JPS60251101A - Production of hydrogen - Google Patents

Production of hydrogen

Info

Publication number
JPS60251101A
JPS60251101A JP59106404A JP10640484A JPS60251101A JP S60251101 A JPS60251101 A JP S60251101A JP 59106404 A JP59106404 A JP 59106404A JP 10640484 A JP10640484 A JP 10640484A JP S60251101 A JPS60251101 A JP S60251101A
Authority
JP
Japan
Prior art keywords
diaphragm
oxygen
solid electrolyte
steam
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59106404A
Other languages
Japanese (ja)
Inventor
Takeshi Morimoto
剛 森本
Shinsuke Morikawa
森川 真介
Yasuhiro Sanada
恭宏 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP59106404A priority Critical patent/JPS60251101A/en
Publication of JPS60251101A publication Critical patent/JPS60251101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To produce hydrogen of high purity with a short process and reduced cost effectively by passing steam through a diaphragm constituted of an O<->- electroconductive solid electrolyte composed of Sm, Nd, F and O as constituting components to transfer the oxygen in the steam to an O2 accepting substance selectively. CONSTITUTION:An O<->-electroconductive solid electrolyte expressed by the formula is prepd. as the material for the diaphragm, by mixing pulverized neodymium oxide with samarium fluoride or samarium oxide with neodymium fluoride, and treating the mixture at 1,200-1,400 deg.C in an inert gaseous atmosphere. Suitable thickness of the obtd. soild electrolyte is generally 1mu-5mm.. A gas-permeable material, such as Au for the anode, Pt for the cathode is used in this invention. The electrodes are provided by screen printing on the solid electrolyte to prepare a diaphragm, and steam is allowed to contact one side of the diaphragm. Oxygen which has passed through the diaphragm selectively is absorbed by an O2-accepting substance (e.g. CO). H2 is separated by the diaphragm and recovered.

Description

【発明の詳細な説明】 本発明は水素の製造方法、特に酸素に対し高い選択透過
特性を有する新規−な酸素イオン導電性固体電解質を用
いた水素の製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogen, particularly a method for producing hydrogen using a novel oxygen ion conductive solid electrolyte having high permselective properties for oxygen.

水素は近年のエネルギー事情を反映し、無尽蔵に存在す
る水を電解して得る方法や、炭化水素等を種々の方法で
分解して得る方法等が各種提案されている。
Reflecting the energy situation in recent years, various methods have been proposed for obtaining hydrogen, such as methods for obtaining it by electrolyzing the inexhaustible water, and methods for obtaining hydrogen by decomposing hydrocarbons and the like using various methods.

しかしながら、これらの方法は何れも工程が−b)なり
煩雑であったり、設備費が高く、又必ずしも高純度の水
素を効率よく得る手段であるとは言い難いものも少なく
なかった。
However, in many of these methods, the step (b) is complicated, the equipment cost is high, and it cannot necessarily be said that it is a means for efficiently obtaining high-purity hydrogen.

又最近、酸素を選択的に透過する性質を有する酸化カル
シウムあるいは酸化イツトリウムを添加した安定化ジル
コニアを隔壁に用い、−酸化炭素やメタンガ′スを酸素
の受容体として用い、高温(約700℃)の水蒸気を分
解して高純度の水素を得る手段が提案されている。
Recently, stabilized zirconia doped with calcium oxide or yttrium oxide, which has the property of selectively permeating oxygen, has been used for partition walls, carbon oxide or methane gas has been used as an oxygen acceptor, and high temperature (approximately 700°C) A method to obtain high purity hydrogen by decomposing water vapor has been proposed.

この方法は、従来法に比し、工程の短縮とコストの低減
及び高純度水素を効率よく得られる手段として注目され
る方法であるが、隔壁として用いられる安定化ジルコニ
アの導電性が必ずしも十分でなく、又実用に際し、70
0℃以上の高温下に置かなければ酸素を充分移動させな
い性質があり、材料、特に電極を用いる場合にはその材
質にかなり制限がある等実用に際しかなりの問題点を有
している。
This method is attracting attention as a means of shortening the process, reducing costs, and efficiently obtaining high-purity hydrogen compared to conventional methods, but the conductivity of the stabilized zirconia used as the partition wall is not necessarily sufficient. In addition, in practical use, 70
It has the property of not being able to transfer oxygen sufficiently unless it is placed at a high temperature of 0° C. or higher, and there are considerable problems in practical use, such as the fact that there are considerable restrictions on the materials, especially when electrodes are used.

