JP7143720B2 - insulated wire - Google Patents
insulated wire Download PDFInfo
- Publication number
- JP7143720B2 JP7143720B2 JP2018196542A JP2018196542A JP7143720B2 JP 7143720 B2 JP7143720 B2 JP 7143720B2 JP 2018196542 A JP2018196542 A JP 2018196542A JP 2018196542 A JP2018196542 A JP 2018196542A JP 7143720 B2 JP7143720 B2 JP 7143720B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- polymer
- insulated wire
- mass
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D131/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Coating compositions based on derivatives of such polymers
- C09D131/02—Homopolymers or copolymers of esters of monocarboxylic acids
- C09D131/04—Homopolymers or copolymers of vinyl acetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0853—Vinylacetate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/025—Other inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
- H01B7/0208—Cables with several layers of insulating material
- H01B7/0216—Two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/02—Disposition of insulation
- H01B7/0275—Disposition of insulation comprising one or more extruded layers of insulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Insulated Conductors (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本開示は絶縁電線に関する。 The present disclosure relates to insulated wires.
絶縁電線は、導体と、絶縁層とを備える。絶縁層は導体を被覆する。絶縁電線は、鉄道車両等に使用される。絶縁電線は、例えば、モータ等に配線される動力線、運転を制御する制御線等として使用される。絶縁電線には、難燃性、電気絶縁性、及び耐油性において優れることが要求される。 An insulated wire includes a conductor and an insulating layer. An insulating layer covers the conductor. Insulated wires are used in railway vehicles and the like. Insulated wires are used, for example, as power lines wired to motors and the like, control lines for controlling operation, and the like. Insulated wires are required to be excellent in flame retardancy, electrical insulation, and oil resistance.
特許文献1には、ポリオレフィン系樹脂と、大量の金属水酸化物とを絶縁層に配合することにより、絶縁電線の難燃性を向上させようとする技術が開示されている。
金属水酸化物は吸湿性が高い。そのため、特許文献1記載の技術のように、絶縁層に金属水酸化物を大量に配合すると、絶縁電線の電気絶縁性が低下してしまう。
本開示の一局面は、難燃性、電気絶縁性、及び耐油性において優れた絶縁電線を提供することを目的とする。
Metal hydroxides are highly hygroscopic. Therefore, if a large amount of metal hydroxide is blended into the insulating layer as in the technique described in
An object of one aspect of the present disclosure is to provide an insulated wire that is excellent in flame retardancy, electrical insulation, and oil resistance.
本開示の一局面は、導体と、前記導体を被覆する第1絶縁層と、前記第1絶縁層よりも外周側に位置する第2絶縁層と、を備える絶縁電線であって、前記第1絶縁層は、第1ポリマーと、前記第1ポリマー100質量部に対し150質量部以下配合された無機充てん剤と、を含み、前記第2絶縁層は、エチレン酢酸ビニル共重合体を主成分とする第2ポリマーと、前記第2ポリマー100質量部に対し150質量部以上250質量部以下配合された金属水酸化物と、を含むノンハロゲン難燃性樹脂組成物から成り、前記第1ポリマーは、前記第1ポリマーの主成分であり、融点が110℃以上であるポリオレフィンと、酸変性されたポリオレフィンと、を含み、前記第1絶縁層及び前記第2絶縁層は架橋されている絶縁電線である。 One aspect of the present disclosure is an insulated wire including a conductor, a first insulating layer covering the conductor, and a second insulating layer located on the outer peripheral side of the first insulating layer, wherein the first The insulating layer contains a first polymer and an inorganic filler blended in an amount of 150 parts by mass or less with respect to 100 parts by mass of the first polymer, and the second insulating layer contains an ethylene-vinyl acetate copolymer as a main component. and a metal hydroxide blended from 150 parts by mass to 250 parts by mass with respect to 100 parts by mass of the second polymer, wherein the first polymer is An insulated wire in which the first insulating layer and the second insulating layer are crosslinked, including a polyolefin that is a main component of the first polymer and has a melting point of 110° C. or higher, and an acid-modified polyolefin. .
本開示の一局面である絶縁電線は、難燃性、電気絶縁性、及び耐油性において優れている。 An insulated wire that is one aspect of the present disclosure is excellent in flame retardancy, electrical insulation, and oil resistance.
本開示の例示的な実施形態を、図面を参照しながら説明する。
1.絶縁電線の構成
(1-1)導体
絶縁電線は導体を備える。導体として、公知のものを適宜選択して使用することができる。導体の材料として、例えば、銅、アルミニウム等が挙げられる。
Exemplary embodiments of the present disclosure are described with reference to the drawings.
1. Configuration of Insulated Wire (1-1) Conductor An insulated wire has a conductor. A known conductor can be appropriately selected and used as the conductor. Examples of conductor materials include copper and aluminum.
(1-2)第1絶縁層
第1絶縁層は導体を被覆する。第1絶縁層は第1ポリマーを含む。第1ポリマーは、第1ポリマーの主成分であるポリオレフィン(以下では主成分のポリオレフィンとする)を含む。第1ポリマーの主成分とは、第1ポリマーに含まれるポリマー成分のうち、含有量が最も多い成分を意味する。第1ポリマーは、主成分のポリオレフィン以外のポリオレフィンを含んでいてもよいし、含んでいなくてもよい。
(1-2) First Insulating Layer The first insulating layer covers the conductor. The first insulating layer includes a first polymer. The first polymer contains polyolefin, which is the main component of the first polymer (hereinafter referred to as main component polyolefin). The main component of the first polymer means the component with the highest content among the polymer components contained in the first polymer. The first polymer may or may not contain a polyolefin other than the main component polyolefin.
主成分のポリオレフィンの融点は110℃以上である。主成分のポリオレフィンの融点が110℃以上であることにより、第1絶縁層の耐油性が高い。主成分のポリオレフィンの融点の測定方法は、示差走査熱量測定(DSC)法である。 The melting point of polyolefin, which is the main component, is 110° C. or higher. Since the melting point of the main component polyolefin is 110° C. or higher, the oil resistance of the first insulating layer is high. Differential scanning calorimetry (DSC) is used to measure the melting point of polyolefin, which is the main component.
