JPH0410683B2 - - Google Patents

Info

Publication number
JPH0410683B2
JPH0410683B2 JP58132913A JP13291383A JPH0410683B2 JP H0410683 B2 JPH0410683 B2 JP H0410683B2 JP 58132913 A JP58132913 A JP 58132913A JP 13291383 A JP13291383 A JP 13291383A JP H0410683 B2 JPH0410683 B2 JP H0410683B2
Authority
JP
Japan
Prior art keywords
weight
flame
insulated wire
insulating layer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58132913A
Other languages
Japanese (ja)
Other versions
JPS6025106A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58132913A priority Critical patent/JPS6025106A/en
Publication of JPS6025106A publication Critical patent/JPS6025106A/en
Publication of JPH0410683B2 publication Critical patent/JPH0410683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は難燃性絶縁電線に係り、特に高度な電
気絶縁特性と高度な難燃性とを兼備する難燃性絶
縁電線に関するものである。 一般にポリオレフイン樹脂は電気絶縁性に優れ
るが、可燃性である欠点がある。 近年電気機器等の配線用電線には、例えばUL
規格のVW−1等の高難燃性が要求される傾向に
あるが、そのために一般的にはポリオレフイン樹
脂にハロゲン系難燃剤等の難燃剤を多量に配合し
た難燃性ポルオレフイン樹脂組成物を絶縁体に用
いることが行なわれている。 しかしながら、このような難燃化方法ではポリ
オレフイン樹脂の電気絶縁特性、特に耐圧特性の
低下が著しいため、テレビジヨン用高圧リード線
のような耐高電圧特性と高難燃性とを兼備するこ
とが要求されるような用途には問題があつた。そ
のため絶縁体を2層にして、内部絶縁体層には電
気特性の優れた架橋ポリエチレンやポリプロピレ
ン等のポリオレフインを用い、外部シース層には
高難燃組成物を用いて、各層を絶縁と難燃とに機
能分離した2層構造の絶縁電線が考案されてき
た。しかしながら、外部シース層として通常の高
難燃組成物を使用しても内部絶縁体層が溶融垂れ
現象を起こし、長時間に亘り燃焼を接続し、規格
を満足しないという問題があつた。この原因は、
外部シース層が燃えつきた後に燃え殻を形成せず
内部絶縁体層が露出するか、燃え殻が形成された
としてもその強度が十分でないため燃え殻に割れ
が生じる等の理由で、内部絶縁体層に着火するた
めである。もしくは内部絶縁体層の融解したもの
が外部にしみ出し着火したり、燃え殻の強度が足
りないために内部絶縁体層の溶解垂れの重量に抗
しきれずに垂れを発生したためである。 高電圧用の電気機器配線用電線には以上のよう
な不都合があつたため種々の発明考案が提案され
てきたが、十分な特性のものがなかつた。 本発明者等は、燃焼後より高い強度を有し割れ
の発生しにくい炭化層を形成する外部シース層が
より確実な難燃性を付与し得るという観点に立つ
て、種々検討した結果、導体1上に内部絶縁体層
2を被覆し該内部絶縁体層2の外周に外部シース
層3を被覆して成る絶縁電線(第1図参照)にお
いて、内部絶縁体層を、架橋又は比架橋型ポリオ
レフイン樹脂組成物にて構成し、外部シース層
を、(a)塩素含量が30〜45重量%、結晶化度が10%
以下の塩素化ポリエチレン樹脂100重量部に対し
て、(b)ホウ酸亜鉛5〜50重量部、(c)一般式 (但し、R、R′は水素元素、アルキル基、ハロ
ゲン化アルキル基、カルボニル基、グリシジル基
等の炭素、チツ素、酸素、ケイ素、リンもしくは
イオウを骨格とする有機基、Xは臭素元素又は塩
素元素、l、mは0〜4の生の整数を表わす、) で表わされるビスフエノールA誘導体1〜50重量
部、(d)ケイ酸アルミニウム、ケイ酸マグネシウ
ム、もしくはアルミナとマグネシウムとの化合物
