 11 is stored in a temporary database 14 in the central computer 17 along with data from other sensors 13 (temperature, pressure, gas components, etc.). In the central computer 17,
Once every 5 minutes, database 14, latest (St) value,
From the data regarding future operational change plans input from the typewriter 18, the following method is used to calculate (S) for two days.
i) The predicted value is displayed on the CRT display 15 or the form 16.
Output to.

(Si)の予測は以下のように行う。過去数10時間の
各種炉熱関連情報の移動指数平滑値の差分を用いて、予
測係数を計算し、下の基本式に従って、を時間後の(S
i)のθ次子側を計算する。
(Si) is predicted as follows. The prediction coefficient is calculated using the difference in the transfer index smoothed values of various furnace heat-related information over the past several tens of hours, and according to the basic formula below, the (S
Calculate the θ-order side of i).

基本予測式: %式% Δ(Si):を時間後の(Si)変化分KI:センサi
の(St)予測係数(iの中には、レーザ分析計の出力
値も含む) ΔXi:指数平滑化した情報値の変化分に文:誤差項 0次子側をベースにして、今後予定される操業因子の変
更と各因子の(Si)に対する応答特性により、以下の
式でt時間後の(St)の1次子測を行う。
Basic prediction formula: % formula% Δ(Si): Change in (Si) after time KI: Sensor i
(St) prediction coefficient (i includes the output value of the laser analyzer) ΔXi: Change in the exponentially smoothed information value. By changing the operating factors and the response characteristics of each factor to (Si), the first-order measurement of (St) after time t is performed using the following formula.

文 Δ(S i) 1−、Σ Rj(を−τj)・AjJ=
1 ここに、 Aj:アクションjの幅 Rj(を−τj):アクションjのt−でj後の(Si
)への応答 τj:操業変更時刻 CRTディスプレイ15に出力された (Si)1の1次子側をベースにして操業者がタイプラ
イタから、直近のアクションの幅と時間を入力する。多
くの場合、応答性の速い羽目前条件が補正アクションと
して用いられる。
Sentence Δ(S i) 1-, Σ Rj(-τj)・AjJ=
1 Here, Aj: Width Rj of action j (-τj): (Si
) Response τj: Operation change time Based on the primary side of (Si)1 output on the CRT display 15, the operator inputs the width and time of the most recent action from a typewriter. In many cases, responsive immediate conditions are used as corrective actions.

補正アクションも考慮して、(Si)2予測を再計算し
、CRTディスプレイ15に出力する。
The (Si)2 prediction is recalculated, also taking into account the correction action, and output to the CRT display 15.

〔作用〕[Effect]

本発明は溶銑中の(Si)を連続的に測定し、これらの
連続測定値から、統計的手法により上記式を用いて、一
定時間後の炉熱を予測する。このため、最も好ましい計
測方法としてレーザ分光分析法を用いる。
In the present invention, (Si) in hot metal is continuously measured, and from these continuous measurement values, the furnace heat after a certain period of time is predicted using a statistical method using the above formula. For this reason, laser spectroscopy is used as the most preferred measurement method.

レーザ分析計はO次子側の精度向上には欠くことのでき
ない設備である。また本システムでは操業者がCRTデ
ィスプレイを見ながら会話的にアクションの幅と時間を
決定することにより、安定した低(S i)操業を達成
することができる。
A laser analyzer is an indispensable piece of equipment for improving accuracy on the O-order side. In addition, with this system, the operator can interactively determine the width and time of the action while looking at the CRT display, thereby achieving stable low (Si) operation.

〔実施例〕〔Example〕

第3図にレーザ発光分光分析の測定結果とサンプリング
による通常の分析を対比して示す。
FIG. 3 shows a comparison between the measurement results of laser emission spectrometry and normal analysis using sampling.