耐油性は、以下の方法で評価できる。100℃に加熱したIRM902試験油に試験体を72時間浸漬する。浸漬前の試験体の引張特性に対する、浸漬後の試験体の引張特性の変化率(以下では耐油引張特性変化率とする)が小さいほど、耐油性が高い。 Oil resistance can be evaluated by the following method. The specimen is immersed in IRM902 test oil heated to 100° C. for 72 hours. The smaller the rate of change in the tensile properties of the specimen after immersion with respect to the tensile properties of the specimen before immersion (hereinafter referred to as the rate of change in tensile resistance to oil), the higher the oil resistance.
主成分のポリオレフィンの融点が110℃未満である場合、耐油試験中に主成分のポリオレフィンの結晶が融解し、第1絶縁層の中に油が拡散し易い。その結果、耐油引張特性変化率が大きくなる。
主成分のポリオレフィンの結晶化度は、高いことが好ましい。主成分のポリオレフィンの結晶化度が高い場合、第1絶縁層の耐油性が一層高い。主成分のポリオレフィンの結晶化度を高くする方法として、融点が110℃以上(好ましくは120℃以上)である結晶性のポリオレフィンを主成分のポリオレフィンとする方法が挙げられる。融点が110℃以上である結晶性のポリオレフィンとして、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、これらのうちの1種又は2種以上の組み合わせ等が挙げられる。これらのうち、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンは、電子線照射等の方法で第1絶縁層を架橋させるとき、崩壊し難いので好ましい。
If the melting point of the polyolefin as the main component is less than 110° C., the crystals of the polyolefin as the main component melt during the oil resistance test, and the oil easily diffuses into the first insulating layer. As a result, the rate of change in oil resistance tensile properties increases.
The crystallinity of polyolefin as the main component is preferably high. When the degree of crystallinity of the main component polyolefin is high, the oil resistance of the first insulating layer is even higher. As a method for increasing the crystallinity of the main component polyolefin, there is a method of using a crystalline polyolefin having a melting point of 110° C. or higher (preferably 120° C. or higher) as the main component polyolefin. Examples of crystalline polyolefins having a melting point of 110° C. or higher include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, and combinations of one or more of these. mentioned. Among these, low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, and high-density polyethylene are preferable because they are less likely to collapse when the first insulating layer is crosslinked by a method such as electron beam irradiation.
第1ポリマーは酸変性されたポリオレフィンを含む。酸変性されたポリオレフィンは、主成分のポリオレフィンであってもよいし、主成分のポリオレフィンでなくてもよい。第1ポリマーが酸変性されたポリオレフィンを含むことにより、第1絶縁層の電気特性が向上する。 The first polymer comprises an acid-modified polyolefin. The acid-modified polyolefin may or may not be the main polyolefin. Including the acid-modified polyolefin in the first polymer improves the electrical properties of the first insulating layer.
酸変性されたポリオレフィンにおけるポリオレフィンとして、例えば、ポリエチレン、エチレン-α-オレフィン、エチレン‐エチルアクリレート共重合体、エチレン‐メチルアクリレート共重合体、及び酢酸ビニル共重合から成る群から選択される1種以上が挙げられる。酸として、例えば、マレイン酸、無水マレイン酸、フマル酸等が挙げられる。 Polyolefin in acid-modified polyolefin, for example, one or more selected from the group consisting of polyethylene, ethylene-α-olefin, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, and vinyl acetate copolymer are mentioned. Examples of acids include maleic acid, maleic anhydride, fumaric acid and the like.
第1ポリマーは、ゴム成分を含むことが好ましい。第1ポリマーがゴム成分を含む場合、無機充てん剤の受容性が良好になる。ゴム成分として、例えば、エチレン―プロピレン共重合体ゴム(EPR)、エチレン―プロピレン―ジエン三元共重合体ゴム(EPDM)、アクリロニトリル―ブタジエンゴム(NBR)、水素添加NBR(HNBR)、アクリルゴム、エチレン―アクリル酸エステル共重合体ゴム、エチレンオクテン共重合体ゴム(EOR)、エチレン-酢酸ビニル共重合体ゴム、エチレン-ブテン-1共重合体ゴム(EBR)、ブタジエン―スチレン共重合体ゴム(SBR)、イソブチレン―イソプレン共重合体ゴム(IIR)、ポリスチレンブロックを有するブロック共重合体ゴム、ウレタンゴム等が挙げられる。 The first polymer preferably contains a rubber component. If the first polymer contains a rubber component, it will be more receptive to inorganic fillers. Examples of rubber components include ethylene-propylene copolymer rubber (EPR), ethylene-propylene-diene terpolymer rubber (EPDM), acrylonitrile-butadiene rubber (NBR), hydrogenated NBR (HNBR), acrylic rubber, Ethylene-acrylate copolymer rubber, ethylene octene copolymer rubber (EOR), ethylene-vinyl acetate copolymer rubber, ethylene-butene-1 copolymer rubber (EBR), butadiene-styrene copolymer rubber ( SBR), isobutylene-isoprene copolymer rubber (IIR), block copolymer rubber having a polystyrene block, urethane rubber, and the like.
ゴム成分のうち、EORやEBRは二重結合をもたない。そのため、第1ポリマーがEORやEBRを含む場合、押出時のスコーチのリスクを低減できる。また、EORやEBRは極性を有しない。そのため、第1ポリマーがEORやEBRを含む場合、第1絶縁層の電気特性を向上させることができる。 Among rubber components, EOR and EBR do not have double bonds. Therefore, when the first polymer contains EOR or EBR, the risk of scorching during extrusion can be reduced. Also, EOR and EBR do not have polarity. Therefore, when the first polymer contains EOR or EBR, the electrical properties of the first insulating layer can be improved.