を主体とする無機充填剤5〜30重量部、(e)三酸化
アンチモン5〜70重量部、及び(f)鉛化合物安定剤
3〜50重量部を配合してなる架橋又は非架橋型塩
素化ポリエチレン樹脂組成物にて構成した絶縁電
線が、従来にない優れた高難燃性を有することを
見出した。 本発明において、(f)鉛化合物安定剤としては、
二塩基性フタル酸鉛が少ない配合量でも燃焼殻形
成に最も良好な結果を示す。このことは組成物の
機械的特性に好ましい結果をもたらす。 又、珪酸アルミニウム、珪酸マグネシウムもし
くはアルミナとマグネシアとの化合物を主体とす
る(d)無機充填剤としては、クレー、タルク、ハイ
ドロタルサイト等が入手し易い。 次に、前記の(a)塩素化ポリエチレン樹脂の塩素
含量を30〜45重量%、結晶化度を10重量%以下に
した理由は、塩素含量が30重量%未満もしくは、
結晶化度が10重量%を越えたものを用いた場合に
は燃焼によつて形成される燃え殻の強度が十分で
なく、電線の難燃性に問題が生じるためである。
一方、塩素含量が45重量%を越えると、用いる塩
素化ポリエチレンの耐熱老化性が低下し、好まし
くないためである。又、この塩素含量の範囲の塩
素化ポリエチレンには、ベースポリマー全体の中
の塩素含量が30%以上の範囲に限つてポリエチレ
ン、EPR、エチレン−酢酸ビニル共重合体及び
エチレン−エチルアクリレート共重合体等のポリ
オレフインを配合でき、又ポリ塩化ビニル、塩化
ビニル−エチレン共重合体等の含ハロゲンポリマ
ーを重量%で20%以内でブレンドすることができ
る。 さらに、それぞれの配合剤について、前記の(b)
ホウ酸亜鉛を5〜50重量部、前記の(c)ビスフエノ
ールA誘導体を1〜50重量部、前記の(d)無機充填
剤を5〜30重量部、前記の(e)三酸化アンチモンを
5〜70重量部、前記の(f)鉛化合物安定剤を3〜50
重量部とした理由は、これらの範囲より少ない配
合量の場合にはいずれも燃焼によつて形成される
燃え殻の強度が十分でなく、電線の難燃性に問題
が生じる。一方、この範囲より多く配合しても効
果の向上はみられず、かえつて機械的強度が低下
するという欠点を生じるためである。 なお、ここで言う前記のホウ酸亜鉛とは、化学
大辞典Vol8 603〜604頁(昭和37年共立出版株式
会社発行)に記載されている3つの化合物の単独
又は混合物を指す。 本発明で用いるシース材料には、架橋剤、架橋
助剤、老化防止剤、紫外線吸収剤、可塑剤、充填
剤、安定剤、滑剤、着色剤等の配合剤を通常の範
囲内で配合することができ、電離性放射線を用い
る放射線架橋、化学架橋もしくはシラン架橋等の
手段で架橋することができ、そのことにより電線
の耐熱性を向上しうる。 又、絶縁体層として用いる前記ポリオレフイン
樹脂としては、ポリエチレン、ポリプロピレン、
ポリブテン−1、ポリ4−メチルペンテン−1、
エチレン−酢酸ビニル共重合体、エチレン−エチ
ルアクリレート共重合体、エチレン−ピロピレン
共重合体、もしくはエチレン−プロピレン−ジエ
ン三元共重合体等の1種又は2種以上のブレンド
をベースとする樹脂組成物を言うが、これらは電
離性放射線を用いる放射線架橋、化学架橋もしく
はシラン架橋等の手段で架橋することによつて電
線の耐熱性を向上させうる。又、テレビジヨン用
の高圧リード線用途の場合、UL.Subject758規格
の高圧カツトスルー試験に合格することが必要で
あるが、この場合105℃のような高温雰囲気で行
なわれるため、機械的特性の点から結晶融点が
105℃以上の樹脂を絶縁体に用いることが好まし
い。すなわち、架橋が比較的容易で、かつ結晶融
点が105℃以上の樹脂としては、密度が0.93以上
のポリエチレンがあるが、これを用いるとテレビ
ジヨン用の高圧リード線として好ましい特性のも
のが得られる。 以下本発明の実施例を比較例と対比しつつ詳細
に説明する。 実施例1〜16、比較例1〜8 直径0.81mmの銅線上に、40mmφ押出機(L/
D22)を用いて、ダイス温度205℃にてポリエチ
レン(昭和電工株式会社製商品名シヨウレツクス
S4002E:密度0.935、MFR0.20)を0.76mm厚に押
出被覆し、これに1MeVの電子線を40Mrad照射
し架橋させた。一方、表−1に記載した組成比に
てロール混合シート状組成物を得、ペレタイズし
てペレツト状の組成物を得た。(ロール時の材料
温度は約140℃であつた。)次に、このペレツトを
上記架橋ポリエチレン絶縁電線上に0.95mm厚に押
出被覆し、さらにこれに1MeV電子線を10Mrad
照射して架橋して絶縁電線の完成品を得た。而し
て得た各々の絶縁電線について難燃試験(UL.