対応する時間での分析値は相互に良く対応している。ま
たレーザ発光分光分析計では、2回目出銑開始時に、前
回出銑によるスキンマ内の銑鉄との混合に基づく銑中(
Si)の変化が明確に認められる。サンプリングによる
場合にはこの変化と実際の炉熱の変化を区別することは
困難である。
The analytical values at corresponding times correspond well to each other. In addition, with the laser emission spectrometer, at the start of the second tap, the pig iron (
A change in Si) is clearly recognized. When sampling is used, it is difficult to distinguish this change from the actual furnace heat change.

第4図に本発明による(Si)制御例を示す。FIG. 4 shows an example of (Si) control according to the present invention.

(St)+の予測をベースにして、操業者が送風温度の
設定を行い、(S i)2予測で(St)の変動が小さ
くなるように、実際の送風温度を変更した。短時間のコ
ークス比の変更にもかかわらず、(S i)の実測値の
変動が非常に小さいことが分る。
The operator set the air blowing temperature based on the prediction of (St)+, and changed the actual air blowing temperature so that the fluctuation of (St) would be small in the (S i)2 prediction. It can be seen that the variation in the measured value of (S i) is very small despite the short-term change in coke ratio.

第5図には本発明の炉熱制御システムの効果の1例を1
日の(Si)の変動σ〔5□〕の傾向で示す。一定レベ
ルでの操業を行う場合は従来モデルでも十分機能してき
た。しかし、昼夜別吹分は操業を開始すると、σ(Si
)は0.1近傍から0.4程度まで上昇し、炉熱の変動
が著しくなった。
Figure 5 shows an example of the effects of the furnace heat control system of the present invention.
It is shown by the tendency of daily (Si) fluctuation σ[5□]. The conventional model has functioned satisfactorily when operating at a certain level. However, when the day and night Besbukibun starts operation, σ(Si
) rose from around 0.1 to about 0.4, and the fluctuations in furnace heat became remarkable.

9月から本発明のモデルを実操業に適用したところσ〔
8i〕は再度0.1程度に低下し、安定な炉熱制御が可
能となった。
When the model of the present invention was applied to actual operation from September, σ
8i] decreased to about 0.1 again, making stable furnace heat control possible.

〔発明の効果〕〔Effect of the invention〕

本発明によって高炉炉熱の変化を連続的に予測し、この
予熱を一定に保つように羽目前条件を調整するので、短
時間変動における炉熱の制御が可能となった。
According to the present invention, changes in blast furnace furnace heat are continuously predicted and immediate conditions are adjusted to keep this preheating constant, making it possible to control furnace heat during short-term fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明する分析計配置図、第2図は
システム構成図、第3図は分析結果の推移を示すグラフ
、第4図は炉熱制御方法の適用例を示すグラフ、第5図
は従来システムと本発明の効果の差を示すグラフである
。 l・・・出銑口 2・・・出銑樋 3・・・傾斜樋 4・・・溶銑 5・・・スラグ 6・・・スキツプ フ・・・パイプ 8・・・防熱板 9・・・N2導入管 10・・・レーザ発光分光分析計 11・・・マイクロコンピュータ 12・・・センサターミナル l3・・・センサ 14・・・データベース15・・・
CRTディスプレイ 16・・・帳票 17・・・中央計算機 18・・・入力用タイプライタ 出願人 川崎製鉄株式会社 代 理 人 弁理士 小 杉 佳 男 弁理士 齋 原料 則 1 −一゛彎1
Fig. 1 is an analyzer layout diagram explaining the method of the present invention, Fig. 2 is a system configuration diagram, Fig. 3 is a graph showing the transition of analysis results, Fig. 4 is a graph showing an application example of the furnace heat control method, FIG. 5 is a graph showing the difference in effect between the conventional system and the present invention. l...Tackle port 2...Tackle trough 3...Slanted trough 4...Hot metal 5...Slag 6...Skipperpuff...Pipe 8...Heat shield plate 9...N2 Introductory tube 10...Laser emission spectrometer 11...Microcomputer 12...Sensor terminal l3...Sensor 14...Database 15...
CRT display 16...Form 17...Central computer 18...Input typewriter Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Yoshi Kosugi Male patent attorney Sai Raw materials Rule 1 -1゛彎1

