JPS60213743A - Infrared ray radiator - Google Patents
Infrared ray radiatorInfo
- Publication number
- JPS60213743A JPS60213743A JP7027484A JP7027484A JPS60213743A JP S60213743 A JPS60213743 A JP S60213743A JP 7027484 A JP7027484 A JP 7027484A JP 7027484 A JP7027484 A JP 7027484A JP S60213743 A JPS60213743 A JP S60213743A
- Authority
- JP
- Japan
- Prior art keywords
- infrared ray
- titanium dioxide
- radiation
- emissivity
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C15/00—Details
- F24C15/24—Radiant bodies or panels for radiation heaters
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Paints Or Removers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、暖房、調理等で輻射加熱を行う赤外線加熱分
野で、高効率の赤外線輻射体を形成するため、特に、二
酸化チタンを50重量部以上含む赤外線輻射体に関する
ものであるら
従来例の構成とその問題点
従来の赤外線輻射体としては、アルミナ、ジルコニア、
チタニア等の酸化物または化合物を溶射にて、直接基材
上に被覆形成したり、ガラスフリット等のバインダー中
に分散させ、ホーロー被覆を形成したりするものが知ら
れている。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applied to the field of infrared heating in which radiant heating is performed for heating, cooking, etc. In order to form a highly efficient infrared radiator, in particular, 50 parts by weight or more of titanium dioxide is used. Conventional infrared radiators include alumina, zirconia,
It is known that oxides or compounds such as titania are directly coated on a base material by thermal spraying, or that they are dispersed in a binder such as glass frit to form a hollow coating.
赤外線輻射性能に関して、二酸化チタンを主成分とする
輻射体の場合、二酸化チタンの屈折率が高いため、表面
での全反射が大きくなる問題があった。赤外線輻射材料
として、基本的な性質として、屈折率と概収係数が挙げ
られる。赤外線輻射体の輻射特性に関して、構成材料の
光散乱現象が基本的な係わりをもっためで、固有の吸収
係数以上に、屈折率が重要となる。従来の赤外線輻射体
として代表的な、アルミナ系、ジルコニア系、チタニア
系の3種類の材料の屈折率を比較すると、大略、アルミ
ナが1.6.ジルコニアが2.2.チタニアが2.8で
あり、チタニア系が有利である。Regarding infrared radiation performance, in the case of a radiator whose main component is titanium dioxide, there is a problem that total reflection at the surface becomes large because titanium dioxide has a high refractive index. The basic properties of an infrared radiating material include refractive index and overall absorption coefficient. This is because the light scattering phenomenon of the constituent materials is fundamentally related to the radiation characteristics of an infrared radiator, and the refractive index is more important than the inherent absorption coefficient. Comparing the refractive indexes of three typical materials used as conventional infrared radiators: alumina, zirconia, and titania, alumina has an approximate refractive index of 1.6. Zirconia is 2.2. Titania is 2.8, and titania-based materials are advantageous.
輻射体の内部性質に関しては、チタニア系が有利である
が、屈折率が高いために起こる表面の全反射が問題とな
る。Regarding the internal properties of the radiator, titania-based materials are advantageous, but total reflection on the surface due to their high refractive index poses a problem.
表面の全反射は、赤外線輻射率を低下させる原因となる
。とくに、5μm以上の遠赤外線領域で赤外線輻射率が
低下し、高々0.75程度の輻射率となってします。表
面の全反射の防止法として、表面に凹凸を形成する方法
がある。多孔質な輻射体を形成する場合、表面の全反射
は防止されるが、輻射体自身が脆く問題がある。他方、
緻密な輻射体とすると表面の全反射が問題となり高輻射
が得られないという欠点があった。Total surface reflection causes a decrease in infrared emissivity. In particular, the infrared emissivity decreases in the far infrared region of 5 μm or more, reaching an emissivity of about 0.75 at most. As a method for preventing total reflection on a surface, there is a method of forming irregularities on the surface. When forming a porous radiator, total reflection on the surface is prevented, but the radiator itself is brittle, which poses a problem. On the other hand,
If the radiator is dense, total reflection on the surface becomes a problem and high radiation cannot be obtained.