第1絶縁層は無機充てん剤を含んでいてもよいし、含んでいなくてもよい。第1絶縁層が無機充てん剤を含む場合、第1絶縁層における無機充てん剤の配合量は、第1ポリマー100質量部に対し150質量部以下である。無機充てん剤の配合量が150質量部以下であることにより、第1絶縁層の破断伸びが低下し難い。無機充てん剤の配合量は、第1ポリマー100質量部に対し100質量部以下であることが好ましく、80質量部以下であることがさらに好ましい。 The first insulating layer may or may not contain an inorganic filler. When the first insulating layer contains an inorganic filler, the amount of the inorganic filler compounded in the first insulating layer is 150 parts by mass or less with respect to 100 parts by mass of the first polymer. When the amount of the inorganic filler to be blended is 150 parts by mass or less, the elongation at break of the first insulating layer is less likely to decrease. The amount of the inorganic filler compounded is preferably 100 parts by mass or less, more preferably 80 parts by mass or less, relative to 100 parts by mass of the first polymer.
第1絶縁層が無機充てん剤を含む場合、第1絶縁層に含まれる有機物の量を低減できる。有機物の量を低減すると、第1絶縁層の燃焼時に発生する有毒ガスを低減できる。有毒ガスとして、例えば、一酸化炭素、二酸化炭素等が挙げられる。第1絶縁層における無機充てん剤の配合量は、第1ポリマー成分100質量部に対し20質量部以上であることが好ましく、40質量部以上であることがさらに好ましい。 When the first insulating layer contains an inorganic filler, the amount of organic matter contained in the first insulating layer can be reduced. Reducing the amount of organic matter can reduce the toxic gas generated when the first insulating layer is burned. Poisonous gases include, for example, carbon monoxide and carbon dioxide. The amount of the inorganic filler compounded in the first insulating layer is preferably 20 parts by mass or more, more preferably 40 parts by mass or more based on 100 parts by mass of the first polymer component.
無機充てん剤として、例えば、カオリナイト、カオリンクレー、焼成クレー、タルク、マイカ、ウォラストナイト、パイロフィライト等の硅酸塩類、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム等の酸化物、炭酸カルシウム、炭酸亜鉛、炭酸バリウム等の炭酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の水酸化物等が挙げられる。 Examples of inorganic fillers include kaolinite, kaolin clay, calcined clay, talc, mica, wollastonite, silicates such as pyrophyllite, silica, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, and the like. Examples thereof include oxides, carbonates such as calcium carbonate, zinc carbonate and barium carbonate, and hydroxides such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide.
第1絶縁層における無機充てん剤の配合量は、第1ポリマー100質量部に対し150質量部以下であるので、無機充てん剤の一部又は全部が金属水酸化物である場合でも、第1絶縁層の電気絶縁性が高い。 The amount of the inorganic filler compounded in the first insulating layer is 150 parts by mass or less with respect to 100 parts by mass of the first polymer. The electrical insulation of the layer is high.
無機充てん剤は、1種のみから成っていてもよいし、2種類以上の混合物であってもよい。第1絶縁層が疎水性の焼成クレーやタルクを含む場合、第1絶縁層の電気特性が向上する。焼成クレーやタルクは炭素を含まない。そのため、第1絶縁層が焼成クレーやタルクを含む場合、第1絶縁層の燃焼時に発生する一酸化炭素の量を低減できる。 The inorganic filler may consist of only one kind, or may be a mixture of two or more kinds. When the first insulating layer contains hydrophobic calcined clay or talc, the electrical properties of the first insulating layer are improved. Calcined clays and talcs do not contain carbon. Therefore, when the first insulating layer contains baked clay or talc, the amount of carbon monoxide generated when the first insulating layer is burned can be reduced.
無機充てん剤に対し、シラン処理等の表面処理を行うことが好ましい。無機充てん剤に対し、シラン処理等の表面処理を行った場合、無機充てん剤と第1ポリマーとの密着性が向上する。その結果、第1絶縁層の絶縁性能が一層向上する。
第1絶縁層の融解熱量は65J/g以上であることが好ましい。第1絶縁層の融解熱量が65J/g以上である場合、第1絶縁層の耐油性が一層向上する。
It is preferable to subject the inorganic filler to surface treatment such as silane treatment. When the inorganic filler is subjected to surface treatment such as silane treatment, the adhesion between the inorganic filler and the first polymer is improved. As a result, the insulating performance of the first insulating layer is further improved.
The heat of fusion of the first insulating layer is preferably 65 J/g or more. When the heat of fusion of the first insulating layer is 65 J/g or more, the oil resistance of the first insulating layer is further improved.
第1絶縁層は架橋していることが好ましい。第1絶縁層が架橋している場合、耐油性が向上する。架橋方法は特に限定されない。架橋方法として、例えば、化学架橋、照射架橋、その他の化学反応を利用した架橋等が挙げられる。化学架橋では、例えば、有機過酸化物、硫黄化合物、シラン等を用いる。照射架橋では、例えば、電子線、放射線等を用いる。 The first insulating layer is preferably crosslinked. When the first insulating layer is crosslinked, the oil resistance is improved. The cross-linking method is not particularly limited. Cross-linking methods include, for example, chemical cross-linking, irradiation cross-linking, and cross-linking utilizing other chemical reactions. For chemical cross-linking, for example, organic peroxides, sulfur compounds, silanes, and the like are used. In irradiation crosslinking, for example, an electron beam, radiation, or the like is used.
第1絶縁層は、必要に応じて、架橋助剤、難燃助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、着色剤、補強剤、界面活性剤、可塑剤、金属キレート剤、発泡剤、相溶化剤、加工助剤、安定剤等を含んでいてもよい。 If necessary, the first insulating layer contains a cross-linking aid, a flame retardant aid, an ultraviolet absorber, a light stabilizer, a softening agent, a lubricant, a coloring agent, a reinforcing agent, a surfactant, a plasticizer, a metal chelating agent, Blowing agents, compatibilizers, processing aids, stabilizers, and the like may also be included.
