JPS6025106A - Flame resistant insulated wire - Google Patents
Flame resistant insulated wireInfo
- Publication number
- JPS6025106A JPS6025106A JP58132913A JP13291383A JPS6025106A JP S6025106 A JPS6025106 A JP S6025106A JP 58132913 A JP58132913 A JP 58132913A JP 13291383 A JP13291383 A JP 13291383A JP S6025106 A JPS6025106 A JP S6025106A
- Authority
- JP
- Japan
- Prior art keywords
- insulated wire
- flame
- weight
- parts
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Insulated Conductors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は難燃性絶縁電線に係り、特に高度な電気絶縁特
性と高度な難燃性とを兼備する難燃性絶縁電線に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flame-retardant insulated wire, and particularly to a flame-retardant insulated wire that has both high electrical insulation properties and high flame retardancy.
一般にポリオレフィン樹脂は電気絶縁性に優れるが、可
燃性である欠点がある。Polyolefin resins generally have excellent electrical insulation properties, but have the drawback of being flammable.
近年電気機器等の配線用電線には、例えばU L規格の
vw−i等の高難燃性が要求される傾向にあるが、その
ために一般的にはポリオレフィン樹脂にハロゲン系勤燃
剤等の難燃剤を多聞に配合した難燃性ポルオレフィン樹
脂組成物を絶縁体に用いることが行なわれている。In recent years, there has been a trend that high flame retardancy, such as VW-I of the UL standard, is required for wiring wires for electrical equipment, etc., but for this reason, it is generally necessary to add flame retardants such as halogen-based flame retardants to polyolefin resin. Flame-retardant polyolefin resin compositions containing a large amount of flame retardant have been used as insulators.
しかしながら、このような難燃化方法ではポリオレフィ
ン樹脂の電気絶縁特性、特に耐圧特性の低下が著しいた
め、テレビジョン用高圧リード線のような耐高電圧時1
1と高難燃111どを兼備覆ることが要求されるような
用途には問題があつl、:。そのため絶縁体を2層にし
て、内部絶縁体層には電気特性の優れた架橋ポリエチレ
ンやポリプロピレン等のポリオレフィンを用い、外部シ
ース層には高難燃組成物を用いて、各層を絶縁と難燃と
に機能分離した2層構造の絶縁電線が考案されてぎた。However, with this flame retardant method, the electrical insulation properties of the polyolefin resin, especially the voltage resistance properties, are significantly reduced.
1 and high flame retardant 111, etc., there is a problem in applications where it is required to cover both 1 and 111. Therefore, the insulator is made of two layers, and the inner insulator layer is made of polyolefin such as cross-linked polyethylene or polypropylene, which has excellent electrical properties, and the outer sheath layer is made of a highly flame-retardant composition. Two-layer insulated wires with separate functions have been devised.
しかしながら、外部シース層として通常の高難燃組成物
を使用しても内部絶縁体層が溶融垂れ現象を起こし、長
時間に亘り燃焼を接続し、規格を満足しないという問題
があった。この原因は、外部シース層が燃えつぎた後に
燃え殻を形成せず内部絶縁体層が露出覆るか、燃え殻が
形成されたとしてもその強度が十分でないため燃え殻に
割れが生じる等の伸出で、内部絶縁体層に着火−りるた
V)である。もしくは内部絶縁体層の融解したものが外
部にしみ出し着火したり、燃え殻の強度が足りないため
に内部絶縁体層の溶解型れの[4に抗しきれずに垂れを
発生したためである。However, even when a conventional highly flame-retardant composition is used as the outer sheath layer, there is a problem that the inner insulating layer melts and sag, and the combustion continues for a long time, which does not meet the standards. The cause of this is that after the outer sheath layer burns out, no cinders are formed and the internal insulating layer is exposed and covered, or even if cinders are formed, they are not strong enough and cracks occur in the cinders. The internal insulator layer is ignited - Rirta V). Alternatively, the melted internal insulating layer seeped out and ignited, or the cinders were not strong enough to resist the melting pattern [4] of the internal insulating layer, causing sag.
高電圧用の電気機器配線用電線には以りのよう3−
な不都合があったため種々の発明考案が提案されてきた
が、十分な特性のものがなかった。Since high-voltage electric wires for wiring electrical equipment have the following disadvantages, various inventions have been proposed, but none with sufficient characteristics have been found.