発明の目的
本発明は、従来の欠点を解消するもので、二酸化チタン
を50重量部以上含む赤外線輻射面上に薄膜の表面被膜
を施こし、表面の全反射を防止して、赤外線輻射率を高
めた赤外線輻射体を提供するものである。さらに詳述す
ると、第1の目的は輻射体への適用範囲が広いこと、す
なわち、ホーロー面、セラミック面、プラズマ溶射面、
塗膜面などの各種基材上へ適用可能なことであり、第2
の目的は高い耐熱性を有し、赤熱状態、およそ1000
℃までの温度に耐え得ることであり、第3の目的は容易
に処理ができ、生産性に優れていることである。Purpose of the Invention The present invention aims to eliminate the drawbacks of the conventional art, and includes applying a thin film surface coating to an infrared radiation surface containing 50 parts by weight or more of titanium dioxide, thereby preventing total reflection on the surface and increasing the infrared radiation rate. It provides an enhanced infrared radiator. More specifically, the first purpose is to have a wide range of application to radiators, such as enamel surfaces, ceramic surfaces, plasma sprayed surfaces,
It can be applied to various base materials such as painted surfaces, and the second
The purpose is to have high heat resistance, red-hot state, approximately 1000
The third purpose is that it can be easily processed and has excellent productivity.
発明の構成
この目的を達成するために、本発明は二酸化ケイ素もし
くは、酸化アルミニウムから選択した1種以上の酸化物
およびポリボロシロキサン樹脂の硬化体よりなる被膜を
、二酸化チタンを50重量部以上含む赤外線輻射面上に
形成したものである。Structure of the Invention In order to achieve this object, the present invention provides a coating made of a cured product of one or more oxides selected from silicon dioxide or aluminum oxide and a polyborosiloxane resin, which contains 50 parts by weight or more of titanium dioxide. It is formed on an infrared radiation surface.
ポリボロシロキサン樹脂は、例えば、 の構造のポリマーを主成分とするものである。Polyborosiloxane resins are, for example, The main component is a polymer with the following structure.
当ポリマーはゝゝセミ無無機ポリマー色じての特性を有
し、室温状態では、フェニル基等に基づく、有機高分子
としての性状を示し、塗料化の操作面で優れている。This polymer has properties similar to those of a semi-inorganic polymer, and at room temperature exhibits the properties of an organic polymer based on phenyl groups, etc., and is excellent in terms of operation when making into a paint.
加熱するとその有機分は分解して、SL、C,B。When heated, the organic components decompose to form SL, C, and B.
0を骨格としてセラミック化する。完全なセラミック化
は600℃にて行なわれる。Ceramicize using 0 as a skeleton. Complete ceramification takes place at 600°C.
ポリボロシロキサン樹脂をバインダーとして、溶剤とと
もに、二酸化ケイ素もしくは、酸化アルミニウムから選
択した1種以上の酸化物を分散させて得る塗料を塗布焼
成することにより被膜が得られる。A coating is obtained by applying and baking a paint obtained by dispersing a polyborosiloxane resin as a binder and a solvent together with one or more oxides selected from silicon dioxide or aluminum oxide.
この被膜は、屈折率が1.5付近と低いため、表面の全
反射防止に有効に作用する。また、それ自体も、比較的
良好な輻射性質を有するため、酸化チタンの高輻射性を
損なわな′い。Since this coating has a low refractive index of around 1.5, it effectively prevents total reflection on the surface. Furthermore, since titanium oxide itself has relatively good radiation properties, it does not impair the high radiation properties of titanium oxide.