(1-3)第2絶縁層
第2絶縁層は、第1絶縁層よりも外周側に位置する。第2絶縁層は、例えば、第1絶縁層に接している。また、第2絶縁層と、第1絶縁層との間に他の層が介在していてもよい。
(1-3) Second Insulating Layer The second insulating layer is positioned closer to the outer periphery than the first insulating layer. The second insulating layer, for example, is in contact with the first insulating layer. Further, another layer may be interposed between the second insulating layer and the first insulating layer.
第2絶縁層は、ノンハロゲン難燃性樹脂組成物から成る。第2絶縁層は難燃剤を含む。難燃剤として、ノンハロゲン難燃剤が好ましい。ノンハロゲン難燃剤は燃焼時にハロゲンガスを発生させない。ノンハロゲン難燃剤として、金属水酸化物が好ましい。金属水酸化物として、例えば、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。 The second insulating layer is made of a non-halogen flame-retardant resin composition. The second insulating layer contains a flame retardant. A non-halogen flame retardant is preferred as the flame retardant. Halogen-free flame retardants do not generate halogen gas when burned. Metal hydroxides are preferred as non-halogen flame retardants. Examples of metal hydroxides include magnesium hydroxide and aluminum hydroxide.
ノンハロゲン難燃剤として、人体に有害であるホスフィンガスやシアンガスを発生し難いものが好ましい。ホスフィンガスやシアンガスを発生し易いノンハロゲン難燃剤として、例えば、赤リン等のリン系難燃剤、メラミンシアヌレート等のトリアジン系難燃剤が挙げられる。 As the non-halogen flame retardant, one that hardly generates phosphine gas and cyan gas, which are harmful to the human body, is preferable. Examples of non-halogen flame retardants that easily generate phosphine gas and cyan gas include phosphorus-based flame retardants such as red phosphorus and triazine-based flame retardants such as melamine cyanurate.
ノンハロゲン難燃剤として、例えば、クレー、シリカ、スズ酸亜鉛、ホウ酸亜鉛、ホウ酸カルシウム、水酸化ドロマイド、シリコーン等が挙げられる。
難燃剤の分散性等を考慮し、難燃剤に表面処理を施すことができる。表面処理に用いる物質として、シランカップリング剤、チタネート系カップリング剤、脂肪酸等が挙げられる。脂肪酸として、例えば、ステアリン酸等が挙げられる。
Non-halogen flame retardants include, for example, clay, silica, zinc stannate, zinc borate, calcium borate, dolomide hydroxide, and silicone.
Considering the dispersibility of the flame retardant, etc., the flame retardant can be surface-treated. Substances used for surface treatment include silane coupling agents, titanate coupling agents, fatty acids, and the like. Examples of fatty acids include stearic acid and the like.
難燃剤の配合量は特に限定されない。難燃剤の配合量は、第2ポリマー100質量部に対し、150質量部以上300質量部以下であることが好ましく、150質量部以上250質量部以下であることがさらに好ましい。第2ポリマー100質量部に対し、難燃剤の配合量が150質量部以上300質量部以下である場合、第2絶縁層の難燃性が一層高くなる。 The blending amount of the flame retardant is not particularly limited. The blending amount of the flame retardant is preferably 150 parts by mass or more and 300 parts by mass or less, more preferably 150 parts by mass or more and 250 parts by mass or less with respect to 100 parts by mass of the second polymer. When the blending amount of the flame retardant is 150 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the second polymer, the flame retardancy of the second insulating layer is further enhanced.
難燃剤として金属水酸化物を含む場合、金属水酸化物の配合量は、第2ポリマー100質量部に対し、150質量部以上300質量部以下であることが好ましい。第2ポリマー100質量部に対し、金属水酸化物の配合量が150質量部以上300質量部以下である場合、第2絶縁層の難燃性が一層高くなる。 When a metal hydroxide is included as the flame retardant, the amount of the metal hydroxide compounded is preferably 150 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the second polymer. When the blending amount of the metal hydroxide is 150 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the second polymer, the flame retardancy of the second insulating layer is further enhanced.
第2絶縁層は、第2ポリマーを含む。第2ポリマーは、例えば、ポリオレフィンを含む。第2ポリマーは、エチレン酢酸ビニル共重合体を主成分とすることが好ましい。第2ポリマーの主成分とは、第2ポリマーに含まれるポリマー成分のうち、含有量が最も多い成分を意味する。 The second insulating layer includes a second polymer. The second polymer includes, for example, polyolefin. The second polymer preferably contains an ethylene-vinyl acetate copolymer as a main component. The main component of the second polymer means the component with the highest content among the polymer components contained in the second polymer.
エチレン酢酸ビニル共重合体は、燃焼時に脱酢酸による吸熱反応を生じさせるため好ましい。第2ポリマーは、1種のみのエチレン酢酸ビニル共重合体を含んでもよいし、複数種のエチレン酢酸ビニル共重合体の混合物を含んでいてもよい。 An ethylene-vinyl acetate copolymer is preferable because it causes an endothermic reaction due to deacetic acid during combustion. The second polymer may contain only one type of ethylene vinyl acetate copolymer, or may contain a mixture of multiple types of ethylene vinyl acetate copolymers.
第2ポリマーは、エチレン酢酸ビニル共重合体以外のポリオレフィンを含んでもよい。エチレン酢酸ビニル共重合体以外のポリオレフィンとして、例えば、酸変性されたエチレン-α-オレフィン等が挙げられる。酸変性されたエチレン-α-オレフィンを第2ポリマーが含む場合、第2絶縁層の低温性が向上する。 The second polymer may include polyolefins other than ethylene vinyl acetate copolymers. Examples of polyolefins other than ethylene-vinyl acetate copolymers include acid-modified ethylene-α-olefins. When the second polymer contains the acid-modified ethylene-α-olefin, the low temperature resistance of the second insulating layer is improved.