本発明者はかかる問題点を除去すべく、種々検討した結
果、特定組成を有する弗化酸化物を安定化ジルコニアに
代えて用いることにより目的を達成し得ることを見出し
た。
In order to eliminate such problems, the inventors of the present invention have conducted various studies and found that the object can be achieved by using a fluorinated oxide having a specific composition in place of stabilized zirconia.

かくして本発明は、隔膜の一方に水蒸気を、他方に酸素
を受容し得る物質を存在せしめ、該膜を通して水分子中
の酸素を前記酸素受容物質に移動せしめることにより、
水蒸気を分解して水素を得る方法において、隔膜として
一般式%式% a+ b = 12. c+ 2d= 38)で示され
る酸素イオン電導性固体電解質を用いることを特徴とす
る水素の製造方法を提供するにある。本発明において用
いられる酸素を受容し得る物質としては例えば−酸化炭
素やメタン、エタンなどの炭化水素等が挙げられ、これ
らは一種若しくは二種以上を適宜用いることが出来る。
Thus, the present invention provides a method in which a substance capable of accepting water vapor is present on one side of the diaphragm and a substance capable of accepting oxygen is present on the other side, and oxygen in water molecules is transferred to the oxygen-accepting substance through the membrane.
In the method of decomposing water vapor to obtain hydrogen, the general formula % a+ b = 12. The present invention provides a method for producing hydrogen characterized by using an oxygen ion conductive solid electrolyte represented by c+2d=38). Examples of the oxygen-accepting substance used in the present invention include carbon oxide and hydrocarbons such as methane and ethane, and one or more of these can be used as appropriate.

これら物質の使用量は、その物質の酸素受容の難易さ及
び得ようとする水素の量や単位時間当りの反応性等によ
り厳密には決定されるが、一般に水蒸気供給量に対して
0.1−10倍程度を採用するのが適当である。
The amount of these substances to be used is strictly determined by the difficulty of the substance in accepting oxygen, the amount of hydrogen to be obtained, the reactivity per unit time, etc., but in general, it is 0.1% of the amount of water vapor supplied. It is appropriate to adopt approximately -10 times.

本発明に用いられる前記固体電解質は、これをカチオン
、アニオンの夫々のイオン比率で表わすと、Sm/ N
d= 0.222〜4.5 、Flo =1〜9である
The solid electrolyte used in the present invention has a ratio of cations and anions of Sm/N.
d=0.222-4.5, Flo=1-9.

そしてこれら固体電解質の組成範囲中、a=4〜8 、
b=4〜B、c=18〜24.d=8〜9で、且a+b
=12且c+ 2d= 38を採用する場合には、特に
高い導電性を示すので特に好ましい。又これをカチオン
、アニオンの夫々イオン比率で表わすと、Sm/ Nd
= 0.5〜2 、F/ 0=2〜4に相当する。
In the composition range of these solid electrolytes, a=4 to 8,
b=4~B, c=18~24. d=8~9, and a+b
=12 and c+2d=38 is particularly preferred since it exhibits particularly high conductivity. Also, when this is expressed as the ion ratio of cations and anions, Sm/Nd
= 0.5-2, which corresponds to F/0 = 2-4.

これら固体電解質は、従来提案されていたそれらよりも
低温において十分高い導電性を有する利点がある。
These solid electrolytes have the advantage of having sufficiently higher conductivity at low temperatures than those conventionally proposed.