実施例の説明
本発明の表面被膜について概念図により説明する。第1
図は表面処理のない従来の輻射体を示し、第2図は、本
発明の表面処理を実施した輻射体を示す。第1図、第2
図において、1は基材でメタル、セラミック等からなる
。2は二酸化チタンを50重量部以上含む赤外線輻射体
、3は空気で、4は本発明の表面処理被膜で、ポリボロ
シロキサン樹脂5を主成分とするバインダーおよび、二
酸化ケイ素もしくは、酸化アルミニウムから選択した1
種以上の酸化物6とからなる。Description of Examples The surface coating of the present invention will be explained using conceptual diagrams. 1st
The figure shows a conventional radiator without surface treatment, and FIG. 2 shows a radiator that has been subjected to the surface treatment of the present invention. Figures 1 and 2
In the figure, 1 is a base material made of metal, ceramic, etc. 2 is an infrared radiator containing 50 parts by weight or more of titanium dioxide, 3 is air, and 4 is the surface treatment film of the present invention, selected from a binder whose main component is polyborosiloxane resin 5, and silicon dioxide or aluminum oxide. I did 1
It consists of more than one species of oxide 6.
基材側(B側)を加熱し、空気側(C側)に、輻射加熱
を行う場合を示している。The case is shown in which the base material side (B side) is heated and the air side (C side) is subjected to radiant heating.
この種の被覆の輻射性質は、被覆の表面層近傍的10μ
mの深さまでの性質にほとんど依存する。The radiation properties of this type of coating are approximately 10 μm near the surface layer of the coating.
It depends mostly on the properties up to a depth of m.
第1図の従来例の場合には、二酸化チタン系化合物2の
層の屈折率が、2.5〜2.9と高く、その境界面にお
いて、空気(屈折率中1)と1.5〜1.9程度の差が
あるため、表面で全反射され、空気側へ輻射として放出
されないのに対して、第2図の本発明の場合には、層4
の屈折率(約1.5)との差が1〜1.4と小さく、ま
た、層4と空気との屈折率の差も、約0.5と小さいた
め、それぞれ、全反射が防止される。In the case of the conventional example shown in FIG. 1, the refractive index of the layer of titanium dioxide compound 2 is as high as 2.5 to 2.9, and at the interface between it and air (with a refractive index of 1), the layer has a refractive index of 1.5 to 2.9. Since there is a difference of about 1.9, it is totally reflected on the surface and is not emitted as radiation to the air side, whereas in the case of the present invention shown in FIG.
Since the difference between the refractive index of layer 4 and air (about 1.5) is small at 1 to 1.4, and the difference in the refractive index between layer 4 and air is also small at about 0.5, total reflection is prevented. Ru.
また、この被膜は、その内部に、ポリボロシロキサン樹
脂が熱分解したことによって生成した空隙を含んでいる
ため、光散乱が有効に働くことにより、輻射を高めるた
め、被膜を形成することによって、基材の輻射率が低下
してしまうことはなパ髪1゜
二酸化チタンのプラズマ吸収波長は、5μm付近にあり
、複素屈折率は、5μm以上で虚数部をもち吸収係数を
もつようになる。したがって、5μm以上の遠赤外線領
域では、二酸化チタン系化合物の輻射特性は、正反射特
性のみで支配される。In addition, this film contains voids generated by thermal decomposition of the polyborosiloxane resin, so light scattering works effectively and radiation is increased by forming the film. The emissivity of the base material does not decrease.The plasma absorption wavelength of titanium dioxide is around 5 μm, and the complex refractive index has an imaginary part and an absorption coefficient above 5 μm. Therefore, in the far infrared region of 5 μm or more, the radiation characteristics of titanium dioxide compounds are dominated only by specular reflection characteristics.