本発明者等は、燃焼後より高い強度を有し割れの発生し
にくい炭化層を形成する外部シース層がより確実な難燃
性を付与し得るという観点に立って、種々検討した結果
、導体1上に内部絶縁体層2を被覆し該内部絶縁体層2
の外周に外部シース層3を被覆して成る絶縁電線(第1
図参照)において、内部絶縁体層を、架橋又は非架橋型
ポリオレフィン樹脂組成物にて構成し、外部シース層を
、(a )塩素含量が30〜45重量%、結晶化度が1
0%以下の塩素化ポルエチレン樹脂100重量部に対し
て、(b)ホウ酸亜鉛5〜50重量部<C>一般式(但
し、R,R’ は水素元素、アルキル基、ハロゲン化ア
ルキル基、カルボニル基、グリシジル基4−
等の炭素、ヂッ索、酸素、ケイ素、リンもしくはイAつ
を骨格とする有機基、Xは臭素元素又は塩素元素、It
、mはO〜4の正の整数を表わす、)で表わされるビス
7TノールA誘導体1〜50重湯部、(d ’)ケイ酸
アルミニウム、ケイ酸マグネシウム、もしくはアルミナ
とマグネシアとの化合物を主体とする無機充填剤5〜3
0重量部、(e )三酸化アンチモン5〜70重量部、
及び(「)鉛化合物安定剤3〜50重聞部デモ合してな
る架橋又は非架橋型塩素化ポリエチレン樹脂組成物にて
構成した絶縁電線が、従来にない優れた高難燃性を有す
ることを見出した。The present inventors have conducted various studies based on the viewpoint that the outer sheath layer, which forms a carbonized layer that has higher strength after combustion and is less prone to cracking, can provide more reliable flame retardancy. an inner insulator layer 2 is coated on the inner insulator layer 2;
An insulated wire (first
(see figure), the inner insulating layer is made of a crosslinked or non-crosslinked polyolefin resin composition, and the outer sheath layer is made of (a) a chlorine content of 30 to 45% by weight and a crystallinity of 1.
(b) 5 to 50 parts by weight of zinc borate <C> General formula (where R and R' are a hydrogen element, an alkyl group, a halogenated alkyl group, Carbonyl group, glycidyl group, etc., an organic group having a skeleton of carbon, dihydrocarbon, oxygen, silicon, phosphorus or IA, where X is a bromine element or a chlorine element, It
, m represents a positive integer of O to 4), 1 to 50 parts of bis7Tnol A derivative, (d') mainly consisting of aluminum silicate, magnesium silicate, or a compound of alumina and magnesia. Inorganic filler 5-3
0 parts by weight, (e) 5 to 70 parts by weight of antimony trioxide,
and (``) an insulated wire made of a crosslinked or non-crosslinked chlorinated polyethylene resin composition containing 3 to 50 parts of a lead compound stabilizer has unprecedentedly excellent flame retardancy. I found out.
本発明において、(f)鉛化合物安定剤どしては、二塩
基性フタル酸鉛が少ない配合量でも燃焼殻形成に最も良
好4【結果を示ず。このことは11成物の機械的特性に
好ましい結果をもたらす。In the present invention, among (f) lead compound stabilizers, dibasic lead phthalate has the best effect on combustion shell formation even in a small amount4 [No results shown. This has favorable consequences for the mechanical properties of the 11 product.
又、珪酸アルミニウム、珪酸マグネシウムもしくはアル
ミナとマグネシアとの化合物を主体とする(d )無機
充填剤としては、クレー、タルク、ハイドロタルサイ]
−等が入手し易い。(d) Inorganic fillers mainly composed of aluminum silicate, magnesium silicate, or a compound of alumina and magnesia include clay, talc, and hydrotalcium.
-, etc. are easy to obtain.