Subj 758のVW−1)、UL.Subj.758テレビジヨン
受信機用高圧電線規格Section1(1969年)の高圧
カツトスルー試験を行なつた。又、用高圧電線
一般にモールデング加工され高温機械的強度が要
求されるため、160℃のV字曲げ試験によつて高
温機械的強度の評価とゲル分率の測定を行なつ
た。これらの試験結果は表−2に示した。 先ず、難燃性について本発明の塩素化ポリエチ
レンを用いた実施例1、2は、燃焼後に、内部絶
縁体層を露出することのない強固な燃焼殻を形成
した。そのためバーナーの炎を取り去ると直ちに
消火した。 一方、結晶質の塩素化ポリエチレンを用いた比
較例1、2の場合は、燃焼殻の形成が十分でない
ため燃焼殻に縦割れが生じた。そのため内部絶縁
体が溶融垂れ現象を起こして着火し、残炎時間が
60秒を越えた(UL.VW−1試験規格では残炎時
間は60秒を越えてはいけない。)。塩素含量の約36
%の塩化ビニルグラフト化エチレン−酢酸ビニル
共重合体を用いた比較例8についても同様な燃焼
現象を起こしたため残炎時間は60秒を越えた。
又、本発明の良好な難燃性は、実施例3、4、
5、6、7より明らかなように、ビスフエノール
A誘導体をフアイヤーガード3000からフアイヤー
ガード2000、エピコート1001及びNKエステル
BPE−200に、又無機充填剤をタルウからクレー
及びハイドロタルサイトに変更しても、変化する
ことはない。一方、配合剤の配合量については、
比較例3、4、5、6、7に明らかなように、二
塩基性フタル酸鉛、ホウ酸亜鉛、ビスフエノール
A誘導体、無機充填剤、三酸化アンチモンのいず
れの配合量を減じても燃焼殻の形成は不充分にな
つてしまい、残炎時間が60秒を越えた。また、実
施例9と実施例11、実施例12の実施例8、実施例
13と実施例11、実施例14と実施例11、及び実施例
16と実施例11の比較から明らかなように、二塩基
性フタル酸鉛、ホウ酸亜鉛、フアイヤーガード
3000、ミストロンベーパータルクもしくは三酸化
アンチモンを増量しても残炎時間の大きな改良に
はつながらない。又、実施例10と実施例1との比
較から明らかなように、二塩基性フタル酸鉛を三
塩基性硫酸鉛に変えると、VW−1試験には合格
するが若干残炎時間が長くなる。 すなわち、以上のことから本発明の塩素化ポリ
エチレン及びこれらの配合剤は、いずれも絶縁電
線の難燃性のためには必須成分であることが判
る。 次に、耐高圧カツトスルー特性については、塩
素化ポリエチレン樹脂組成物を外部シース層とす
る試料は、全て高圧カツトスルー特性に合格し
た。一方、塩化ビニルグラフトエチレン−酢酸ビ
ニル共重合体を用いた比較例8の場合、高圧カツ
トスルー試験に合格しなかつた。この理由として
は、ゲル分率の結果が示すように、比較例8の場
合架橋度が低いため外部シース層の熱変形により
全被覆厚が薄くなつたために耐電圧特性が低下し
たものと解釈される。 同様のことは高温V字曲げ試験結果についても
言える。塩素化ポリエチレンを用いた実施例、比
較例はいずれも苛酷な高温変形試験で外部シース
層に亀裂を生じなかつたが、塩化ビニルグラフト
化エレン−酢酸ビニル共重合体を用いた場合、外
部シース層に亀裂を生じた。この理由は、塩化ビ
ニルグラフト化エチレン−酢酸ビニル共重合体の
場合、架橋度が十分でないことが高温での機械的
強度に反映したものと思われる。 以上の如く塩化ポリエチレンを用いた場合、耐
高温カツトスルー特性及び高温における機械的強
度に優れるが、それは塩素化ポリエチレンの架橋
効率が高いことに起因する。すなわち、塩素化ポ
リエチレン樹脂組成物を外部シース層とした絶縁
電線の場合、照射量もしくは架橋剤の配合量を減
少しうるという経済的な意味ばかりでなく、照射
量もしくは架橋剤の増加に伴なう脱塩酸反応や熱
老化特性の低下を防止しうるという利点もある。
すなわち、本発明は、優れた架橋特性を有する塩
素化ポリエチレンを用いて優れた難燃性を付与し
たため、優れた耐高圧特性や耐モールド加工性に
優れた絶縁電線を開発し得たと言える。それ故本
発明の工業的な価値は極めて高い。
The present invention relates to a flame-retardant insulated wire, and particularly to a flame-retardant insulated wire that has both high electrical insulation properties and high flame retardancy. Polyolefin resins generally have excellent electrical insulation properties, but have the drawback of being flammable. In recent years, for example, UL has been used for wiring wires for electrical equipment, etc.
There is a tendency for high flame retardancy such as standard VW-1 to be required, and for this purpose, flame-retardant polyolefin resin compositions are generally made by blending a large amount of flame retardants such as halogenated flame retardants with polyolefin resin. is being used as an insulator. However, with such flame retardant methods, the electrical insulation properties, especially the voltage resistance properties, of the polyolefin resin deteriorate significantly, so it is difficult to achieve both high voltage resistance properties and high flame retardancy, such as in high voltage lead wires for televisions. There were problems with the required uses. Therefore, the insulator is made of two layers, and the inner insulator layer is made of polyolefin such as cross-linked polyethylene or polypropylene, which has excellent electrical properties, and the outer sheath layer is made of a highly flame-retardant composition. Two-layer insulated wires with separate functions have been devised. However, even when a conventional highly flame-retardant composition is used as the outer sheath layer, there is a problem that the inner insulator layer melts and sag, and the combustion continues for a long time, which does not meet the standards. The cause of this is
