JPS60251185A - Radiator - Google Patents

Radiator

Info

Publication number
JPS60251185A
JPS60251185A JP10582784A JP10582784A JPS60251185A JP S60251185 A JPS60251185 A JP S60251185A JP 10582784 A JP10582784 A JP 10582784A JP 10582784 A JP10582784 A JP 10582784A JP S60251185 A JPS60251185 A JP S60251185A
Authority
JP
Japan
Prior art keywords
radiator
emissivity
base material
coating
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10582784A
Other languages
Japanese (ja)
Inventor
明雄 福田
正雄 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10582784A priority Critical patent/JPS60251185A/en
Publication of JPS60251185A publication Critical patent/JPS60251185A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は暖房器や調理器の赤外線輻射体に関する。[Detailed description of the invention] Industrial applications The present invention relates to an infrared radiator for a heater or a cooker.

従来例の構成とその問題点 暖房器や調理器の赤外線輻射体には一例として、金属の
基材の上にセラミックス被膜をプラズマ溶射で形成した
もの、又はセラミツクスのバルクの成形体や金属の成形
体などを使っている。
Conventional configurations and their problems Infrared radiators for heaters and cookers include, for example, ceramic coatings formed on metal base materials by plasma spraying, ceramic bulk moldings, and metal moldings. I use my body etc.

上記輻射体の耐熱性、耐熱衝撃性、赤外線輻射率成形性
、製造コストを第1表に示した。
Table 1 shows the heat resistance, thermal shock resistance, infrared emissivity moldability, and manufacturing cost of the radiator.

第1表 輻射体が、耐熱、耐熱衝撃性に劣ると、機器の寿命が短
くなり、輻射率が低いと高効率の輻射加熱ができない。
If the first surface radiator has poor heat resistance and thermal shock resistance, the life of the device will be shortened, and if the emissivity is low, highly efficient radiant heating cannot be performed.

成形性が悪ければ、使用する場所、形に制限がある。If the moldability is poor, there are restrictions on where and how it can be used.

プラズマ溶射によるセラミックス被膜は輻射率は高いが
、膜厚が厚いために熱衝撃に弱く、膜がはくりしやすく
、膜を造るにも構造の複雑なものについては無理な点が
あり、コストも高い。
Ceramic coatings produced by plasma spraying have a high emissivity, but because of their thick coatings, they are vulnerable to thermal shock, easily peel off, and it is difficult to make coatings with complex structures, and they are expensive. expensive.

七うミックスバルクは熱的に優れているが成形性コスト
の点で問題がある。
Nanau mix bulk is thermally superior, but has problems in terms of formability and cost.

金属基材については、成形性、コストに問題ないが、耐
熱性に問題があり、しかも輻射率が低いので効率の高い
輻射加熱ができない。
Regarding metal base materials, there are no problems in formability or cost, but there are problems in heat resistance, and moreover, the emissivity is low, so highly efficient radiation heating cannot be performed.

発明の目的 本発明は上記の問題を解消するもので、耐熱性。Purpose of invention The present invention solves the above problems and is heat resistant.

耐熱衡撃性に優れ、赤外線の輻射率が高く、成形性の優
れた低コストの輻射体を提供することを目的とする。
The purpose of the present invention is to provide a low-cost radiator that has excellent thermal shock resistance, high infrared emissivity, and excellent moldability.

発明の構成 上記目的を達成するだめに本発明の輻射体は、ZrO2
、T:02 、 AA!203 、 S、02.C80
2を固溶したZr02(以下ZrO2−C802とする
)のうちいずれか一種以上の酸化物粒子と、s s c
 、 S s 3N4のいずれか一方の粒子と、ボロシ
ロキサン樹脂の硬化体とから成る被膜を、金属、セラミ
ックスのいずれかの基材上に形成し、前記被膜を輻射面
とする構成である。
Structure of the Invention In order to achieve the above object, the radiator of the present invention is made of ZrO2
, T:02, AA! 203, S, 02. C80
2 or more of Zr02 (hereinafter referred to as ZrO2-C802) in solid solution;
, S s 3N4 and a cured body of borosiloxane resin is formed on a base material of either metal or ceramics, and the coating is used as a radiation surface.