次に、前記の(a )塩素化ポリエチレン樹脂の塩素含
量を30〜45重量%、結晶化度を10重量%以下にし
た理由は、塩素含量が30重量%未満もしくは、結晶化
度が10重量%を越えたものを用いた場合には燃焼によ
って形成される燃え殻の強度が十分でなく、電線の難燃
性に問題が生じるためである。一方、塩素含量が45重
量%を越えると、用いる塩素化ポリエチレンの耐熱老化
性が低下し、好ましくないためである。又、この塩素含
量の範囲の塩素化ポリエチレンには、ベースポリマー全
体の中の塩素含量が30%以上の範囲に限ってポリエチ
レン、EPR、エチレン−酢酸ビニル共重合体及びエチ
レン−エチルアクリレート共重合体等のポリオレフィン
を配合でき、又ポリ塩化ビニル、塩化ビニル−エチレン
共重合体等の含ハロゲンポリマーを重量%で20%以内
でブレンドすることができる。Next, the reason for setting the chlorine content of the chlorinated polyethylene resin (a) to 30 to 45% by weight and the crystallinity to 10% by weight or less is that the chlorine content is less than 30% by weight or the crystallinity is 10% by weight or less. %, the strength of the cinders formed by combustion will not be sufficient, causing a problem with the flame retardancy of the wire. On the other hand, if the chlorine content exceeds 45% by weight, the heat aging resistance of the chlorinated polyethylene used decreases, which is undesirable. In addition, chlorinated polyethylene with a chlorine content within this range includes polyethylene, EPR, ethylene-vinyl acetate copolymer, and ethylene-ethyl acrylate copolymer, as long as the chlorine content in the entire base polymer is 30% or more. Polyolefins such as polyvinyl chloride, vinyl chloride-ethylene copolymers, and other halogen-containing polymers can be blended within 20% by weight.
さらに、それぞれの配合剤について、前記の(b)ホウ
酸亜鉛を5〜50重量部、前記の(C)ビスフェノール
A誘導体を1〜50重量部、前記の(d )無機充填剤
を5〜30重聞部デモ記の(e)三酸化アンチモンを5
〜70重量部、前記の<f )鉛化合物安定剤を3〜5
0重聞部デモた理由は、これらの範囲より少ない配合量
の場合にはいずれも燃焼によって形成される燃え殻の強
1在が十分でなく、電線の難燃性に問題が生じる。一方
、この範囲より多く配合しても効果の向」−はみられず
、かえって機械的強度が低下するという欠点を生じるた
めである。Furthermore, for each compounding agent, 5 to 50 parts by weight of the above (b) zinc borate, 1 to 50 parts by weight of the above (C) bisphenol A derivative, and 5 to 30 parts by weight of the above (d) inorganic filler. (e) Antimony trioxide in the demo record of the heavy duty department 5
~70 parts by weight, <f) 3 to 5 parts by weight of the above lead compound stabilizer
The reason for this is that if the blending amount is less than these ranges, the strength of the cinders formed by combustion will not be sufficient, causing a problem in the flame retardancy of the electric wire. On the other hand, if it is added in an amount exceeding this range, no improvement in the effect will be seen, and the disadvantage will be that the mechanical strength will be reduced.
なお、ここで言う前記のホウ酸亜鉛とは、化学大辞典V
Oβ8603〜604頁(昭和37年」(立出版株式会
社発行)に記載されている3つの化合物の単独又は混合
物を指す。In addition, the above-mentioned zinc borate mentioned here is defined in the Encyclopedia of Chemistry V.
Refers to the three compounds described in Oβ, pages 8603-604 (1960) (published by Ritsu Shuppan Co., Ltd.), either singly or as a mixture.
本発明で用いるシース材料には、架橋剤、架橋助剤、老
化防止剤、紫外線吸収剤、可塑剤、充填剤、安定剤、滑
剤、着色剤等の配合剤を通常の範囲内で配合することが
でき、電離性放射線を用いる放射線架橋、化学架橋もし
くはシラン架橋等の手段で架橋することができ、そのこ
とにより電線の耐熱性を向上しうる。The sheath material used in the present invention may contain compounding agents such as crosslinking agents, crosslinking aids, anti-aging agents, ultraviolet absorbers, plasticizers, fillers, stabilizers, lubricants, colorants, etc. within the usual range. The wire can be crosslinked by means such as radiation crosslinking using ionizing radiation, chemical crosslinking, or silane crosslinking, thereby improving the heat resistance of the electric wire.