本発明に用いられる酸素イオン導電性固体電解質の製法
は、酸化ネオジムと共鳴弗化サマリウム若しくは酸化サ
マリウムと弗化ネオジムを粉砕混合し、不活性ガス雰囲
気下1200〜1400℃に2〜8時間程度保持せしめ
ることにより得ることが出来る。例えばSm6 Nd6
 F1@ 09を得る場合には1モルのNd2O3と2
モルのS■F3、若しくは1モルの511203と2モ
ルのNdF3を粉砕混合し、アルゴンガス雰囲気下に1
350℃において3〜4時間程度焼成せしめることによ
り容易に得ることが出来る。
The method for producing the oxygen ion conductive solid electrolyte used in the present invention involves pulverizing and mixing neodymium oxide and resonance samarium fluoride or samarium oxide and neodymium fluoride, and holding the mixture at 1200 to 1400°C for about 2 to 8 hours in an inert gas atmosphere. It can be obtained by forcing. For example, Sm6 Nd6
To obtain F1@09, 1 mol of Nd2O3 and 2
Pulverize and mix mol of S■F3 or 1 mol of 511203 and 2 mol of NdF3, and 1 mol of NdF3 in an argon gas atmosphere.
It can be easily obtained by firing at 350°C for about 3 to 4 hours.

又、これら固体電解質の形状付与は例えば薄膜状物を得
る際にはプラズマ溶射法、真空蒸着法、スパッタリング
法等を比較的厚い形状の場合にはホーットブレス法、ラ
バープレス法、熱間静水圧焼結法等を適宜採用すること
が出来る。
In addition, the shape of these solid electrolytes can be imparted by, for example, plasma spraying, vacuum evaporation, sputtering, etc. when obtaining a thin film-like material, and hot-breathing, rubber-pressing, hot isostatic sintering when obtaining a relatively thick shape. Closing methods, etc. may be adopted as appropriate.

本発明に用いられる固体電解質の厚さは一般にIg〜5
mm程度が適当である。厚さが前記範囲に満たない場合
には不均一でガス漏れが起り易いものとなり、逆に前記
範囲を超える場合には抵抗損失が著しく大きくなる虞れ
があるので何れも好ましくない。
The thickness of the solid electrolyte used in the present invention is generally Ig~5
A value of about mm is appropriate. If the thickness is less than the above range, it will be non-uniform and gas leakage will easily occur, whereas if it exceeds the above range, there is a risk that the resistance loss will become significantly large, which is not preferable.

又、本発明に用いられる陽極の材質としては、例えば白
金、銀、コバルト或はLaCoO3などのペロブスカイ
ト系材料等が又陰極の材質と ゛しては例えば白金、銀
、ニッケルなど金属系材料或はペロブスカイト系酸化物
材料等を適宜採用することが出来る。
Further, the material for the anode used in the present invention includes, for example, perovskite materials such as platinum, silver, cobalt, or LaCoO3, and the material for the cathode includes, for example, metallic materials such as platinum, silver, and nickel. A perovskite-based oxide material or the like can be appropriately employed.

又、これら陰、陽極は何れもガスが透過することが必要
であり、この為これら電極の有する物性としては、多孔
質で半融しにくく固体電解質との密着性がよいものを採
用するのが適当である。
In addition, gas must be able to pass through both of these anodes and anodes, and for this reason, it is recommended that these electrodes have physical properties that are porous, difficult to semi-melt, and have good adhesion to the solid electrolyte. Appropriate.

又、これら電極の厚さは一般に数千人〜100ル程度を
採用するのが適当である。
The thickness of these electrodes is generally about several thousand to about 100 μl.

これらの電極は固体電解質に対しスクリーン印刷法、ス
パッタリング法等の手段により設けることが出来る。
These electrodes can be provided on the solid electrolyte by means such as screen printing or sputtering.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例1 1モルの5II203と2モルのNdF3をボールミル
を用いて粉砕混合し、う、バープレス法により直径20
mm、厚み2Il11のペレットに成型した。さラニこ
のペレットをアルゴンガス雰囲気中に1350℃で3.
5時間焼成した。このペレットをX線回析にかけた結果
は第1図に示す通りであり、組成はSm6 Nd6 F
1809であった。このペレットの両面にpt粗粉末焼
き付は更にpt線を取り付は全体を焼結゛アルミナ製チ
ューブの一端にアルミナセメントで装着し、水蒸気電解
セルを作製した。
Example 1 1 mole of 5II203 and 2 moles of NdF3 were pulverized and mixed using a ball mill, and then milled to a diameter of 20 mm by bar press method.
It was molded into pellets with a thickness of 2Il11 mm. 3. The pellets were heated at 1350°C in an argon gas atmosphere.
It was baked for 5 hours. The result of subjecting this pellet to X-ray diffraction is as shown in Figure 1, and the composition is Sm6Nd6F
It was 1809. A PT wire was attached to both sides of the pellet by baking coarse PT powder, and the entire pellet was attached to one end of a sintered alumina tube with alumina cement to prepare a steam electrolysis cell.