第2絶縁層は架橋していることが好ましい。第2絶縁層が架橋している場合、燃焼時のドリップを抑制できる。架橋方法は特に限定されない。架橋方法として、例えば、化学架橋、照射架橋、その他の化学反応を利用した架橋等が挙げられる。化学架橋では、例えば、有機過酸化物、硫黄化合物、シラン等を用いる。照射架橋では、例えば、電子線、放射線等を用いる。 The second insulating layer is preferably crosslinked. When the second insulating layer is crosslinked, dripping during combustion can be suppressed. The cross-linking method is not particularly limited. Cross-linking methods include, for example, chemical cross-linking, irradiation cross-linking, and cross-linking utilizing other chemical reactions. For chemical cross-linking, for example, organic peroxides, sulfur compounds, silanes, and the like are used. In irradiation crosslinking, for example, an electron beam, radiation, or the like is used.
第2絶縁層は、必要に応じて、架橋剤、架橋助剤、難燃助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、着色剤、補強剤、界面活性剤、無機充填剤、酸化防止剤、可塑剤、金属キレート剤、発泡剤、相溶化剤、加工助剤、安定剤等を含んでいてもよい。 The second insulating layer, if necessary, contains a cross-linking agent, a cross-linking aid, a flame retardant aid, an ultraviolet absorber, a light stabilizer, a softening agent, a lubricant, a coloring agent, a reinforcing agent, a surfactant, an inorganic filler, Antioxidants, plasticizers, metal chelating agents, foaming agents, compatibilizers, processing aids, stabilizers and the like may also be included.
本開示の絶縁電線は、例えば、図1に示す構成を有する。絶縁電線1は、導体3と、第1絶縁層5と、第2絶縁層7と、を備える。第1絶縁層5は導体3を被覆する。第2絶縁層7は第1絶縁層5よりも外周側に位置する。図1に示す形態では、第2絶縁層7は第1絶縁層5に接している。
The insulated wire of the present disclosure has, for example, the configuration shown in FIG. The
2.絶縁ケーブルの構成
本開示の絶縁ケーブルは、例えば、図2に示す構成を有する。絶縁ケーブル9は、少なくとも1本の絶縁電線1と、シース11とを備える。図2に示す形態では、絶縁ケーブル9は、2本の絶縁電線1を備える。絶縁電線1はシースの内部に収容されている。シースの材質として、例えば、第2絶縁層7の材質と同様のものを使用することができる。
2. Configuration of Insulated Cable The insulated cable of the present disclosure has, for example, the configuration shown in FIG. The
3.実施例
(3-1)絶縁電線の製造
以下のようにして、実施例1~7及び比較例1~3の絶縁電線を製造した。表1又は表2における「第1絶縁層」の行に示す原料を、対応する配合比となるように、14インチオープンロールを用いて混練し、ペレット化することで、第1絶縁層の材料を製造した。また、表1又は表2における「第2絶縁層」の行に示す原料を、対応する配合比となるように、14インチオープンロールを用いて混練し、ペレット化することで、第2絶縁層の材料を製造した。
3. Examples (3-1) Production of insulated wires Insulated wires of Examples 1 to 7 and Comparative Examples 1 to 3 were produced as follows. The raw materials shown in the row of "first insulating layer" in Table 1 or Table 2 are kneaded using a 14-inch open roll so as to have the corresponding compounding ratio, and pelletized to obtain the material of the first insulating layer. manufactured. In addition, the raw materials shown in the row of "Second insulating layer" in Table 1 or Table 2 are kneaded using a 14-inch open roll so as to have the corresponding compounding ratio, and pelletized to form the second insulating layer. materials were manufactured.
表1及び表2において「変性ポリオレフィン3)」は、三井化学製のタフマMH7020である。「変性ポリオレフィン3)」は、エチレン-α-オレフィン共重合体を無水マレイン酸で変性した、酸変性されたポリオレフィンである。表1及び表2において「水酸化マグネシウム4)」は、神島化学工業製のマグシーズS3である。「水酸化マグネシウム4)」は、金属水酸化物及びノンハロゲン難燃剤に対応する。 In Tables 1 and 2, "modified polyolefin 3) " is Tafuma MH7020 manufactured by Mitsui Chemicals. "Modified polyolefin 3) " is an acid-modified polyolefin obtained by modifying an ethylene-α-olefin copolymer with maleic anhydride. In Tables 1 and 2, "Magnesium hydroxide 4) " is Mugsees S3 manufactured by Kashima Kagaku Kogyo Co., Ltd. "Magnesium hydroxide4 ) " corresponds to metal hydroxides and non-halogen flame retardants.
表1及び表2において「PE5)」は、プライムポリマ製のSP4030である。「PE5)」はポリエチレンである。「PE5)」の融点は127℃である。表1及び表2において「PE6)」は、プライムポリマ製のSP1510である。「PE6)」はポリエチレンである。「PE6)」の融点は117℃である。 In Tables 1 and 2, "PE 5) " is SP4030 made by Prime Polymer. "PE 5) " is polyethylene. The melting point of "PE 5) " is 127°C. "PE 6) " in Tables 1 and 2 is SP1510 made by Prime Polymer. "PE 6) " is polyethylene. The melting point of "PE 6) " is 117°C.
表1及び表2において「EBR7)」は、三井化学製のタフマDF840である。「EBR7)」はエチレン-ブテン-1共重合体ゴムである。「EBR7)」はゴム成分に対応する。「EBR7)」の融点は66℃である。表1及び表2において「変性ポリオレフィン8)」は、アルケマ製のボンダインLX4110である。「変性ポリオレフィン8)」は、エチレンーエチルアクリレート共重合体を無水マレイン酸で変性した、酸変性されたポリオレフィンである。「変性ポリオレフィン8)」の融点は107℃である。 In Tables 1 and 2, "EBR 7) " is Tafuma DF840 manufactured by Mitsui Chemicals. "EBR 7) " is an ethylene-butene-1 copolymer rubber. "EBR 7) " corresponds to the rubber component. The melting point of "EBR 7) " is 66°C. "Modified Polyolefin 8) " in Tables 1 and 2 is Bondine LX4110 manufactured by Arkema. "Modified polyolefin 8) " is an acid-modified polyolefin obtained by modifying an ethylene-ethyl acrylate copolymer with maleic anhydride. The melting point of "modified polyolefin 8) " is 107°C.