=7−
又、絶縁体層として用いる前記ポリオレフィン樹脂とし
ては、ポリエチレン、ポリプロピレン、ポリブテン−1
、ポリ4−メチルペンテン−1、■チレンー酢酸ビニル
共重合体、エチレン−エチルアクリレート共重合体、エ
チレン−プロピレン共重合体、もしくはエチレン−プロ
ピレン−ジエン三元共重合体等の1種又は2種以上のブ
レンドをベースとする樹脂組成物を言うが、これらは電
離性放射線を用いる放射線架橋、化学架橋もしくはシラ
ン架橋等の手段で架橋することによって電線の耐熱性を
向上させうる。又、テレビジョン用の高圧リート線用途
の場合、U L 、 S Llb、1eCt758規格
の高圧力ットスルー試験に合格することが必要であるが
、この場合105℃のような高温雰囲気で行なわれるた
め、機械的特性の点から結晶融点が105℃以上の樹脂
を絶縁体に用いることが好ましい。すなわち、架橋が比
較的容易で、かつ結晶融点が105℃以上の樹脂として
は、密度が0.93以上のポリエチレンがあるが、これ
を用いるとテレビジョン用の高圧リード線として好まし
い特性−〇−
のちのが得られる。=7- Also, as the polyolefin resin used as the insulating layer, polyethylene, polypropylene, polybutene-1
, poly4-methylpentene-1, ■ one or two types of tyrene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, or ethylene-propylene-diene terpolymer, etc. A resin composition based on the above blend can be crosslinked by radiation crosslinking using ionizing radiation, chemical crosslinking, silane crosslinking, or the like to improve the heat resistance of electric wires. Additionally, in the case of high-voltage riet wire applications for televisions, it is necessary to pass the high-pressure through test of the UL, SLlb, and 1eCt758 standards, but in this case, it is conducted in a high-temperature atmosphere such as 105°C, so From the viewpoint of mechanical properties, it is preferable to use a resin having a crystal melting point of 105° C. or higher for the insulator. In other words, polyethylene with a density of 0.93 or more is a resin that is relatively easy to crosslink and has a crystalline melting point of 105°C or more, but when used, it has favorable characteristics as a high-voltage lead wire for televisions. You will get what you get later.
以下本発明の実施例を比較例と対比しつつ詳細に説明す
る。Examples of the present invention will be described in detail below in comparison with comparative examples.
実施例1〜16、 比較例1〜8
直径0.81mmの銅線上1.:、401nmφ押出機
(1−/D22)を用いて、ダイス温度205℃にてポ
リエチレン(昭和電二「株式会社製商品名シーlウレツ
クス34002E :密度0,935、MFRO,20
)を0.76mm厚に押出被覆し、これにIMeVの電
子線を40M rad照射し架橋させた。一方、表−1
に記載した組成比にてロール混合しシート状組成物を冑
、ペレタイズしてペレット状の組成物を1■た。(ロー
ル時の材判温反は約140℃であった。)次に、このペ
レットを1−記架橋ポリエチレン絶縁電線十に0.95
nv厚に押出被覆し、さらにこれにIMeV電子線をI
OM rad照射して架橋1ノで絶縁電線の完成品を冑
た。而して得た各々の絶縁電線について難燃試験(UL
、 Sub、i 758のVW−1)、Ul、 5ub
j 、758テレビジヨン受信奢幾川高圧電線規格3e
ctionl (1969年)の高圧力ッ1−スルー試
験を行なった。又、IV用高圧電線一般にモールデング
加工され高温機械的強度が要求されるため、160℃の
V字曲げ試験によって高温機械的強度の評価とゲル分率
の測定を行なった。これらの試験結果は表−2に示した
。Examples 1 to 16, Comparative Examples 1 to 8 On copper wire with a diameter of 0.81 mm 1. : Using a 401 nmφ extruder (1-/D22), polyethylene (Showa Denji Co., Ltd., product name: Seal Urex 34002E) was manufactured at a die temperature of 205°C: Density 0,935, MFRO, 20
) was extrusion coated to a thickness of 0.76 mm, and crosslinked by irradiating it with an IMeV electron beam at 40 M rad. On the other hand, Table-1
The sheet-like composition was mixed with a roll in the composition ratio described in 1. The sheet-like composition was then pelletized to obtain one pellet-like composition. (The temperature resistance of the material when rolled was approximately 140°C.) Next, this pellet was added to 0.95°C of cross-linked polyethylene insulated wire.
It was extruded and coated to a thickness of nv, and then an IMeV electron beam was applied to it.
The completed insulated wire was completed by OM rad irradiation and cross-linking. Each insulated wire thus obtained was subjected to a flame retardant test (UL
, Sub, i 758 VW-1), Ul, 5ub
J, 758 Television Reception Gakugawa High Voltage Wire Standard 3e
(1969) high pressure 1-through test was conducted. Furthermore, since high-voltage electric wires for IV use are generally molded and require high-temperature mechanical strength, the high-temperature mechanical strength was evaluated and the gel fraction was measured by a V-bending test at 160°C. These test results are shown in Table-2.