このセルを電気炉中に挿入、600℃に加熱し、内側に
はCOガスを流量50mJL/分で供給し外側には水蒸
気飽和Arガスを流量25m1/分で供給した。1時間
後、水素ガス生成量を測定した結果0.6■交/分(室
温換算)であった。
This cell was inserted into an electric furnace and heated to 600° C., and CO gas was supplied to the inside at a flow rate of 50 mJL/min, and water vapor-saturated Ar gas was supplied to the outside at a flow rate of 25 m1/min. After 1 hour, the amount of hydrogen gas produced was measured and found to be 0.6 exchanges/min (calculated at room temperature).

実施例2 0.25モルの5l1203と0,75モルのNdF3
粉末を実施例1と同じ方法で混合、成型、焼成した。
Example 2 0.25 mol 5l1203 and 0.75 mol NdF3
The powder was mixed, shaped and fired in the same manner as in Example 1.

この焼結体をX線回析にかけた結果は第2図に示す通り
であり、組成はSm4.8Nd7.2 F21.607
.2であった。実施例1と同様な条件下で水素生成量を
測定した゛結果0.4■皇/分であった。
The results of X-ray diffraction of this sintered body are shown in Figure 2, and the composition is Sm4.8Nd7.2 F21.607
.. It was 2. The amount of hydrogen produced was measured under the same conditions as in Example 1, and the result was 0.4 h/min.

実施例3 0.3モルの511203と0.7モルのNdF3を実
施例1と同じ方法で混合、成型、焼成した。この焼結体
をX線回析にかけた結果は第3図に示す通りであり、組
成はS”5.5.Nd6.5 F19.4 os3であ
った。これを用いて水蒸気電解セルを作製し、実施例1
と同様な条件下で水素生成量を測定した結果0.5m文
/分であった。
Example 3 0.3 mol of 511203 and 0.7 mol of NdF3 were mixed, molded, and fired in the same manner as in Example 1. The results of subjecting this sintered body to X-ray diffraction are as shown in Figure 3, and the composition was S''5.5.Nd6.5 F19.4 os3. A steam electrolysis cell was made using this. Example 1
The hydrogen production amount was measured under the same conditions as 0.5m/min.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は実施例に示された本発明に用いられた組成
物のX線回折図である。
1 to 3 are X-ray diffraction patterns of the compositions used in the present invention shown in Examples.

Claims (1)

【特許請求の範囲】[Claims] 1、隔膜の一方に水蒸気を、他方に酸素を受容し得る物
質を存在せしめ、該膜を通して水蒸気中の酸素を前記酸
素受容物質に移動せしめることにより、水蒸気を分解し
て水素を得る方法において、隔膜として一般式SmaN
dbFoOd(但しa= 2.18〜9.82. b 
= 2.18〜9.82゜c= 12−29.45. 
d=3.25〜12で、且a+b= 12. C+ 2
d= 36)で示される酸素イオン導電性固体電解質を
用いることを特徴とする水素の製造方法。
1. A method for decomposing water vapor to obtain hydrogen by allowing a substance capable of accepting water vapor to exist on one side of a diaphragm and oxygen in the other, and transferring oxygen in the water vapor to the oxygen-accepting substance through the membrane, General formula SmaN as a diaphragm
dbFoOd (however, a= 2.18~9.82.b
= 2.18~9.82°c = 12-29.45.
d=3.25-12, and a+b=12. C+ 2
A method for producing hydrogen, characterized by using an oxygen ion conductive solid electrolyte represented by d=36).
JP59106404A 1984-05-28 1984-05-28 Production of hydrogen Pending JPS60251101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59106404A JPS60251101A (en) 1984-05-28 1984-05-28 Production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59106404A JPS60251101A (en) 1984-05-28 1984-05-28 Production of hydrogen