After the outer sheath layer burns out, no cinders are formed and the internal insulating layer is exposed, or even if cinders are formed, they are not strong enough and cracks occur in the cinders, causing the internal insulating layer to ignite. This is to do so. Or, the melted internal insulating layer seeped out and ignited, or the cinders were not strong enough to withstand the weight of the melted internal insulating layer, causing the internal insulating layer to sag. Due to the above-mentioned disadvantages of high-voltage electric wires for wiring electrical equipment, various inventions and ideas have been proposed, but none with sufficient characteristics have been found. The present inventors have conducted various studies based on the viewpoint that an outer sheath layer that forms a carbonized layer that has higher strength after combustion and is less prone to cracking can provide more reliable flame retardancy. In an insulated wire (see Fig. 1) comprising an internal insulating layer 2 coated on the inner insulating layer 2 and an outer sheath layer 3 covering the outer periphery of the inner insulating layer 2, the internal insulating layer is of a crosslinked or non-crosslinked type. Consisting of a polyolefin resin composition, the outer sheath layer has (a) a chlorine content of 30 to 45% by weight and a crystallinity of 10%;
For 100 parts by weight of the following chlorinated polyethylene resin, (b) 5 to 50 parts by weight of zinc borate, (c) General formula (However, R and R' are a hydrogen element, an organic group having a carbon, nitrogen, oxygen, silicon, phosphorus, or sulfur skeleton such as an alkyl group, a halogenated alkyl group, a carbonyl group, or a glycidyl group, and X is a bromine element or (d) aluminum silicate, magnesium silicate, or a compound of alumina and magnesium; Crosslinked or non-crosslinked chlorinated polyethylene containing 5 to 30 parts by weight of an inorganic filler as a main ingredient, (e) 5 to 70 parts by weight of antimony trioxide, and (f) 3 to 50 parts by weight of a lead compound stabilizer. It has been discovered that an insulated wire made of a resin composition has unprecedentedly excellent flame retardancy. In the present invention, (f) the lead compound stabilizer includes:
Even with a small amount of dibasic lead phthalate, it shows the best results in combustion shell formation. This has favorable consequences for the mechanical properties of the composition. In addition, clay, talc, hydrotalcite, and the like are easily available as the inorganic filler (d) mainly consisting of aluminum silicate, magnesium silicate, or a compound of alumina and magnesia. Next, the reason for setting the chlorine content of the chlorinated polyethylene resin (a) to 30 to 45% by weight and the crystallinity to 10% by weight or less is that the chlorine content is less than 30% by weight or
This is because if a wire with a crystallinity of more than 10% by weight is used, the strength of the cinders formed by combustion will not be sufficient, causing a problem with the flame retardancy of the wire.