先ず、難燃性について本発明の塩素化ポリエチレンを用
いた実施例1.2は、燃焼後に、内部絶縁体層を露出す
ることのない強固な燃焼殻を形成した。そのためバーナ
ーの炎を取り去ると直ちに消火した。First, regarding flame retardancy, Example 1.2 using the chlorinated polyethylene of the present invention formed a strong combustion shell without exposing the internal insulating layer after combustion. Therefore, the fire was extinguished immediately after removing the flame from the burner.
一方、結晶質の塩素化ポリエチレンを用いた比較例1.
2の場合は、燃焼殻の形成が十分でないため燃焼殻に縦
割れが生じた。そのため内部絶縁体が溶融垂れ現象を起
こして着火し、残炎時間が60秒を越えた(UL、VW
−1試験規格では残炎時間は60秒を越えてはいけない
。)。塩素合間の約36%の塩化ビニルグラフト化エチ
レン−酢酸ビニル共重合体を用いた比較例8についても
同様な燃焼現象を起こしたため残炎時間は60秒を越え
た。On the other hand, Comparative Example 1 using crystalline chlorinated polyethylene.
In case 2, vertical cracks occurred in the combustion shell because the formation of the combustion shell was insufficient. As a result, the internal insulator melted and ignited, causing an afterflame time of over 60 seconds (UL, VW
According to the -1 test standard, the afterflame time must not exceed 60 seconds. ). In Comparative Example 8 using an ethylene-vinyl acetate copolymer grafted with vinyl chloride at about 36% of the chlorine content, a similar combustion phenomenon occurred and the afterflame time exceeded 60 seconds.
又、本発明の良好な難燃性は、実施例3.4.5.6.
7より明らかなように、ビスフェノールA誘17(本を
ファイヤーカ゛−ド3000からファイψ−カード20
00.エピコート1001及びNKTステル13 P
E−200に、又無機充填剤をタルウからクレー及びハ
イド【コタル11イトに変更しても、変化することはな
い。一方、配合剤の配合量については、比較例3.4.
5.6.7に明らかなように、二j′EA基性フタルN
111、ホウ酸亜鉛、ヒスフェノールA誘導体、無機充
填剤、三酸化アンチモンのいずれの配合量を減じても燃
焼殻の形成は不充分になってしまい、残炎時間が60秒
を越えた。又、実施例9と実施例11、実施例12と実
施例8、実施例13と実施例11、実施例14と実施例
11、及び実施例16と実施例11の比較から明らかな
ように、二塩基性フタル酸鉛、ホウ酸亜鉛、ファイψ−
ガード3000、ミストロンペーパータルクもしくは三
酸化アンチモンを増量しても残炎時間の大きな改良には
つながらない。又、実施例10と実施例1との比較から
明らかなように、二塩基性フタル酸鉛を三塩基性硫酸鉛
に変えると、VW−1試験には合格するが若11−
干残炎時間が長くなる。Moreover, the good flame retardance of the present invention can be seen in Example 3.4.5.6.
As is clear from 7, bisphenol A-17 (book was transferred from Fire Card 3000 to Fire Card 20
00. Epicote 1001 and NKT Stell 13 P
E-200, and even if the inorganic filler is changed from tallow to clay and hyde (kotal-11ite), there is no change. On the other hand, regarding the amount of compounding agents, Comparative Example 3.4.
5.6.7, the 2j′EA-based phthalN
Even if the amounts of 111, zinc borate, hisphenol A derivative, inorganic filler, and antimony trioxide were reduced, the formation of a combustion shell became insufficient, and the afterflame time exceeded 60 seconds. Furthermore, as is clear from the comparisons between Example 9 and Example 11, Example 12 and Example 8, Example 13 and Example 11, Example 14 and Example 11, and Example 16 and Example 11, Dibasic lead phthalate, zinc borate, phiψ−
Increasing the amount of Guard 3000, Mystron Paper Talc, or Antimony Trioxide does not lead to a significant improvement in afterflame time. Furthermore, as is clear from the comparison between Example 10 and Example 1, when dibasic lead phthalate is replaced with tribasic lead sulfate, the VW-1 test is passed, but the afterflame time is reduced. becomes longer.