Publications (1)

Publication Number Publication Date
JPS60251101A true JPS60251101A (en) 1985-12-11

Family

ID=14432741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59106404A Pending JPS60251101A (en) 1984-05-28 1984-05-28 Production of hydrogen

Country Status (1)

Country Link
JP (1) JPS60251101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241876A (en) * 1988-03-23 1989-09-26 Nec Corp Substrate for electronic device
WO1998051612A1 (en) * 1997-05-13 1998-11-19 Yosohiro Sugie Method and apparatus for generating hydrogen gas by direct thermal decomposition of water
US6630119B1 (en) 2000-05-15 2003-10-07 Yosohiro Sugie Hydrogen gas generating method
JP2010517916A (en) * 2007-02-06 2010-05-27 シーティーピー ハイドロゲン コーポレーション Architecture for electrochemical systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241876A (en) * 1988-03-23 1989-09-26 Nec Corp Substrate for electronic device
WO1998051612A1 (en) * 1997-05-13 1998-11-19 Yosohiro Sugie Method and apparatus for generating hydrogen gas by direct thermal decomposition of water
US6630119B1 (en) 2000-05-15 2003-10-07 Yosohiro Sugie Hydrogen gas generating method
JP2010517916A (en) * 2007-02-06 2010-05-27 シーティーピー ハイドロゲン コーポレーション Architecture for electrochemical systems

Similar Documents

Publication Publication Date Title
Temluxame et al. Comparison of ceria and zirconia based electrolytes for solid oxide electrolysis cells
US9847545B2 (en) Highly ionic conductive zirconia electrolyte for high-efficiency solid oxide fuel cell
Li et al. Investigation of Nd2Ni0. 9M0. 1O4+ δ (M= Ni, Co, Cu, Fe, and Mn) cathodes for intermediate-temperature solid oxide fuel cell
Shao et al. A promising cathode for proton-conducting intermediate temperature solid oxide fuel cells: Y0. 8Ca0. 2BaCo4O7+ δ
Guo et al. Electrochemical evaluation of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ–La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ composite cathodes for La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolyte SOFCs
Ju et al. Phase transition of doped LaFeO3 anode in reducing atmosphere and their power generation property in intermediate temperature solid oxide fuel cell
Zhou et al. Novel YBaCo3. 2Ga0. 8O7+ δ as a cathode material and performance optimization for IT-SOFCs
JPS60251101A (en) Production of hydrogen
JP3121982B2 (en) Conductive ceramics
KR102021251B1 (en) Proton conductive composite oxide and fuel cell using same as electrolyte
KR101772264B1 (en) High ionic conductive zirconia electrolyte for high efficiency solid oxide fuel cells
JPH0891929A (en) Electrically conductive ceramics and their production
JP3117781B2 (en) Method for producing electrode material for solid oxide fuel cell
JPH06135721A (en) Material for interconnector of solid electrolyte fuel cell, its synthesizing method, and method for forming interconnector on fuel pole of cylindrical solid electrolyte fuel cell
EP4398269A1 (en) Oxide ion conductive solid electrolyte
JP2016030844A (en) Cell for water vapor electrolysis
US20240194919A1 (en) Oxide ion-conducting solid electrolyte
RU2779630C1 (en) Electrode material based on praseodymium nickelate for electrochemical devices
JPS6077101A (en) Production of hydrogen
JP3389407B2 (en) Conductive ceramics and fuel cells
KR101470926B1 (en) Solid Acid Proton Conductor, Fabrication Method thereof and Gas Separation Membrane Module, Ammonia Synthesis Module and Fuel Cell using the same
WO2023079892A1 (en) Oxide ion–conducting solid electrolyte
KR20100108851A (en) Stainless steel metal interconnector coated with lno conductivity oxide compound and improved phase stability and electric conductivity
JP3370446B2 (en) Method for producing conductive ceramics
WO2020217743A1 (en) Membrane electrode assembly, solid oxide-type fuel cell, and electrochemical device