二酸化チタンを50重量部以上含む輻射面の場合、表面
の正反射(全反射)は、20〜25%にもなり、5μm
以上の遠赤外線領域の輻射率は、高々75〜80%とな
ってしまう。本発明の表面被膜は、表面の正反射を低下
させる目的のもので、5μm以上の遠赤外線領域の輻射
率を15〜20%向上させる。In the case of a radiating surface containing 50 parts by weight or more of titanium dioxide, the specular reflection (total reflection) of the surface is as high as 20 to 25%, and is 5 μm.
The emissivity in the above far-infrared region is 75 to 80% at most. The surface coating of the present invention is intended to reduce specular reflection on the surface, and improves the emissivity in the far infrared region of 5 μm or more by 15 to 20%.
二酸化ケイ素、酸化アルミニウムの粒径は、0.1〜1
μmの範囲がよい。これは、主として粉体としての取扱
い上の便宜に基づく。The particle size of silicon dioxide and aluminum oxide is 0.1 to 1
A range of μm is preferable. This is mainly based on convenience in handling as a powder.
二酸化ケイ素もしくは、酸化アルミニウムから選択した
1種以上の酸化物のポリボロシロキサン樹脂硬化体に対
する配合は、重量比で173〜2/1の範囲が最良であ
る。1/3以下となると、光散乱の効果が不十分となる
ためで、271以上となると、塗料がチキン性を示し、
塗料としての扱いが、薄膜りに不便となるためである。The best blending ratio of one or more oxides selected from silicon dioxide or aluminum oxide to the cured polyborosiloxane resin is in the range of 173 to 2/1 in terms of weight ratio. If it is less than 1/3, the light scattering effect will be insufficient, and if it is more than 271, the paint will exhibit chicken properties.
This is because it is difficult to handle as a paint because it forms a thin film.
表面被膜の膜厚に関して、0.1μm程度で効果は十分
であるが、塗料で塗装することからすれば、不可能であ
り、1μm付近が最良で2μm以下が望ましい。膜厚が
2μm以上となると、5μm以下の近赤外線領域の輻射
特性に影響を与えるためである。Regarding the thickness of the surface coating, a thickness of about 0.1 .mu.m is sufficient for the effect, but it is impossible from the viewpoint of coating with paint, and the best is around 1 .mu.m, and preferably 2 .mu.m or less. This is because if the film thickness is 2 μm or more, it will affect the radiation characteristics in the near-infrared region of 5 μm or less.
以下実施例を記載する。Examples will be described below.
ポリボロシロキサン樹脂を主成分とする有機ケイ素重合
体とし“て、昭和電線電纜■の無機ポリマー[sMP−
324を用いた。このバインダーは、600℃でセラミ
ック化して安定化するが、その間の熱分解により、初期
の2乃の重量が失われ、残渣は1/3となる。前記バイ
ンダー100重量部について、下記の塗料を調合した。As an organosilicon polymer whose main component is polyborosiloxane resin, the inorganic polymer [sMP-
324 was used. This binder becomes ceramic and stabilized at 600° C., but due to thermal decomposition during that time, 20% of the initial weight is lost and the residue becomes 1/3. The following coating material was prepared using 100 parts by weight of the binder.
■ 5i02(0,1μm粒径) 25重量部含有@
At’203(0,3μm 〃 ) 40 〃@ 5i
02(前記=10重量部)、Aj?203(前記:10
重量部)
溶剤はトルエン/N−メチルピロリドン−171(重量
比)を、100重量部用い、塗料化は、「アトライタ」
を用いて、10時間分数*せて実施した。■ Contains 25 parts by weight of 5i02 (0.1 μm particle size) @
At'203 (0.3μm 〃 ) 40 〃@5i
02 (above = 10 parts by weight), Aj? 203 (above: 10
(parts by weight) The solvent used was 100 parts by weight of toluene/N-methylpyrrolidone-171 (weight ratio).