ずなわち、以上のことから本発明の塩素化ポリエチレン
及びこれらの配合剤は、いずれも絶縁電線の難燃性のた
めには必須成分Cあることが判る。In other words, from the above, it can be seen that the chlorinated polyethylene of the present invention and its compounding agents both contain component C, which is essential for the flame retardancy of insulated wires.
次に、耐高圧力ットスルー特性については、塩素化ポリ
エチレン樹脂組成物を外部シース層とする試料は、全て
高圧力ッ1〜スルー特性に合格した。Next, regarding the high pressure through characteristics, all the samples whose outer sheath layer was made of a chlorinated polyethylene resin composition passed the high pressure through characteristics.
一方、塩化ビニルグラフトエチレン−酢酸ビニル共重合
体を用いた比較例8の場合、高圧力ットスルー試験に合
格しなかった。この理由としては、ゲル分率の結果が示
すように、比較例8の場合架橋度が低いため外部シース
層の熱変形により全被覆厚が薄くなったために耐電圧特
性が低下したものと解釈される。On the other hand, in the case of Comparative Example 8 using a vinyl chloride grafted ethylene-vinyl acetate copolymer, it did not pass the high pressure through test. The reason for this is that, as shown in the gel fraction results, in Comparative Example 8, the degree of crosslinking was low, and the total coating thickness became thinner due to thermal deformation of the outer sheath layer, resulting in a decrease in withstand voltage characteristics. Ru.
同様のことは高温V字曲げ試験結果についても言える。The same can be said about the high temperature V-bending test results.
塩素化ポリエチレンを用いた実施例、比較例はいずれも
苛酷な高温変形試験で外部シース層に亀裂を生じなかっ
たが、塩化ビニルグラフト化エレン−酢酸ビニル共重合
体を用いた場合、外部シース層に亀裂を生じた。この理
由は、塩化ビ12−
ニルグラフト化エチレン−酢酸ビニルtt重合体の場合
、架li度が十分でないことが高温での機械的強度に反
映したものと思われる。In both the Examples and Comparative Examples using chlorinated polyethylene, no cracks occurred in the outer sheath layer in the severe high temperature deformation test, but when vinyl chloride grafted ethylene-vinyl acetate copolymer was used, the outer sheath layer did not crack. A crack appeared. The reason for this is thought to be that in the case of the vinyl chloride-grafted ethylene-vinyl acetate tt polymer, the degree of crosslinking is insufficient, which is reflected in the mechanical strength at high temperatures.
以上の如く塩化ポリエチレンを用いた場合、耐高圧力ッ
トスルー特性及び高温にお【)るl幾械的強度に優れる
が、それは塩素化ポリエチレンの架橋効率が高いことに
起因する。すなわち、塩素化ポリエチレン樹脂組成物を
外部シース層とした絶縁電線の場合、照射量もしくは架
橋剤の配合品を減少しつるという経済的な意味ばかりで
なく、照射量もしくは架橋剤の増加に伴なう脱塩酸反応
や熱老化特性の低下を防止しうるという利点もある。As described above, when chlorinated polyethylene is used, it has excellent high pressure throughput characteristics and mechanical strength at high temperatures, and this is due to the high crosslinking efficiency of chlorinated polyethylene. In other words, in the case of an insulated wire with an outer sheath layer made of a chlorinated polyethylene resin composition, it is not only economically advantageous to reduce the amount of irradiation or the amount of crosslinking agent used, but also because it increases the amount of irradiation or crosslinking agent. It also has the advantage of preventing dehydrochloric acid reaction and deterioration of heat aging properties.
す、なわち、本発明は、優れた架橋特性を有する塩素化
ポリエチレンを用いて優れた難燃性をイ」与したため、
優れた耐高圧特性や耐モールド加工性に偏れた絶縁電線
を開発し得たと言える。それ放水発明の工業的な価値は
極めて高い。That is, the present invention uses chlorinated polyethylene having excellent crosslinking properties to provide excellent flame retardancy.
It can be said that we have developed an insulated wire with excellent high-voltage resistance and molding resistance. The industrial value of this water spray invention is extremely high.
域 戚 域 吠
−1+1
/// Δ
へ
ム
ト
ヤ −き 虐 田
の 呼 ゎ [F]
(15)UL、5ubject 758 VW−1表−
2中の最長残炎時間とは、5回の試料着火後の残炎に関
して最長の残炎時間を言い、それらを6回の試料で平均
化したものである。Area Area Area Area - 1 + 1 /// Δ Hemtoya -ki Massage Field's Call ゎ [F] (15) UL, 5 object 758 VW-1 Table -
The longest afterflame time in No. 2 refers to the longest afterflame time for afterflames after 5 sample ignitions, and is averaged over 6 samples.