前記構成によると被膜が金属よりも耐熱性に優れている
ために、基材が金属の場合には基材の熱劣化を防止する
。又、熱衡撃に対して柔軟であるので、熱衡撃による膜
のはぐりも発生しにくくなる。又、酸化物粒子やポロシ
ロキサン樹脂硬化体の光学的作用により赤外線輻射率が
0.8〜0.9と高くなる。
According to the above configuration, since the coating has better heat resistance than metal, thermal deterioration of the base material is prevented when the base material is metal. Furthermore, since it is flexible against thermal shock, peeling of the membrane due to thermal shock is less likely to occur. In addition, the infrared emissivity increases to 0.8 to 0.9 due to the optical effects of the oxide particles and the cured polysiloxane resin.

実施例の説明 以下本発明の一実施例について図面に基づいて説明する
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の輻射体の一実施例部分拡大平面図で、
網状の金属基材上に被膜を形成している。
FIG. 1 is a partially enlarged plan view of an embodiment of the radiator of the present invention.
A film is formed on a net-shaped metal base material.

第2図は第1図の要部拡大断面図である。第2図ニオイ
テ、Z、02 、 TlO2、Al2O3、s、o、2
゜Z r02−C,02のいずれか一種以上の酸化物粒
子1と、S1c 、 Si3N4のいずれかの粒子2と
、ボロシロキサン樹脂の硬化体Gとから成る被膜を金属
基材4上に形成している。
FIG. 2 is an enlarged sectional view of the main part of FIG. 1. Figure 2 Nioite, Z, 02, TlO2, Al2O3, s, o, 2
゜A film consisting of oxide particles 1 of one or more of Zr02-C and 02, particles 2 of S1c and Si3N4, and a cured body G of borosiloxane resin is formed on the metal base material 4. ing.

以下、上記構成における作用について説明する。Hereinafter, the effects of the above configuration will be explained.

ボロシロキサン樹脂は一例として次式の様な購造をもち
、常温ではトルエン、キシレンといった有機溶剤に溶け
るなどの有機の性質を示す。前記ボロシロキサン樹脂を
600℃以上に加熱すると、フェニル基などの有機分が
分解蒸発して捜査はSi、B、○の3元素から成る無機
質のボロシロキサン樹脂の硬化体となる。このようにし
てできるポロシロキサン樹脂硬化体は耐熱温度が100
0℃以上と高く、金属基材上に被膜形成することにより
、金属の熱劣化を防止する。
For example, borosiloxane resin has the formula shown below, and exhibits organic properties such as being soluble in organic solvents such as toluene and xylene at room temperature. When the borosiloxane resin is heated to 600° C. or higher, organic components such as phenyl groups are decomposed and evaporated, resulting in a hardened inorganic borosiloxane resin consisting of three elements: Si, B, and O. The cured polysiloxane resin produced in this way has a heat resistance temperature of 100
By forming a film on a metal base material at a high temperature of 0°C or higher, thermal deterioration of the metal is prevented.

また、ポロシロキサン樹脂硬化体はボロシロキサン樹脂
の有機分が分解蒸発した跡に多数の空孔をもち、急激な
熱衡撃による被膜の膨張収縮を前記空孔で吸収緩和する
ことができるので、熱衡撃による膜のはくりが発生しに
くい。
In addition, the cured porosiloxane resin has many pores where the organic components of the borosiloxane resin have decomposed and evaporated, and the pores can absorb and alleviate the expansion and contraction of the coating due to rapid thermal shock. Film peeling due to thermal shock is less likely to occur.

本実施例によれば1000℃の雰囲気から水温に急激に
冷却しても被膜のはぐりは発生せず、この熱サイクルを
10回くり返しても結果は同様であった。
According to this example, peeling of the film did not occur even when the atmosphere was rapidly cooled from 1000° C. to water temperature, and the same result was obtained even after this thermal cycle was repeated 10 times.