表1及び表2において「無機充てん剤9)」は、BASF製のトランスリンク37である。「無機充てん剤9)」は焼成クレーである。表1及び表2において「無機充てん剤10)」は、日本タルク製のミクロエースL1である。「無機充てん剤10)」は焼成クレーである。表1及び表2において「PE11)」は、日本ポリエチレン製のノバテックZF33である。「PE11)」はポリエチレンである。「PE11)」の融点は107℃である。 "Inorganic filler 9) " in Tables 1 and 2 is Translink 37 manufactured by BASF. "Inorganic fillers9 ) " are calcined clays. In Tables 1 and 2, "Inorganic filler 10) " is Micro Ace L1 manufactured by Nippon Talc. "Inorganic fillers10 ) " are calcined clays. In Tables 1 and 2, "PE 11) " is Novatec ZF33 manufactured by Nippon Polyethylene. "PE 11) " is polyethylene. The melting point of "PE 11) " is 107°C.
表1において、「PE5)」と、「PE6)」と、「EBR7)」と、「変性ポリオレフィン8)」と、「変性ポリオレフィン3)」とは、第1ポリマーに対応する。実施例1、3~6では、「PE5)」が主成分のポリオレフィンに対応する。実施例2、7では、「PE6)」が主成分のポリオレフィンに対応する。表1において、「EVA1)」と「EVA2)」とが第2ポリマーに対応する。 In Table 1, "PE 5) ", "PE 6) ", "EBR 7) ", "modified polyolefin 8) " and "modified polyolefin 3) " correspond to the first polymer. In Examples 1, 3 to 6, "PE 5) " corresponds to the main component polyolefin. In Examples 2 and 7, "PE 6) " corresponds to the main component polyolefin. In Table 1, "EVA 1) " and "EVA 2) " correspond to the second polymer.
表1及び表2において「他」は、表3に示す配合比により、各成分を混合したものである。 In Tables 1 and 2, "Other" is a mixture of each component according to the compounding ratio shown in Table 3.
(3-2)絶縁電線の評価
以下のようにして、各実施例及び各比較例の絶縁電線を評価した。
(i)引張強さと破断伸びの評価
絶縁電線から導体を取り除くことで、チューブを得た。このチューブを試験体とした。試験体は第1絶縁層と第2絶縁層とから成る。試験体に対し、変位速度250mm/minで引張試験を実施し、引張強さと破断伸びとを測定した。破断伸びに関して判定を行った。破断伸びが150%以上であれば、判定結果を「○」とし、それ以外を「×」とした。引張強さと破断伸びとの測定結果を上記表1及び表2に示す。また、破断伸びに関する判定結果を上記表1及び表2に示す。
(3-2) Evaluation of insulated wire The insulated wires of each example and each comparative example were evaluated as follows.
(i) Evaluation of Tensile Strength and Breaking Elongation A tube was obtained by removing the conductor from the insulated wire. This tube was used as a test piece. The specimen consists of a first insulating layer and a second insulating layer. A tensile test was performed on the specimen at a displacement rate of 250 mm/min to measure tensile strength and elongation at break. Judgments were made regarding elongation at break. If the elongation at break was 150% or more, the judgment result was given as "good", and otherwise as "poor". The measurement results of tensile strength and elongation at break are shown in Tables 1 and 2 above. In addition, Tables 1 and 2 show the results of the judgment regarding elongation at break.
(ii)耐油引張強さと耐油伸び変化率の評価
前記(i)の評価後、試験体を、100℃に熱したIRM902に72時間浸漬した。その後、試験体を室温で16時間程度放置した。その後、試験体について、前記(i)と同様に、引張強さと破断伸びとを測定した。このとき測定した引張強さを、浸漬後の引張強さとする。また、このとき測定した破断伸びを、浸漬後の破断伸びとする。
(ii) Evaluation of Oil Resistant Tensile Strength and Oil Elongation Change Rate After the evaluation of (i) above, the specimen was immersed in IRM902 heated to 100° C. for 72 hours. After that, the specimen was left at room temperature for about 16 hours. Thereafter, the tensile strength and elongation at break of the specimen were measured in the same manner as in (i) above. Let the tensile strength measured at this time be the tensile strength after immersion. Moreover, let the breaking elongation measured at this time be the breaking elongation after immersion.
前記(i)で測定した引張強さに対する、浸漬後の引張強さの変化率(以下では耐油引張強さ変化率とする)を算出した。また、前記(i)で測定した破断伸びに対する、浸漬後の破断伸びの変化率(以下では耐油破断伸び変化率とする)を算出した。 The rate of change in tensile strength after immersion (hereinafter referred to as rate of change in oil resistance tensile strength) with respect to the tensile strength measured in (i) above was calculated. Also, the rate of change in elongation at break after immersion (hereinafter referred to as rate of change in elongation at break in oil) relative to the elongation at break measured in (i) above was calculated.
耐油引張強さ変化率及び耐油破断伸び変化率に関して判定を行った。耐油引張強さ変化率の絶対値が30%以下であれば、耐油引張強さ変化率に関する判定結果を「○」とし、それ以外を「×」とした。 Judgment was made on the rate of change in tensile strength in oil resistance and the rate of change in elongation at break in oil resistance. If the absolute value of the rate of change in tensile strength resistance to oil was 30% or less, the judgment result regarding the rate of change in tensile strength resistance to oil was given as "O", and otherwise as "x".
また、耐油破断伸び変化率の絶対値が40%以下であれば、耐油破断伸び変化率に関する判定結果を「○」とし、それ以外を「×」とした。耐油引張強さ変化率及び耐油破断伸び変化率に関する判定結果を上記表1及び表2に示す。 If the absolute value of the change rate of elongation at break under oil was 40% or less, the determination result regarding the change rate of elongation at break under oil was given as "O", and otherwise as "x". Tables 1 and 2 show the judgment results regarding the rate of change in tensile strength in oil resistance and the rate of change in elongation at break in oil resistance.