VW−1試験規格では各残炎時間が60秒をこえてはい
けない。According to the VW-1 test standard, each afterflame time must not exceed 60 seconds.
(16) LJ L、 5ubject 758 TV
受信機用高圧電線規格 3 ectionl (196
8年)高圧力ットスルー試験。試料条件は105℃雰囲
気中で、D C50K Vを7時間耐圧試験する。(16) LJ L, 5ubject 758 TV
High-voltage wire standard for receivers 3 echionl (196
8th year) High pressure through test. The sample conditions are a voltage resistance test of DC50KV for 7 hours in an atmosphere of 105°C.
(17)完成品試料を160℃で1時間加熱した後、同
雰囲気中でV字に曲げ、続いて反対方向に曲げ返して、
再びV字曲げを行い、シース層、絶縁体層の亀裂の発生
を観察する。(17) After heating the finished product sample at 160°C for 1 hour, bend it into a V shape in the same atmosphere, then bend it back in the opposite direction,
Perform V-shaped bending again and observe the occurrence of cracks in the sheath layer and insulator layer.
(18)テトラヒドロフランを満したソックスレー抽出
器を用いて8時間抽出した。(18) Extracted for 8 hours using a Soxhlet extractor filled with tetrahydrofuran.
第1図は本発明の一実施例品の電線の断面図である。 1・・・導体 2・・・内部絶縁体層 3・・・外部シース層。 特許出願人 古河電気工業株式会社 同 出願人 東京特殊電線株式会社 代理人弁理士 杉 村 暁 査 問 弁理士 杉 村 興 作 =34 FIG. 1 is a sectional view of an electric wire according to an embodiment of the present invention. 1... Conductor 2... Internal insulator layer 3...Outer sheath layer. Patent applicant: Furukawa Electric Co., Ltd. Same applicant: Tokyo Special Electric Wire Co., Ltd. Representative Patent Attorney Akatsuki Sugimura Question: Written by Patent Attorney Oki Sugimura =34
Claims (1)
外周に外部シース層を被覆して成る絶縁電線において、 内部絶縁体層を、架橋又は非架橋型ポリオレフィン樹脂
組成物にて構成し、 外部シース層を、(a )塩素含量が30〜45重量%
、結晶化度が10%以下の塩素化ポリエチレン樹脂10
0重i部に対して、(b)ホウ酸亜鉛5〜50重量部、
(c )一般式(但し、R,R’ は水素元素、アルキ
ル基、ハロゲン化アルキル基、カルボニル基、グリシジ
ル基等の炭素、チッ素、酸素、ケイ素。 i n”ff リンもしくはイAつを骨格とJる右II 1<、Xは臭
素元素又は塩素元素、A、mは0〜4の正の整数を表わ
す。) で表わされるビスフェノールA誘導体1〜50重量部、
(d )ケイ酸アルミニウム、り゛イ酸マグネシウム、
もしくはアルミナとマグネシアとの化合物を主体とする
照機充填剤!1−30重量部、(e)三酸化アンデモ2
5〜10重聞部、及び(f )鉛化合物安定剤3〜50
重湯部を配合してなる架橋又は非架橋型槁素化ポリエチ
レン樹脂組成物にて構成したことを特徴とする難燃性絶
縁電線。 2、(f)鉛化合物安定剤が二塩基旧フタル酸鉛である
ことを特徴とする特許請求の範囲第1項記載の難燃性絶
縁電線。 3、内部絶縁体層を架橋ポリオレフィン樹脂組成物にで
構成したことを特徴とする特許請求の範囲第1項記載の
難燃性絶縁電線。 4、内部絶縁体層を構成したポリオレフィン樹脂が密度
0.93以上のポリエチレンであるこ2− どを特徴とする特許請求の範囲第3項記載の難燃性絶縁
電線。 5、外部シース層を架橋塩素化ポリエチレン樹脂組成物
にて構成したことを特徴とする特許請求の範囲第1項記
載の難燃性絶縁電線。[Claims] 1. An insulated wire comprising an internal insulating layer coated on a conductor and an external sheath layer covering the outer periphery of the internal insulating layer, wherein the internal insulating layer is of a crosslinked or non-crosslinked type. It is composed of a polyolefin resin composition, and the outer sheath layer has (a) a chlorine content of 30 to 45% by weight;
, chlorinated polyethylene resin 10 with a crystallinity of 10% or less
(b) 5 to 50 parts by weight of zinc borate to 0 parts by weight,
(c) General formula (where R and R' are hydrogen elements, carbons such as alkyl groups, halogenated alkyl groups, carbonyl groups, glycidyl groups, etc., nitrogen, oxygen, silicon. 1 to 50 parts by weight of a bisphenol A derivative represented by 1<, X represents a bromine element or a chlorine element, A and m represent positive integers of 0 to 4.
(d) aluminum silicate, magnesium silicate,
Or Teruki filler, which is mainly a compound of alumina and magnesia! 1-30 parts by weight, (e) Andemo trioxide 2
5 to 10 heavy parts, and (f) lead compound stabilizer 3 to 50
1. A flame-retardant insulated wire comprising a cross-linked or non-cross-linked nitrided polyethylene resin composition containing a heavy hot water component. 2. The flame-retardant insulated wire according to claim 1, wherein the lead compound stabilizer (f) is a dibasic former lead phthalate. 3. The flame-retardant insulated wire according to claim 1, wherein the internal insulating layer is made of a crosslinked polyolefin resin composition. 4. The flame-retardant insulated wire according to claim 3, wherein the polyolefin resin constituting the internal insulating layer is polyethylene having a density of 0.93 or more. 5. The flame-retardant insulated wire according to claim 1, wherein the outer sheath layer is made of a cross-linked chlorinated polyethylene resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58132913A JPS6025106A (en) | 1983-07-22 | 1983-07-22 | Flame resistant insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58132913A JPS6025106A (en) | 1983-07-22 | 1983-07-22 | Flame resistant insulated wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6025106A true JPS6025106A (en) | 1985-02-07 |
JPH0410683B2 JPH0410683B2 (en) | 1992-02-26 |
Family
ID=15092446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58132913A Granted JPS6025106A (en) | 1983-07-22 | 1983-07-22 | Flame resistant insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6025106A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015173036A (en) * | 2014-03-11 | 2015-10-01 | 日立金属株式会社 | Cable and production method thereof |
-
1983
- 1983-07-22 JP JP58132913A patent/JPS6025106A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015173036A (en) * | 2014-03-11 | 2015-10-01 | 日立金属株式会社 | Cable and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0410683B2 (en) | 1992-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5733352B2 (en) | Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition | |
JP4940568B2 (en) | Non-halogen flame retardant wire / cable | |
JP4974041B2 (en) | Non-halogen wires, wire bundles and automotive wire harnesses | |
JP4255368B2 (en) | Cross-linked flame retardant resin composition, insulated wire and wire harness using the same | |
JP5182580B2 (en) | Halogen-free flame retardant insulated wire | |
JP5907015B2 (en) | Railway vehicle wires and railway vehicle cables | |
JP2021155590A (en) | Crosslinked fluororubber composition, wiring material using the same, method for manufacturing the same, and catalyst composition for silane crosslinking | |
EP0630941B1 (en) | A crosslinked, flame-retardant resin composition and the insulated wire having layer using the above composition | |
JP3344918B2 (en) | Flame retardant polyolefin composition and power cable using the composition | |
CN110938270A (en) | Halogen-free flame-retardant resin composition, insulated wire and cable | |
JPH06345979A (en) | Flame-retardant resin composition | |
JPS6025106A (en) | Flame resistant insulated wire | |
JP2017133032A (en) | Vinyl chloride resin composition, insulated wire prepared using the same, and method of producing insulated wire | |
CN114155995A (en) | Insulated wire and cable | |
JP2013245335A (en) | Flame retardant non-crosslinked resin composition and electric wire and cable using the same | |
JP3092294B2 (en) | Heat resistant high voltage lead wire for DC | |
JP6816420B2 (en) | Insulated wires and cables | |
CN111499950A (en) | Halogen-free resin composition, electric wire and cable | |
JP4947829B2 (en) | Insulated wire | |
JP2000265011A (en) | Flame-retarded resin composition | |
KR20240133174A (en) | Cable having an excellent heat resistance and water-proof property | |
JPS5851415A (en) | Flame resistant insulated wire | |
JP2648870B2 (en) | Flame retardant resin composition | |
JPS6223408B2 (en) | ||
JPH0342575Y2 (en) |