次に光学的作用について説明する。Next, optical effects will be explained.

物質に光を照射すると、光の反射、透過、吸収がおこる
。反射光、透過光、吸収光の入射光に対する強度比をと
ると、反射率r、透過率t、吸収率aになり、r+t+
aの和は1になる。
When light is irradiated onto a substance, light is reflected, transmitted, and absorbed. Taking the intensity ratio of reflected light, transmitted light, and absorbed light to incident light, we get reflectance r, transmittance t, and absorption rate a, which is r+t+
The sum of a becomes 1.

r + t + a = 1 キルヒホッフの法則により吸収率aは輻射率εに等しい
から r + を十ε=1 でもある。本実施例の様に光の透過がない場合はr 十
a = r+ε=1 である。よって、吸収率(輻射率)を高くするには反射
率を低くすればよい。
r + t + a = 1 According to Kirchhoff's law, the absorption rate a is equal to the emissivity ε, so r + is also 1 ε=1. When there is no light transmission as in this embodiment, r 0a = r+ε=1. Therefore, in order to increase the absorption rate (emissivity), it is sufficient to decrease the reflectance.

本実施例によるS 1C、S t 3N4は可視光から
波長約8μmの赤外線までの反射率が低く、輻射体とし
て8μmより短波長の赤外線の輻射率を高くなる粒子を
分散させ、光を被膜中で散乱吸収したらよい。前記酸化
物粒子は屈折率がボロシロキサン樹脂硬化体と異なり光
の吸収率(輻射率)を高くする。
S 1C and S t 3N4 according to this example have a low reflectance from visible light to infrared rays with a wavelength of approximately 8 μm, and as a radiator, particles that have a high emissivity of infrared rays with a wavelength shorter than 8 μm are dispersed, and light is transmitted into the coating. It should be scattered and absorbed by The oxide particles have a refractive index different from that of the cured borosiloxane resin and increase the light absorption rate (emissivity).

次に、本実施例の輻射体の成形性について説明する。本
発明による輻射体は基材上に、前記酸化物粒子”c、s
lcか” i 3N4と、ボロシロキサン樹脂の混合物
を塗装した後、加熱硬化することで造られるが、この方
法だと、基材が第1図の様に多くの端面をもっていても
被膜の形成が容易になる。
Next, the moldability of the radiator of this example will be explained. The radiator according to the present invention has the oxide particles "c, s" on the base material.
It is produced by coating a mixture of 3N4 and borosiloxane resin and then curing it with heat. With this method, even if the base material has many end faces as shown in Figure 1, it is possible to form a film. becomes easier.

以下、本実施例による輻射体の製造法の一例について説
明する。
An example of a method for manufacturing a radiator according to this embodiment will be described below.

平均粒子径が0.3μm前後のZrO2’eo2とA1
2o3 とSICと、ボロン”−サン樹脂(例えば、昭
和電線電纜(株)のSMP−32)と、トルエン←葎4
shii−を第2表の組成で配合、攪拌し、塗料化した
。その後、ステンレス基材上に塗布して、300℃で3
0分、750℃で30分加熱硬化した。このようにして
造られた輻射体の膜厚は15〜20μmと薄いが、波長
2〜6μmで輻射率が第2表 くのように塗装方式で造られる輻射体は、従来のプラズ
マ溶射によるものやセラミソクヌバルりに比べてコスト
が安くなる。
ZrO2'eo2 and A1 with an average particle diameter of around 0.3 μm
2o3, SIC, boron"-san resin (for example, SMP-32 from Showa Denshin Co., Ltd.), and toluene←葎4
shii- was blended with the composition shown in Table 2, stirred, and made into a paint. After that, it was coated on a stainless steel substrate and heated to 300℃ for 3 hours.
The film was cured by heating at 750° C. for 30 minutes. The film thickness of the radiator made in this way is as thin as 15 to 20 μm, but the radiator made by the coating method has a wavelength of 2 to 6 μm and an emissivity as shown in Table 2, compared to the conventional plasma spraying method. The cost is lower than that of Ceramic Socnuval.