On the other hand, if the chlorine content exceeds 45% by weight, the heat aging resistance of the chlorinated polyethylene used decreases, which is undesirable. Chlorinated polyethylene with a chlorine content within this range includes polyethylene, EPR, ethylene-vinyl acetate copolymer, and ethylene-ethyl acrylate copolymer, as long as the chlorine content in the entire base polymer is 30% or more. It is also possible to blend polyolefins such as polyvinyl chloride and halogen-containing polymers such as vinyl chloride-ethylene copolymers within 20% by weight. Furthermore, for each combination drug, the above (b)
5 to 50 parts by weight of zinc borate, 1 to 50 parts by weight of the above (c) bisphenol A derivative, 5 to 30 parts by weight of the above (d) inorganic filler, and the above (e) antimony trioxide. 5 to 70 parts by weight, and 3 to 50 parts by weight of the lead compound stabilizer (f) above.
The reason for using parts by weight is that if the amount is less than these ranges, the strength of the cinders formed by combustion will not be sufficient, causing a problem in the flame retardancy of the electric wire. On the other hand, if the amount exceeds this range, no improvement in the effect will be observed, and on the contrary, there will be a drawback that the mechanical strength will decrease. In addition, the said zinc borate mentioned here refers to the single compound or the mixture of three compounds described in the chemical encyclopedia Vol. 8 pages 603-604 (published by Kyoritsu Shuppan Co., Ltd. in 1960). The sheath material used in the present invention may contain compounding agents such as crosslinking agents, crosslinking aids, anti-aging agents, ultraviolet absorbers, plasticizers, fillers, stabilizers, lubricants, colorants, etc. within the usual range. The wire can be crosslinked by means such as radiation crosslinking using ionizing radiation, chemical crosslinking, or silane crosslinking, thereby improving the heat resistance of the electric wire. Further, the polyolefin resin used as the insulating layer includes polyethylene, polypropylene,
polybutene-1, poly4-methylpentene-1,
Resin compositions based on one or more blends of ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, or ethylene-propylene-diene terpolymer, etc. However, the heat resistance of the wire can be improved by crosslinking with means such as radiation crosslinking using ionizing radiation, chemical crosslinking, or silane crosslinking. In addition, in the case of high-voltage lead wire applications for television, it is necessary to pass the high-voltage cut-through test of the UL.Subject 758 standard, but in this case, the test is conducted in a high-temperature atmosphere of 105°C, so mechanical properties may be affected. The crystal melting point is
It is preferable to use a resin having a temperature of 105° C. or higher for the insulator. In other words, polyethylene with a density of 0.93 or higher is a resin that is relatively easy to crosslink and has a crystalline melting point of 105°C or higher, and its use provides desirable characteristics for high-voltage lead wires for televisions. . Examples of the present invention will be described in detail below in comparison with comparative examples. Examples 1 to 16, Comparative Examples 1 to 8 A 40 mmφ extruder (L/
D22) at a die temperature of 205°C.