The test was carried out over a period of 10 hours* using
ステンレス(SUS430)基材上に、二酸化チタンを
75重量部含むポリボロシロキサン樹脂系コーティング
を約20 amの膜厚にて、塗布し、150℃、30分
、250℃、30分、650℃。A polyborosiloxane resin coating containing 75 parts by weight of titanium dioxide was applied onto a stainless steel (SUS430) base material to a thickness of about 20 am, and heated at 150°C for 30 minutes, at 250°C for 30 minutes, and at 650°C.
5分の順に焼成して得た被覆の分光輻射特性は、第3図
aで示す。The spectral radiation characteristics of the coating obtained by sequential firing for 5 minutes are shown in Figure 3a.
第3図の分光輻射特性は、輻射体試料の表面温度を50
0℃として、黒体炉に対する比を評価するもので、日本
分光■製分光輻射装置を用いた。The spectral radiation characteristics shown in Figure 3 are based on the surface temperature of the radiator sample at 50°C.
The temperature was set at 0° C., and the ratio to the black body furnace was evaluated, and a spectroscopic radiator manufactured by JASCO ■ was used.
前記塗料を二酸化チタンを含むコーティング上に約15
μmの膜厚で塗tlr 、焼成(300℃。The paint is applied onto a coating containing titanium dioxide for about 15 minutes.
Coating with a film thickness of μm and baking (300°C).
30分、650℃、5分)して得たコーティングの評価
した結果を第3図すで示している。bは、■の塗料の場
合で最良であったが、■、■ともに、bよりも5%程度
低いだけであり、遠赤外線輻射の増大に良好に寄与した
。ここでは、ボロシロキサン樹脂をベースとした。二酸
化チタン系基材への適用例を記載したが、スプレーにて
塗布するのみであるため、セラミック系の場合、プラズ
マ溶射、ホーローなど多くの基材系への適用が可能であ
る。The results of the evaluation of the coating obtained at 650° C. for 30 minutes and 5 minutes at 650° C. are shown in FIG. b was the best in the case of the paint (2), but both (2) and (2) were only about 5% lower than b, and contributed well to the increase in far-infrared radiation. Here, a borosiloxane resin was used as the base. Although an example of application to a titanium dioxide base material has been described, since it is only applied by spraying, in the case of ceramics, it can be applied to many base material systems such as plasma spraying and enamel.
発明の効果
以上のように本発明の赤外線輻射体によれば次の効果を
有する。Effects of the Invention As described above, the infrared radiator of the present invention has the following effects.
(1)50%以上の酸化チタンを含む系に適用して、特
に、5μm以上の遠赤外線輻射率を15〜20%向上さ
せる。(1) When applied to a system containing 50% or more of titanium oxide, the far-infrared emissivity of 5 μm or more is improved by 15 to 20%.
し) スプレーにて塗布可能であり、多くの秘類の基材
へも適用が可能である。It can be applied by spraying and can be applied to many secret substrates.
(3) 薄膜であるため、極めてヒートショックに強く
今信頼性である。(3) Because it is a thin film, it is extremely resistant to heat shock and is highly reliable.
(イ) 外観的にもツヤ消しの状態となり、高級感が得
られる。(b) The appearance is also matte, giving a sense of luxury.
第1図はi声の二酸化チタン系輻射面の要部断面図、第
2図は本発明の一実施例による赤外線幅封体の要部断面
図、第3図は輻射体の分光輻射特性図である。
1・・・・・・基材、2・・・・・・二酸化チタンを5
0重量部以上含む赤外線輻射体、4・・・・・・本発明
の表面被膜、5・・・・・・ポリボロシロキサン樹脂を
主成分とするバインダー、6・・・・・・二酸化ケイ素
もしくは、酸化アルミニウムから選択した1種以上の酸
化物。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
3Fig. 1 is a cross-sectional view of the main part of the titanium dioxide-based radiating surface of i-voice, Fig. 2 is a cross-sectional view of the main part of the infrared width envelope according to an embodiment of the present invention, and Fig. 3 is a diagram of the spectral radiation characteristics of the radiator. It is. 1... Base material, 2... Titanium dioxide 5
Infrared radiator containing 0 parts by weight or more, 4...Surface coating of the present invention, 5...Binder whose main component is polyborosiloxane resin, 6...Silicon dioxide or , one or more oxides selected from aluminum oxide. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3
Claims (2)
した1種以上の酸化物およびポリボロシロキサン樹脂の
硬化体よりなる被覆を、二酸化チタン°を50重量部以
上含む赤外線輻射面上に設けてなる赤外線輻射体。(1) An infrared radiator comprising a coating made of one or more oxides selected from silicon dioxide or aluminum oxide and a cured polyborosiloxane resin on an infrared radiating surface containing 50 parts by weight or more of titanium dioxide. .