Claims (1)

【特許請求の範囲】[Claims] l 出銑した溶銑面上に、レーザ光を投射し、発光分光
分析法によって溶銑中の成分を連続的に測定し、連続的
に得られる溶銑成分から一定時間後の炉熱を予測し、該
予測された炉熱を一定に保つように羽目前条件を調整す
ることを特徴とする高炉炉熱制御方法。
l Project a laser beam onto the surface of the tapped hot metal, continuously measure the components in the hot metal using emission spectrometry, predict the furnace heat after a certain period of time from the continuously obtained hot metal components, and A blast furnace furnace heat control method characterized by adjusting immediate conditions so as to keep predicted furnace heat constant.
JP10795184A 1984-05-28 1984-05-28 Method for controlling blast furnace heat Pending JPS60251206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10795184A JPS60251206A (en) 1984-05-28 1984-05-28 Method for controlling blast furnace heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10795184A JPS60251206A (en) 1984-05-28 1984-05-28 Method for controlling blast furnace heat

Publications (1)

Publication Number Publication Date
JPS60251206A true JPS60251206A (en) 1985-12-11

Family

ID=14472184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10795184A Pending JPS60251206A (en) 1984-05-28 1984-05-28 Method for controlling blast furnace heat

Country Status (1)

Country Link
JP (1) JPS60251206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491641A1 (en) * 1997-11-04 2004-12-29 JFE Steel Corporation Method for operating a blast furnace
WO2007109875A1 (en) * 2006-03-28 2007-10-04 Tenova Goodfellow Inc. Infrared light sensors for diagnosis and control of industrial furnaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491641A1 (en) * 1997-11-04 2004-12-29 JFE Steel Corporation Method for operating a blast furnace
WO2007109875A1 (en) * 2006-03-28 2007-10-04 Tenova Goodfellow Inc. Infrared light sensors for diagnosis and control of industrial furnaces

Similar Documents

Publication Publication Date Title
CN102399933B (en) Automatic controlling method for converter oxygen lance used for converting low-carbon steel
CA2894813C (en) Method and device for predicting, controlling and/or regulating steelworks processes
WO2021129350A1 (en) Converter steelmaking smelting late-stage carbon content forecasting method
CA2235499C (en) Method and apparatus to determine and control the carbon content of steel in a bof vessel
TW201940704A (en) Molten metal component estimation device, molten metal component estimation method, and molten metal production method
CN201926508U (en) Steel-making process and end-point control system based on on-line temperature and iron content measurement
CN104419799A (en) Method for online prediction of carbon content of high-carbon steel during converter smelting process
CN117226224A (en) Welding protection air flow real-time intelligent control method
JPS60251206A (en) Method for controlling blast furnace heat
TWI700374B (en) Molten metal composition estimating device, molten metal composition estimating method, and molten metal manufacturing method
CN100577821C (en) The decarburization refining method that contains the chromium molten steel
CN115341069A (en) Molten steel carbon content prediction control method of converter blowing end point based on online dynamic detection model
Pauna et al. Optical emission spectroscopy as a method to improve the process automation of electric arc furnaces and ladle furnaces
Andersen et al. Measurement and Evaluation of Tapping Gas Energy from the Silicon Furnace
JPS60255911A (en) Method for controlling supply of refining agent in continuous refining
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
JPS5856002B2 (en) End point control method for oxygen converter
SU1742338A1 (en) Method for determining moment for pouring molten metal from converter
JPH0813047A (en) Method for controlling input quantity of heat in sintering machine
JPS60208405A (en) Operating method of blast furnace
SU840131A1 (en) Device for determining carbon content in convertor bath
JPS61119610A (en) Method for controlling balance of blast furnace by water blowing
JPH042710A (en) Method for estimating component in molten iron
JPH0154406B2 (en)
JPH04187709A (en) End point control for converter