発明の効果 以上のように本発明によれば次の効果を得ることができ
る。
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1)被膜の耐熱性、耐熱衝撃性が、金属よりも優れて
いるので機器の長寿命化が図れる。
(1) The heat resistance and thermal shock resistance of the coating are superior to metals, so the lifespan of equipment can be extended.

(2)赤外線の輻射率が高いので、高効率で輻射加熱が
できる。
(2) Since the emissivity of infrared rays is high, radiant heating can be performed with high efficiency.

(3)塗装方式であるから、成形性がよいし、製造コス
トも安くなる。
(3) Since it is a coating method, moldability is good and manufacturing cost is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である輻射体の部会拡大平面
図、第2図は第1図の要部拡大断面図である。 1 ・・・・酸化物粒子、2・・・・・・S、C又は5
13N4粒子、3・・・・・・ボロシロキサン樹脂硬化
体、4・・・・・・金属基材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1 is an enlarged plan view of a section of a radiator according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a main part of FIG. 1. 1...Oxide particles, 2...S, C or 5
13N4 particles, 3... borosiloxane resin cured body, 4... metal base material. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] ZrO2、TlO2、Al2O3、SiO2、C,02
を固溶したZrO2のうちいずれか一種以上の酸化物粒
子と、SiC、Si3N4のいずれか一方の籾子と、ポ
ロシロキサン樹脂の硬化体とから成る被膜を、金属、セ
ラミックのいずれかの基材上に形成し、前記被膜を輻射
面とした輻射体。
ZrO2, TlO2, Al2O3, SiO2, C,02
A coating consisting of oxide particles of one or more of ZrO2 in solid solution, rice grains of either SiC or Si3N4, and a cured product of polysiloxane resin is applied to a base material of either metal or ceramic. A radiator formed on the top of the radiator and having the coating as a radiant surface.
JP10582784A 1984-05-25 1984-05-25 Radiator Pending JPS60251185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10582784A JPS60251185A (en) 1984-05-25 1984-05-25 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10582784A JPS60251185A (en) 1984-05-25 1984-05-25 Radiator

Publications (1)

Publication Number Publication Date
JPS60251185A true JPS60251185A (en) 1985-12-11

Family

ID=14417884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10582784A Pending JPS60251185A (en) 1984-05-25 1984-05-25 Radiator

Country Status (1)

Country Link
JP (1) JPS60251185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167271A (en) * 1986-01-20 1987-07-23 松下電器産業株式会社 Infrared radiation coating
JPH03193683A (en) * 1989-10-31 1991-08-23 Soc Atochem Ceramic coating, method of its production and supporting body coated by said method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167271A (en) * 1986-01-20 1987-07-23 松下電器産業株式会社 Infrared radiation coating
JPH03193683A (en) * 1989-10-31 1991-08-23 Soc Atochem Ceramic coating, method of its production and supporting body coated by said method

Similar Documents

Publication Publication Date Title
JP2624291B2 (en) Far infrared heater
JPS60251185A (en) Radiator
JPS6354314B2 (en)
TW202012552A (en) High emissivity coating composition and substrate coated therewith
JPH0155380B2 (en)
JPS60251322A (en) Radiant body
JPH0684270B2 (en) Infrared radiation coating
JPS60190569A (en) Ir radiating film
JPH0292530A (en) Thermal radiant body
JPS61149740A (en) Radiator
JPS6199290A (en) Radiant body
JPS61147484A (en) Radiating body
JPH0134957B2 (en)
JPS60215591A (en) Radiator
JPH0120663B2 (en)
JPS6196688A (en) Infrared ray radiating body
JPS61168586A (en) Light-permeable heat-resistant ceramics
JPS60213743A (en) Infrared ray radiator
JPH0643267B2 (en) Infrared radiation coating
JPS6349638A (en) Infrared ray radiating body
US6331357B1 (en) Articles with stable coatings having tailorable optical properties
JPH0258580A (en) Heat radiating material
JPH0321501B2 (en)
JPH01300105A (en) Road surface heater
Kachi et al. Innovative glass coating with high emittance at high temperatures