S4002E (density 0.935, MFR 0.20) was extruded and coated to a thickness of 0.76 mm, and this was crosslinked by irradiating 40 Mrad of 1 MeV electron beam. On the other hand, roll-mixed sheet-like compositions were obtained at the composition ratios shown in Table 1, and pelletized to obtain pellet-like compositions. (The temperature of the material during rolling was approximately 140°C.) Next, this pellet was extruded and coated on the cross-linked polyethylene insulated wire to a thickness of 0.95 mm, and then a 1 MeV electron beam was applied to it for 10 Mrad.
A completed insulated wire was obtained by irradiation and crosslinking. Each insulated wire thus obtained was subjected to a flame retardant test (UL.
Subj 758 VW-1) and UL.Subj.758 High Voltage Wire Standard for Television Receivers Section 1 (1969) high voltage cut-through tests were conducted. In addition, since high-voltage electric wires are generally molded and require high-temperature mechanical strength, the high-temperature mechanical strength was evaluated and the gel fraction was measured by a V-bending test at 160°C. These test results are shown in Table-2. First, regarding flame retardancy, Examples 1 and 2 using the chlorinated polyethylene of the present invention formed a strong combustion shell without exposing the internal insulating layer after combustion. Therefore, the fire was extinguished immediately after removing the flame from the burner. On the other hand, in Comparative Examples 1 and 2 in which crystalline chlorinated polyethylene was used, vertical cracks occurred in the combustion shells because the combustion shells were not sufficiently formed. As a result, the internal insulator melts and drips and ignites, resulting in a long afterflame time.
It exceeded 60 seconds (according to UL.VW-1 test standard, the afterflame time must not exceed 60 seconds). Chlorine content of about 36
% of vinyl chloride grafted ethylene-vinyl acetate copolymer, a similar combustion phenomenon occurred and the afterflame time exceeded 60 seconds.
Moreover, the good flame retardance of the present invention is demonstrated by Examples 3, 4,
5, 6, and 7, the bisphenol A derivatives were mixed from Fireguard 3000 to Fireguard 2000, Epicote 1001, and NK ester.
Even if the inorganic filler is changed to BPE-200 or the inorganic filler is changed from tallow to clay or hydrotalcite, there is no change. On the other hand, regarding the amount of compounding agents,
As is clear from Comparative Examples 3, 4, 5, 6, and 7, combustion occurred even if the amounts of dibasic lead phthalate, zinc borate, bisphenol A derivative, inorganic filler, and antimony trioxide were reduced. The shell formation became insufficient and the afterflame time exceeded 60 seconds. In addition, Example 9, Example 11, Example 8 of Example 12, Example
13 and Example 11, Example 14 and Example 11, and Example
As is clear from the comparison between Example 16 and Example 11, dibasic lead phthalate, zinc borate, Fire Guard
3000, increasing the amount of Mistron vapor talc or antimony trioxide does not lead to a significant improvement in afterflame time. Furthermore, as is clear from the comparison between Example 10 and Example 1, when dibasic lead phthalate is replaced with tribasic lead sulfate, although it passes the VW-1 test, the afterflame time becomes slightly longer. . That is, from the above, it can be seen that the chlorinated polyethylene of the present invention and these compounding agents are all essential components for flame retardancy of insulated wires. Next, regarding high-pressure cut-through resistance, all the samples whose outer sheath layer was made of a chlorinated polyethylene resin composition passed the high-pressure cut-through property. On the