(iii)難燃性試験
EN45545-2に準拠して難燃性試験を行った。具体的な方法は以下のとおりである。垂直に支持した絶縁電線にバーナーの炎を1分間当ててから、炎を外した。次に、上側固定部と炭化部上端との距離を測定した。また、上側固定部と炭化部下端との距離を測定した。
(iii) Flame-retardant test A flame-retardant test was performed according to EN45545-2. A specific method is as follows. A burner flame was applied to the vertically supported insulated wire for 1 minute and then the flame was removed. Next, the distance between the upper fixed portion and the upper end of the carbonized portion was measured. Also, the distance between the upper fixing portion and the lower end of the carbonized portion was measured.
上側固定部と炭化部上端との距離が50mm以上であり、且つ、上側固定部と炭化部下端との距離が540mm未満であれば、難燃性試験の判定結果を「○」とした。
上記の試験の判定結果が「○」でない絶縁電線については、JISC3005に準拠して水平難燃試験を実施した。15秒以内に自己消火した場合は、難燃性試験の判定結果を「△」とし、15秒以内に自己消火しなかった場合は、難燃性試験の判定結果を「×」とした。難燃性試験の判定結果を上記表1及び表2に示す。
If the distance between the upper fixing portion and the upper end of the carbonized portion was 50 mm or more and the distance between the upper fixing portion and the lower end of the carbonized portion was less than 540 mm, the determination result of the flame retardancy test was given as "○".
A horizontal flame retardant test was carried out in conformity with JISC3005 for the insulated wires for which the judgment result of the above test was not "○". When self-extinguishing occurred within 15 seconds, the judgment result of the flame retardance test was given as "Δ", and when it did not self-extinguish within 15 seconds, the judgment result of the flame resistance test was given as "x". The determination results of the flame retardancy test are shown in Tables 1 and 2 above.
(iv)融解熱量の測定
絶縁電線から、第1絶縁層を切り出し、試験体とした。示差走査熱量測定(DSC)法にて0℃から160℃まで測定を行った。昇温速度は10℃/分とし、50℃から140℃の範囲の融解熱量を求めた。
(iv) Measurement of heat of fusion A first insulating layer was cut out from an insulated wire and used as a test piece. Measurement was performed from 0°C to 160°C by a differential scanning calorimetry (DSC) method. The heating rate was set to 10°C/min, and the heat of fusion was determined in the range of 50°C to 140°C.
(v)総合評価
破断伸びに関する判定結果と、耐油引張強さ変化率に関する判定結果と、耐油破断伸び変化率に関する判定結果と、難燃性試験に関する判定結果とのうち、全てが「○」である場合は、総合評価の結果を「◎」とした。判定結果に一つでも「△」が含まれ、「×」は含まれない場合は、総合評価の結果を「○」とした。判定結果に一つでも「×」が含まれる場合は、総合評価の結果を「×」とした。総合評価の結果を上記表1及び表2に示す。
(v) Comprehensive evaluation All of the determination results regarding elongation at break, the determination result regarding oil resistance tensile strength change rate, the determination result regarding oil resistance breaking elongation change rate, and the judgment result regarding flame retardancy test are all "○". In some cases, the result of the comprehensive evaluation was set as "A". If the evaluation results included at least one "Δ" but not "X", the overall evaluation result was "○". When even one of the evaluation results included "x", the result of comprehensive evaluation was set to "x". The results of comprehensive evaluation are shown in Tables 1 and 2 above.
実施例1~7では、総合評価の結果は「◎」又は「○」であった。一方、比較例1~3では、総合評価の結果は「×」であった。
4.他の実施形態
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
In Examples 1 to 7, the results of the comprehensive evaluation were "excellent" or "good". On the other hand, in Comparative Examples 1 to 3, the overall evaluation result was "x".
4. Other Embodiments Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications can be made.
(1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (1) A function of one component in each of the above embodiments may be assigned to a plurality of components, or a function of a plurality of components may be performed by one component. Also, part of the configuration of each of the above embodiments may be omitted. Also, at least part of the configuration of each of the above embodiments may be added, replaced, etc. with respect to the configuration of the other above embodiments. It should be noted that all aspects included in the technical idea specified by the wording in the claims are embodiments of the present disclosure.
(2)上述した絶縁電線の他、当該絶縁電線を構成要素とするシステム、絶縁電線の製造方法、絶縁ケーブルの製造方法等、種々の形態で本開示を実現することもできる。 (2) In addition to the insulated wire described above, the present disclosure can also be realized in various forms such as a system having the insulated wire as a component, a method for manufacturing an insulated wire, a method for manufacturing an insulated cable, and the like.
1…絶縁電線、3…導体、5…第1絶縁層、7…第2絶縁層、9…絶縁ケーブル、11…シース
DESCRIPTION OF
Claims (3)
前記導体を被覆する第1絶縁層と、
前記第1絶縁層よりも外周側に位置する第2絶縁層と、
を備える絶縁電線であって、
前記第1絶縁層は、
第1ポリマーと、
前記第1ポリマー100質量部に対し150質量部以下配合された無機充てん剤と、
を含み、
前記第2絶縁層は、
エチレン酢酸ビニル共重合体を主成分とする第2ポリマーと、
前記第2ポリマー100質量部に対し150質量部以上250質量部以下配合された
金属水酸化物と、
を含むノンハロゲン難燃性樹脂組成物から成り、
前記第1ポリマーは、
前記第1ポリマーの主成分であり、融点が110℃以上であるポリオレフィンと、
酸変性されたポリオレフィンと、
を含み、
前記第1絶縁層の融解熱量が65J/g以上であり、
前記第1絶縁層及び前記第2絶縁層は架橋されている絶縁電線。 a conductor;
a first insulating layer covering the conductor;
a second insulating layer located on the outer peripheral side of the first insulating layer;
An insulated wire comprising
The first insulating layer is
a first polymer;
an inorganic filler blended in an amount of 150 parts by mass or less with respect to 100 parts by mass of the first polymer;
including
The second insulating layer is
a second polymer containing an ethylene-vinyl acetate copolymer as a main component;
150 parts by mass or more and 250 parts by mass or less of a metal hydroxide blended with 100 parts by mass of the second polymer;
Consisting of a non-halogen flame-retardant resin composition containing
The first polymer is
a polyolefin that is the main component of the first polymer and has a melting point of 110° C. or higher;
an acid-modified polyolefin;
including
The heat of fusion of the first insulating layer is 65 J/g or more,
The insulated wire in which the first insulating layer and the second insulating layer are crosslinked.