する配合比が重量比で1/3〜2/1であって、膜厚が
2μm以下である特許請求の範囲第1項記載の赤外線輻
射体。(2) The infrared radiator according to claim 1, wherein the blending ratio of the oxide polyborosiloxane resin to the cured product is 1/3 to 2/1 by weight, and the film thickness is 2 μm or less. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7027484A JPS60213743A (en) | 1984-04-09 | 1984-04-09 | Infrared ray radiator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7027484A JPS60213743A (en) | 1984-04-09 | 1984-04-09 | Infrared ray radiator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60213743A true JPS60213743A (en) | 1985-10-26 |
Family
ID=13426770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7027484A Pending JPS60213743A (en) | 1984-04-09 | 1984-04-09 | Infrared ray radiator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60213743A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63270773A (en) * | 1987-04-30 | 1988-11-08 | Showa Electric Wire & Cable Co Ltd | Heat-resistant anticorrosive coating composition |
JPS63270770A (en) * | 1987-04-30 | 1988-11-08 | Showa Electric Wire & Cable Co Ltd | Heat radiating coating composition |
-
1984
- 1984-04-09 JP JP7027484A patent/JPS60213743A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63270773A (en) * | 1987-04-30 | 1988-11-08 | Showa Electric Wire & Cable Co Ltd | Heat-resistant anticorrosive coating composition |
JPS63270770A (en) * | 1987-04-30 | 1988-11-08 | Showa Electric Wire & Cable Co Ltd | Heat radiating coating composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2624291B2 (en) | Far infrared heater | |
CA2482001A1 (en) | Protection against oxidation of parts made of composite material | |
JP4395359B2 (en) | System and method for forming low temperature cured ceramic coatings for high temperature applications | |
JPS63225791A (en) | High-temperature heat insulator | |
JPS60213743A (en) | Infrared ray radiator | |
CA2613328A1 (en) | Spandrel coating and method | |
JPH0684270B2 (en) | Infrared radiation coating | |
US3496011A (en) | Method of coating thermally emissive surface with a composite radiation control coating and resulting article | |
JP3408578B2 (en) | Method of manufacturing heat ray shielding glass plate | |
JPH0120663B2 (en) | ||
JPS59226064A (en) | Infrared-radiating coating composition | |
JP7156519B2 (en) | Radiation suppression membrane and radiation suppression structure | |
Hass et al. | Reflective coating on fibrous insulation for reduced heat transfer | |
JPH0243552B2 (en) | ||
JPS60190569A (en) | Ir radiating film | |
JPS60251322A (en) | Radiant body | |
JPS6027669A (en) | Infrared ray radiation coating | |
JPS60251185A (en) | Radiator | |
JPH0363192B2 (en) | ||
WO2023112951A1 (en) | Heat resistant glass and top plate for cooking instrument | |
JPS61147484A (en) | Radiating body | |
JPH0656479A (en) | Ultraviolet ray shielding film and ultraviolet ray shielding glass | |
JPS62288152A (en) | Infrared radiation coating | |
JP7247846B2 (en) | COOKER TOP PLATE AND METHOD OF MANUFACTURING THE SAME | |
JPS6199290A (en) | Radiant body |