other hand, in the case of Comparative Example 8 using a vinyl chloride grafted ethylene-vinyl acetate copolymer, it did not pass the high-pressure cut-through test. The reason for this is that, as shown in the gel fraction results, in Comparative Example 8, the degree of crosslinking was low, and the total coating thickness became thinner due to thermal deformation of the outer sheath layer, resulting in a decrease in withstand voltage characteristics. Ru. The same can be said about the high temperature V-bending test results. In both the Examples and Comparative Examples using chlorinated polyethylene, no cracks occurred in the outer sheath layer in the severe high-temperature deformation test, but when vinyl chloride grafted ethylene-vinyl acetate copolymer was used, the outer sheath layer did not crack. A crack appeared. The reason for this is thought to be that in the case of the vinyl chloride grafted ethylene-vinyl acetate copolymer, the degree of crosslinking is insufficient, which is reflected in the mechanical strength at high temperatures. As described above, when chlorinated polyethylene is used, it has excellent high temperature cut-through resistance and mechanical strength at high temperatures, and this is due to the high crosslinking efficiency of chlorinated polyethylene. In other words, in the case of an insulated wire with an outer sheath layer made of a chlorinated polyethylene resin composition, it is not only economically advantageous to be able to reduce the amount of irradiation or the amount of crosslinking agent added, but also because of the increase in the amount of irradiation or crosslinking agent. It also has the advantage of preventing dehydrochloric acid reaction and deterioration of heat aging properties.
That is, the present invention can be said to have developed an insulated wire with excellent high pressure resistance and molding resistance because it imparts excellent flame retardancy using chlorinated polyethylene having excellent crosslinking properties. Therefore, the industrial value of the present invention is extremely high.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例品の電線の断面図で
ある。 1……導体、2……内部絶縁体層、3……外部
シース層。
FIG. 1 is a sectional view of an electric wire according to an embodiment of the present invention. 1...Conductor, 2...Inner insulator layer, 3...Outer sheath layer.

Claims (1)

【特許請求の範囲】 1 導体上に内部絶縁体層を被覆し、該内部絶縁
体層の外周に外部シース層を被覆して成る絶縁電
線において、 内部絶縁体層を、架橋又は比架橋型ポリオレフ
イン樹脂組成物にて構成し、 外部シース層を、(a)塩素含量が30〜45重量%、
結晶化度が10%以下の塩素化ポリエチレン樹脂
100重量部に対して、(b)ホウ酸亜鉛5〜50重量部、
(c)一般式 (但し、R、R′は水素元素、アルキル基、ハロ
ゲン化アルキル基、カルボニル基、グリシジル基
等の炭素、チツ素、酸素、ケイ素、リンもしくは
イオウを骨格とする有機基、Xは臭素元素又は塩
素元素、l、mは0〜4の正の整数を表わす。) で表わされるビスフエノールA誘導体1〜50重量
部、(d)ケイ酸アルミニウム、ケイ酸マグネシウ
ム、もしくはアルミナとマグネシアとの化合物を
主体とする無機充填剤5〜30重量部、(e)三酸化ア
ンチモン5〜70重量部、及び(f)鉛化合物安定剤3
〜50重量部を配合してなる架橋又は非架橋型塩素
化ポリエチレン樹脂組成物にて構成したことを特
徴とする難燃性絶縁電線。 2 (f)鉛化合物安定剤が二塩基性フタル酸鉛であ
ることを特徴とする特許請求の範囲第1項記載の
難燃性絶縁電線。 3 内部絶縁体層を架橋ポリオレフイン樹脂組成
物にて構成したことを特徴とする特許請求の範囲
第1項記載の難燃性絶縁電線。 4 内部絶縁体層を構成したポリオレフイン樹脂
が密度0.93以上のポリエチレンであることを特徴
とする特許請求の範囲第3項記載の難燃性絶縁電
線。 5 外部シース層を架橋塩素化ポリエチレン樹脂
組成物にて構成したことを特徴とする特許請求の
範囲第1項記載の難燃性絶縁電線。
[Scope of Claims] 1. An insulated wire comprising an internal insulating layer coated on a conductor and an external sheath layer covering the outer periphery of the internal insulating layer, wherein the internal insulating layer is made of crosslinked or non-crosslinked polyolefin. Consisting of a resin composition, the outer sheath layer has (a) a chlorine content of 30 to 45% by weight;
Chlorinated polyethylene resin with crystallinity of 10% or less
(b) 5 to 50 parts by weight of zinc borate per 100 parts by weight;
(c) General formula (However, R and R' are a hydrogen element, an organic group having a carbon, nitrogen, oxygen, silicon, phosphorus, or sulfur skeleton such as an alkyl group, a halogenated alkyl group, a carbonyl group, or a glycidyl group, and X is a bromine element or (d) aluminum silicate, magnesium silicate, or a compound of alumina and magnesia; 5 to 30 parts by weight of the main inorganic filler, (e) 5 to 70 parts by weight of antimony trioxide, and (f) lead compound stabilizer 3
1. A flame-retardant insulated wire comprising a cross-linked or non-cross-linked chlorinated polyethylene resin composition containing ~50 parts by weight. 2. The flame-retardant insulated wire according to claim 1, wherein the lead compound stabilizer (f) is dibasic lead phthalate. 3. The flame-retardant insulated wire according to claim 1, wherein the internal insulating layer is made of a crosslinked polyolefin resin composition. 4. The flame-retardant insulated wire according to claim 3, wherein the polyolefin resin constituting the internal insulating layer is polyethylene having a density of 0.93 or more. 5. The flame-retardant insulated wire according to claim 1, wherein the outer sheath layer is made of a cross-linked chlorinated polyethylene resin composition.
JP58132913A 1983-07-22 1983-07-22 Flame resistant insulated wire Granted JPS6025106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132913A JPS6025106A (en) 1983-07-22 1983-07-22 Flame resistant insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132913A JPS6025106A (en) 1983-07-22 1983-07-22 Flame resistant insulated wire

Publications (2)

Publication Number Publication Date
JPS6025106A JPS6025106A (en) 1985-02-07
JPH0410683B2 true JPH0410683B2 (en) 1992-02-26

Family

ID=15092446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132913A Granted JPS6025106A (en) 1983-07-22 1983-07-22 Flame resistant insulated wire

Country Status (1)

Country Link
JP (1) JPS6025106A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079673B2 (en) * 2014-03-11 2017-02-15 日立金属株式会社 Cable and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6025106A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
US4549041A (en) Flame-retardant cross-linked composition and flame-retardant cable using same
JP4940568B2 (en) Non-halogen flame retardant wire / cable
JP5733352B2 (en) Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition
US20140141240A1 (en) Halogen-free resin composition, electric wire and cable
JP2014067657A (en) Non-halogen flame retardant insulated wire
US5589219A (en) Heat-resistant, high-voltage lead wire for direct current
EP0630941B1 (en) A crosslinked, flame-retardant resin composition and the insulated wire having layer using the above composition
CN110938270A (en) Halogen-free flame-retardant resin composition, insulated wire and cable
JP2021155590A (en) Crosslinked fluororubber composition, wiring material using the same, method for manufacturing the same, and catalyst composition for silane crosslinking
KR19980058711A (en) Flame Retardant Resin Composition for Wire Cable Covering
JP2004075992A (en) Flame-retardant resin composition, its production method and insulated electric wire coated with the same
JP6948557B2 (en) Polyvinyl chloride resin composition, polyvinyl chloride resin composition sheet, insulated wires and cables
JPH0410683B2 (en)
JP3092294B2 (en) Heat resistant high voltage lead wire for DC
JP2681195B2 (en) Flame retardant polyolefin composition
JP3953694B2 (en) Insulated wire / cable
JP6802968B2 (en) Insulated wire
JP7494750B2 (en) Wire and Cable
JP3344483B2 (en) Heat resistant high voltage lead wire for DC
JP4947829B2 (en) Insulated wire
JP7143720B2 (en) insulated wire
JP7064697B2 (en) Flame-retardant electrical insulation composition and electric wire
JPH03197539A (en) Flame-retardant resin composition
JP2000265011A (en) Flame-retarded resin composition
JPS6223408B2 (en)