前記酸変性されたポリオレフィンにおけるポリオレフィンは、ポリエチレン、エチレン-α-オレフィン、エチレン‐エチルアクリレート共重合体、エチレン‐メチルアクリレート共重合体、及び酢酸ビニル共重合から成る群から選択される1種以上を含む絶縁電線。 The insulated wire according to claim 1 ,
The polyolefin in the acid-modified polyolefin is at least one selected from the group consisting of polyethylene, ethylene-α-olefin, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, and vinyl acetate copolymer. Includes insulated wire.
前記無機充てん剤は、クレー、及びタルクのうち1種以上を含む絶縁電線。 The insulated wire according to claim 1 or 2 ,
The insulated wire, wherein the inorganic filler contains at least one of clay and talc.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018196542A JP7143720B2 (en) | 2018-10-18 | 2018-10-18 | insulated wire |
CN201910920270.7A CN111081412B (en) | 2018-10-18 | 2019-09-26 | Insulated wire |
DE102019127462.1A DE102019127462A1 (en) | 2018-10-18 | 2019-10-11 | Insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018196542A JP7143720B2 (en) | 2018-10-18 | 2018-10-18 | insulated wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020064772A JP2020064772A (en) | 2020-04-23 |
JP7143720B2 true JP7143720B2 (en) | 2022-09-29 |
Family
ID=70310248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018196542A Active JP7143720B2 (en) | 2018-10-18 | 2018-10-18 | insulated wire |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7143720B2 (en) |
CN (1) | CN111081412B (en) |
DE (1) | DE102019127462A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002114878A (en) | 2000-10-06 | 2002-04-16 | Furukawa Electric Co Ltd:The | Flame-retardant resin composition and molded part using the same |
JP2010097881A (en) | 2008-10-17 | 2010-04-30 | Hitachi Cable Ltd | Insulation wire |
JP2014101446A (en) | 2012-11-20 | 2014-06-05 | Hitachi Metals Ltd | Non-halogen thermal aging resistant flame-retardant resin composition, and wire and cable using the same |
JP2016021360A (en) | 2014-06-19 | 2016-02-04 | 日立金属株式会社 | Insulation wire |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2348696T3 (en) * | 2004-07-20 | 2010-12-10 | Borealis Technology Oy | CABLE WITH THERMOPLASTIC INSULATION. |
JP2013018932A (en) | 2011-07-14 | 2013-01-31 | Fujikura Ltd | Non-halogenic flame retardant resin composition and electric wire and cable covered with the same |
JP6021746B2 (en) * | 2013-06-14 | 2016-11-09 | 日立金属株式会社 | Non-halogen flame retardant wire |
-
2018
- 2018-10-18 JP JP2018196542A patent/JP7143720B2/en active Active
-
2019
- 2019-09-26 CN CN201910920270.7A patent/CN111081412B/en active Active
- 2019-10-11 DE DE102019127462.1A patent/DE102019127462A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002114878A (en) | 2000-10-06 | 2002-04-16 | Furukawa Electric Co Ltd:The | Flame-retardant resin composition and molded part using the same |
JP2010097881A (en) | 2008-10-17 | 2010-04-30 | Hitachi Cable Ltd | Insulation wire |
JP2014101446A (en) | 2012-11-20 | 2014-06-05 | Hitachi Metals Ltd | Non-halogen thermal aging resistant flame-retardant resin composition, and wire and cable using the same |
JP2016021360A (en) | 2014-06-19 | 2016-02-04 | 日立金属株式会社 | Insulation wire |
Also Published As
Publication number | Publication date |
---|---|
CN111081412B (en) | 2022-11-25 |
CN111081412A (en) | 2020-04-28 |
JP2020064772A (en) | 2020-04-23 |
DE102019127462A1 (en) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6376464B2 (en) | Insulated wire | |
JP5972836B2 (en) | Non-halogen flame retardant wire cable | |
JP5733352B2 (en) | Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition | |
JP5306632B2 (en) | Flame retardant resin composition and insulated wire coated with the same | |
JP5275647B2 (en) | Insulated wires with excellent heat resistance | |
US20140141240A1 (en) | Halogen-free resin composition, electric wire and cable | |
JP2015000913A (en) | Non-halogen flame-retardant resin composition, and wires and cables prepared using the same | |
CN107808710B (en) | Insulated wire and cable | |
WO2005056667A1 (en) | Crosslinkable flame-retardant resin composition, and insulated electrical wire and wire harness each obtained with the same | |
JP2020125459A (en) | Non-halogen resin composition, electric wire and cable | |
JP2009054388A (en) | Insulated electric cable excellent in weatherability | |
JP2021155590A (en) | Crosslinked fluororubber composition, wiring material using the same, method for manufacturing the same, and catalyst composition for silane crosslinking | |
JP7103111B2 (en) | Non-halogen flame-retardant resin composition, insulated wires, and cables | |
JP6021746B2 (en) | Non-halogen flame retardant wire | |
CN111621071A (en) | Insulated wire and cable | |
JP2005314516A (en) | Non-halogen flame-retardant resin composition | |
JP4163052B2 (en) | Flame retardant resin composition, method for producing the same, and insulated wire coated with the flame retardant resin composition | |
JP7143720B2 (en) | insulated wire | |
JP3966632B2 (en) | Wire covering resin composition and insulated wire | |
JP2015201448A (en) | Non-halogen flame-retardant electric wire cable | |
JP7028821B2 (en) | Flame-retardant resin composition and wiring material using it | |
JP7019623B2 (en) | Cabtyre cables, insulated wires for cabtire cables and their manufacturing methods | |
JP7494750B2 (en) | Wire and Cable | |
JP6816419B2 (en) | Insulated wires and cables | |
JP4495130B2 (en) | Wire covering resin composition and insulated wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220829 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7143720 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |