JPS60250357A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS60250357A
JPS60250357A JP10567284A JP10567284A JPS60250357A JP S60250357 A JPS60250357 A JP S60250357A JP 10567284 A JP10567284 A JP 10567284A JP 10567284 A JP10567284 A JP 10567284A JP S60250357 A JPS60250357 A JP S60250357A
Authority
JP
Japan
Prior art keywords
temperature
selenium
halogen
melting
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10567284A
Other languages
Japanese (ja)
Inventor
Shigeru Ueda
茂 上田
Tadashi Kaneko
兼子 正
Hiroyuki Nomori
野守 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP10567284A priority Critical patent/JPS60250357A/en
Publication of JPS60250357A publication Critical patent/JPS60250357A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body having excellent durability, etc. by using the materials formed by melting Se raw materials contg. Te and halogen at respectively different ratios at a specific temp. then holding the melts for specified time or above at the temp. lower than the melting temp. and cooling quickly the melts to solidify to form a carrier transfer layer and carrier generating layer and laminating said layers. CONSTITUTION:The material formed by melting the Se raw material contg. <12wt% Te and contg. halogen at 370-430 deg.C then holding the melt for >=30min and within about 120min at 240-360 deg.C lower than the melting temp. and cooling quickly the melt to an ordinary temp. to solidify by charging the melt into water or the like is deposited by evaporation on a conductive base 1 to form the carrier transfer layer 3. The Se raw material formed by melting the Se raw material contg. 12-35wt% Te and contg. halogen at the ratio lower than the ratio thereof in the material for the layer 3 at 380-450 deg.C then holding the melt for 30-180min at 250-420 deg.C lower than the melting temp. and cooling quickly the melt to solidify is deposited by evaporation on the layer 3 to form the carrier generating layer 2. The electrophotographic sensitive body formed with the laminated photosensitive layer 4 having high photosensitivity, excellent durability, etc. is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性支持体上に、キャリア発生層とキャリ
ア輸送層とを組合せてなる感光層を設けてなる電子写真
感光体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor comprising a conductive support and a photosensitive layer comprising a combination of a carrier generation layer and a carrier transport layer. be.

〔従来技術〕[Prior art]

現在までに、可視光を吸収して荷電キャリア(以下単に
「キャリア」という。)を発生するキャリア発生物質(
以下rCGMJともいう。)を含有して成るキャリア発
生層(以下r CGL Jともいう。)と、このCGL
において発生した正又は負のキャリアの何れか一方又は
両方を輸送するキャリア輸送物質(以下rCTMJとも
いう。)を含有して成るキャリア輸送層(以下rcTL
Jともいう、)とを組合せることにより、電子写真感光
体の感光層を構成せしめることが提案されている。この
ように、キャリアの発生と、その輸送という感光層にお
いて必要な2つの基礎的機能を、別個の層に分担せしめ
ることにより、感光層の構成に用い得る物質の選択範囲
が広範となる上、各機能を最適に果す物質又は物質系を
独立に選択することが可能となり、又そうすることによ
り、電子写真プロセスにおいて要求される緒特性、例え
ば帯電せしめたときの表面電位が高く、電荷保持性が大
きく、光感度が高く、又反復使用における安定性が大き
い等の優れた特性を有する電子写真感光体を構成ゼしめ
ることが可能となる。
To date, carrier-generating substances (hereinafter simply referred to as "carriers") that absorb visible light and generate charge carriers (hereinafter simply referred to as "carriers") have been developed.
Hereinafter also referred to as rCGMJ. ) (hereinafter also referred to as r CGL J), and this CGL
A carrier transport layer (hereinafter referred to as rcTL) containing a carrier transport material (hereinafter also referred to as rCTMJ) that transports either or both of positive and negative carriers generated in
It has been proposed that the photosensitive layer of an electrophotographic photoreceptor is formed by combining the photoreceptor (also referred to as J). In this way, by assigning the two basic functions necessary for a photosensitive layer, namely carrier generation and carrier transport, to separate layers, the range of materials that can be used in the composition of the photosensitive layer is widened, and It becomes possible to independently select materials or material systems that optimally perform each function, and by doing so, it is possible to achieve the characteristics required in the electrophotographic process, such as high surface potential when charged and charge retention. It becomes possible to construct an electrophotographic photoreceptor having excellent properties such as a large amount of light, high photosensitivity, and high stability in repeated use.

従来このような感光層としては、セレンまたはセレンを
主成分とするセレン合金よりなる、いわゆるセレン系C
GLとセレン系CTI、とを積層せしめたものが広く実
用化されている。特に可視領域における分光感度を高く
するためには、ヒ素に比べて毒性の小さいテルルをセレ
ンに添加することが有効であり、このテルルの含有割合
が12〜35重量%の場合には光導電性が高い特長を有
しておりこの点からCGLとして有用であり、一方テル
ルの含有割合が12重量%未満の場合には暗減衰が小さ
くて電荷保持性が大きい特長を有しておりこの点からC
TLとして有用である。そしてこのようなセレン系CG
L及びセレン系CTLに微量のハロゲンを含有せしめた
場合には更に一層高い光導電性が得られ、特にこのハロ
ゲン含有効果は、CTLのハロゲン含有割合がCGLの
それよりも大きい場合に顕著であり、このようなCGL
とCTLとを組合せて形成した感光層は、電子写真プロ
セスに繰り返し供したときにも残留電位が小さくて望ま
しいものである。
Conventionally, such a photosensitive layer is made of selenium or a selenium alloy containing selenium as a main component, so-called selenium-based C.
Laminated layers of GL and selenium-based CTI have been widely put into practical use. In order to particularly increase the spectral sensitivity in the visible region, it is effective to add tellurium, which is less toxic than arsenic, to selenium, and when the tellurium content is 12 to 35% by weight, photoconductivity It has high characteristics and is useful as a CGL from this point of view.On the other hand, when the tellurium content is less than 12% by weight, it has the characteristics of low dark decay and high charge retention, and from this point of view. C
Useful as TL. And selenium-based CG like this
When a trace amount of halogen is contained in L- and selenium-based CTL, even higher photoconductivity can be obtained, and this halogen-containing effect is particularly noticeable when the halogen content of CTL is larger than that of CGL. , a CGL like this
A photosensitive layer formed by combining CTL and CTL is desirable because it has a small residual potential even when repeatedly subjected to an electrophotographic process.

然るに斯かるセレン系の感光層を有する電子写真感光体
においては、当該感光層の高温耐久性が小さく、このた
めに高温雰囲気下においては劣化が速くて早期にその優
れた特性が失われるようになる欠点がある。
However, in such an electrophotographic photoreceptor having a selenium-based photosensitive layer, the photosensitive layer has low high-temperature durability, and therefore deteriorates quickly in a high-temperature atmosphere and loses its excellent properties at an early stage. There is a drawback.

セレン系感光層を有する電子写真感光体は、通常、所要
組成のセレン物質を蒸発源として用い、例えばアルミニ
ウム等の金属ドラムよりなる導電性支持体の表面にセレ
ン物質を蒸着せしめることによって製作される。そして
蒸発源とされるセレン物質は、通常その原料を一旦溶融
する工程を含む方法によって製造されるが、このセレン
物質の製造における条件は、最終的に形成される電子写
真感光体の感光層の特性に相当の影響を及ぼすものであ
る。
An electrophotographic photoreceptor having a selenium-based photosensitive layer is usually manufactured by using a selenium substance of a desired composition as an evaporation source and depositing the selenium substance on the surface of a conductive support made of a metal drum such as aluminum. . The selenium substance used as the evaporation source is usually manufactured by a method that includes a step of once melting the raw material, but the conditions for manufacturing this selenium substance are such that the photosensitive layer of the electrophotographic photoreceptor that is finally formed This has a considerable influence on the characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は以上の如き事情に着目し、種々の研究を重ねた
結果完成されたものであって、その目的は、セレン系の
キャリア発生層とセレン系のキャリア輸送層とを組合せ
てなる感光層を具え、高温下においても結晶化が確実に
抑制され、優れた感光特性を長期に亘って安定して得る
ことができる電子写真感光体を提供することにある。
The present invention was completed as a result of various studies focusing on the above circumstances, and its purpose is to provide a photosensitive layer comprising a combination of a selenium-based carrier generation layer and a selenium-based carrier transport layer. It is an object of the present invention to provide an electrophotographic photoreceptor that has the following properties, is capable of reliably suppressing crystallization even at high temperatures, and can stably obtain excellent photosensitive characteristics over a long period of time.

〔発明の構成〕[Structure of the invention]

以上の目的は、キャリア発生層とキャリア輸送層とを組
合せてなる感光層を導電性支持体上に設けてなる電子写
真感光体において、 前記キャリア輸送層が、セレン原料を370〜430℃
の範囲内の温度で加熱溶融し、次いで加熱温度よりも低
い温度に一定時間以上保持し、その後冷却固化せしめて
得られた、テルルの含有割合が12重量%未満でかつハ
ロゲンを含有する第1の感光体用材料より形成され、前
記キャリア発生層が、セレン原料を380〜450“C
の範囲内の温度で加熱溶融し、次いで加熱温度よりも低
い温度に一定時間以上保持し、その後冷却固化せしめて
得られた、テルルの含有割合が12〜35重量%でかつ
前記第1の感光体用材料におけるよりも小さい割合のハ
ロゲンを含有す)或いは含有しない第2の感光体用材料
より形成されることを特徴とする電子写真感光体によっ
て達成される。
The above object is to provide an electrophotographic photoreceptor in which a photosensitive layer comprising a combination of a carrier generation layer and a carrier transport layer is provided on a conductive support, in which the carrier transport layer contains a selenium raw material at 370 to 430°C.
A first material having a tellurium content of less than 12% by weight and containing halogen, obtained by heating and melting at a temperature within the range of The carrier generation layer is made of a photoreceptor material of 380 to 450"C
The first photosensitive material containing 12 to 35% by weight of tellurium obtained by heating and melting at a temperature within the range of , then holding at a temperature lower than the heating temperature for a certain period of time or more, and then cooling and solidifying. This is achieved by an electrophotographic photoreceptor characterized in that it is formed from a second photoreceptor material that contains (or does not contain) a smaller proportion of halogen than the body material.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、その詳細は後述する方法により製造
されたテルルの含有割合が12重重量未満でかつハロゲ
ンを含有する第1の感光体用材料をCTI、用材料とし
て用いてCTLを形成し、その詳細は後述する方法によ
り製造されたテルルの含有割合が12〜35重量%でか
つ前記第1の感光体用材料におけるよりも小さい割合の
ハロゲンを含有する或いは含有しない第2の感光体用材
料をCGL用材料として用いてCGLを形成し、これら
のCGLとCTLとを組合せることにより、キャリアの
発生と輸送とをそれぞれ別個の物質で行なういわゆる機
能分離型感光体の感光層を構成する。
In the present invention, a CTL is formed by using a first photoconductor material containing halogen and having a tellurium content of less than 12 weight by weight, which is produced by a method described in detail below, as a CTI material, A second photoreceptor material containing 12 to 35% by weight of tellurium and containing or not containing a smaller proportion of halogen than the first photoreceptor material, the details of which are manufactured by a method described later. A CGL is formed using CGL as a CGL material, and by combining these CGL and CTL, a photosensitive layer of a so-called functionally separated photoreceptor is constructed in which generation and transport of carriers are performed using separate substances.

本発明においてCTL用材料として用いるテルルの含有
割合が12重量%未満でかつハロゲンを含有する第1の
感光体用材料は次のようにして製造する。
The first photoreceptor material containing less than 12% by weight of tellurium and containing halogen and used as a CTL material in the present invention is produced as follows.

即ち、セレンにテルルと、セレンのハロゲン化物及び/
またはテルルのハロゲン化物とを所要の割合で加えてな
るセレン原料を用意する。このセレンi jF4 ヲm
成するセレン、テルル、セレンのハロゲン化物及びテル
ルのハロゲン化物は、インゴットを破砕したもの、粒状
のもの、粉末状のものなど種々の形態の何れであっても
よいが、簡単に溶融できる点から粒状のもの或いは粉末
状のものが好適であり、その粒度は例えば直径で0.5
〜5龍が望ましい。セレンのハロゲン化物またはテルル
のハロゲン化物を形成するハロゲン元素としては、フッ
素、塩素、臭素、ヨウ素早げることができ、セレン原料
中に2種以上のハロゲン化物が含まれていてもよい。
That is, selenium, tellurium, selenium halides and/or
Alternatively, a selenium raw material is prepared by adding a tellurium halide in a required ratio. This selenium i jF4 wom
The selenium, tellurium, selenium halide, and tellurium halide that make up the composition may be in any of various forms such as crushed ingots, granules, and powders, but from the viewpoint of being easily meltable, Granules or powders are preferred, and the particle size is, for example, 0.5 in diameter.
~5 dragons are desirable. The halogen elements forming selenium halides or tellurium halides include fluorine, chlorine, bromine, and iodine, and two or more types of halides may be contained in the selenium raw material.

このようなセレン原料を加熱して溶融する。例えばルツ
ボ内にセレン原料を入れ、真空雰囲気下またはヘリウム
、アルゴン、窒素などの不活性ガス雰囲気下において、
電気オーブンなどを用いて室温から急速に若しくは段階
的に370〜430°Cの範囲内の温度にまで昇温せし
めて加熱溶融し、この溶融物をその加熱温度に一定に保
ちながら通常30〜240分間好ましくは60〜180
分間に亘りセレン原料をスクリュー攪拌器などにより攪
拌し続けて当該溶融物の組成を十分に均一化する。セレ
ン原料を溶融せしめるための上記加熱温度は、当該セレ
ン原料が溶融する温度であってかつテルルの融点(45
0℃)以下の温度であり、その範囲は370〜430℃
とする。この加熱温度が430°Cを越える場合には、
得られる第1の感光体用材料より形成したCTLの中に
は高温時に結晶化し易いものも存在することがあり、高
温時の結晶化抑制が確実なものとはならない。またこの
加熱温度はテルルの含有割合が小さいほど低いものとす
ることができるが、370℃未満の場合には溶融が不十
分となって得られる第1の感光体用材料にテルルの偏析
が発生し易く、このため形成したCTLが均質性の劣っ
たものとなり、所期の特性が得られないことがある。
Such a selenium raw material is heated and melted. For example, a selenium raw material is placed in a crucible and placed in a vacuum atmosphere or an inert gas atmosphere such as helium, argon, or nitrogen.
Using an electric oven or the like, the temperature is rapidly or stepwise raised from room temperature to a temperature in the range of 370 to 430°C to melt it by heating, and the melt is heated at a constant temperature of 30 to 240°C. Preferably 60 to 180 minutes
The selenium raw material is continuously stirred using a screw stirrer or the like for several minutes to sufficiently homogenize the composition of the melt. The heating temperature for melting the selenium raw material is a temperature at which the selenium raw material melts and the melting point of tellurium (45
0℃) or lower, and the range is 370 to 430℃
shall be. If this heating temperature exceeds 430°C,
Among the CTLs formed from the obtained first photoreceptor material, there may be some that tend to crystallize at high temperatures, and crystallization suppression at high temperatures is not reliable. The heating temperature can be lowered as the tellurium content is lower, but if it is lower than 370°C, melting will be insufficient and tellurium will segregate in the resulting first photoreceptor material. Therefore, the formed CTL may have poor homogeneity, and the desired characteristics may not be obtained.

このような加熱溶融に続いて、セレン原料の溶融物を加
熱溶融時の加熱温度よりも低い温度でかつひき続き溶融
状態が維持される保持温度、例えば240〜360℃、
好ましくは260〜320℃の範囲内の温度に低下せし
めて、当該溶融物を攪拌して組成の均一性を保ちながら
当該保持温度に一定時間例えば30分間以上保持する。
Following such heating and melting, the molten selenium raw material is held at a temperature lower than the heating temperature during heating and melting and at a holding temperature at which the molten state is maintained, for example, 240 to 360°C,
Preferably, the temperature is lowered to a range of 260 to 320°C, and the melt is maintained at the holding temperature for a certain period of time, for example, 30 minutes or more, while stirring to maintain uniformity of the composition.

この加熱温度から保持温度への温度低下は急速に行なう
のが好ましい。保持温度があまり低いと溶融物が固化す
るようになるので好ましくない。そして保持温度に保持
する時間は30分間以上であれば十分であるが、実用上
は30〜120分間の範囲内であることが好ましい。
Preferably, the temperature is lowered from the heating temperature to the holding temperature rapidly. If the holding temperature is too low, the melt will solidify, which is not preferable. It is sufficient for the time to be maintained at the holding temperature to be 30 minutes or more, but in practice it is preferably within the range of 30 to 120 minutes.

このように保持温度に一定時間保持した後、溶融物を例
えば水中に投入してほぼ常温にまで急速に冷却して固化
せしめ、この固化物を回収して以てテルルの含有割合が
12重量%未満でかつハロゲンを含有する第1の感光体
用材料を得る。
After being maintained at the holding temperature for a certain period of time, the molten material is poured into water, for example, and rapidly cooled to approximately room temperature to solidify it, and the solidified material is recovered and the tellurium content is 12% by weight. A first photoreceptor material containing less than halogen is obtained.

この第1の感光体用材料におけるハロゲンの含有割合は
、実用上5〜100重量ppmの範囲内であることが好
ましい。
Practically speaking, the content of halogen in the first photoreceptor material is preferably within the range of 5 to 100 ppm by weight.

本発明においてCGL用材料として用いるテルルの含有
割合が12〜35重量%でかつ前記第1の感光体用材料
におけるよりも小さい割合のハロゲンを含有する或いは
含有しない第2の感光体用材料は次のようにして製造す
る。
The second photoconductor material used as the CGL material in the present invention, which has a tellurium content of 12 to 35% by weight and contains or does not contain a smaller proportion of halogen than the first photoconductor material, is as follows: Manufactured as follows.

即ち、セレンにテルルと、セレンのハロゲン化物及び/
またはテルルのハロゲン化物とを所要の割合で加えてな
るセレン原料を用意する。このセレン原料を組成するセ
レン、テルル、セレンのハロゲン化物及びテルルのハロ
ゲン化物は、インゴットを破砕したもの、粒状のもの、
粉末状のものなど種々の形態の何れであってもよいが、
簡単に溶融できる点から粒状のもの或いは粉末状のもの
が好適であり、その粒度は例えば直径で0.5〜5顛が
望ましい。セレンのハロゲン化物またはテルルのハロゲ
ン化物を形成するハロゲン元素としては、フッ素、塩素
、臭素、ヨウ素を挙げることができ、セレン原料中に2
種以上のハロゲン化物が含まれていてもよい。またこの
セレン原料には、特性改良剤として、例えば銅、白金、
金などが例えば1〜100重量ppmの割合で含有され
ていてもよい。
That is, selenium, tellurium, selenium halides and/or
Alternatively, a selenium raw material is prepared by adding a tellurium halide in a required ratio. The selenium, tellurium, selenium halides, and tellurium halides that make up this selenium raw material are crushed ingots, granular ones,
It may be in any of various forms such as powder,
A granular or powdered material is preferable because it can be easily melted, and the particle size is preferably, for example, 0.5 to 5 mm in diameter. Examples of halogen elements that form selenium halides or tellurium halides include fluorine, chlorine, bromine, and iodine.
More than one type of halide may be included. In addition, this selenium raw material contains property improvers such as copper, platinum,
Gold or the like may be contained, for example, in a proportion of 1 to 100 ppm by weight.

このようなセレン原料を加熱して溶融する。例えばルツ
ボ内にセレン原料を入れ、真空雰囲気下またはヘリウム
、アルゴン、窒素などの不活性ガス雰囲気下において、
電気オーブンなどを用いて室温から急速に若しくは段階
的に380〜450℃の範囲内の温度にまで昇温せしめ
て加熱溶融し、この溶融物をその加熱温度に一定に保ち
ながら通常30〜240分間好ましくは60〜180分
間に亘りセレン原料をスクリュー攪拌器などにより攪拌
し続けて当該溶融物の組成を十分に均一化する。セレン
原料を溶融せしめるための上記加熱温度は、当該セレン
原料が溶融する温度であってかつテルルの融点(450
℃)以下の温度であり、その範囲は380〜450℃と
する。この加熱温度が450℃を越える場合には、得ら
れる第2の感光体用材料より形成したCGLの中には高
温時に結晶化し易いものも存在することがあり、高温時
の結晶化抑制が確実なものとはならない。またこの加熱
温度はテルルの含有割合が小さいほど低いものとするこ
とができるが、380℃未満の場合には溶融が不十分と
なって得られる第2の感光体用材料にテルルの偏析が発
生し易く、このため形成したCGLが均質性の劣ったも
のとなり、所期の特性が得られないことがある。
Such a selenium raw material is heated and melted. For example, a selenium raw material is placed in a crucible and placed in a vacuum atmosphere or an inert gas atmosphere such as helium, argon, or nitrogen.
Using an electric oven or the like, the temperature is rapidly or stepwise raised from room temperature to a temperature in the range of 380 to 450°C, and the melt is heated and melted, and the molten material is maintained at a constant heating temperature for usually 30 to 240 minutes. Preferably, the selenium raw material is continuously stirred using a screw stirrer or the like for 60 to 180 minutes to sufficiently homogenize the composition of the melt. The heating temperature for melting the selenium raw material is a temperature at which the selenium raw material melts and the melting point of tellurium (450
℃) or less, and the range is 380 to 450℃. If this heating temperature exceeds 450°C, some of the CGL formed from the obtained second photoreceptor material may be easily crystallized at high temperatures, and crystallization at high temperatures can be surely suppressed. It doesn't become something. The heating temperature can be lowered as the tellurium content is lower, but if it is lower than 380°C, melting will be insufficient and tellurium will segregate in the resulting second photoreceptor material. Therefore, the formed CGL may have poor homogeneity, and the desired characteristics may not be obtained.

このような加熱溶融に続いて、セレン原料の溶融物を加
熱溶融時の加熱温度よりも低い温度でかつひき続き溶融
状態が維持される保持温度、例えば250〜420℃、
好ましくは260〜360℃の範囲内の温度に低下ゼし
めて、当該溶融物を攪拌して組成の均一性を保ちながら
当該保持温度に一定時間例えば30分間以上保持する。
Following such heating and melting, the molten selenium raw material is held at a temperature lower than the heating temperature during heating and melting and at a holding temperature at which the molten state is maintained, for example, 250 to 420°C,
Preferably, the temperature is lowered to a temperature in the range of 260 to 360° C., and the melt is maintained at the holding temperature for a certain period of time, for example, 30 minutes or more, while stirring to maintain uniformity of the composition.

この加熱温度から保持温度への温度低下は急速に行なう
のが好ましい。保持温度があまり低いと溶融物が固化す
るようになるので好ましくない。そして保持温度に保持
する時間は30分間以上であれば十分であるが、実用上
は30〜180分間の範囲内であることが好ましい。
Preferably, the temperature is lowered from the heating temperature to the holding temperature rapidly. If the holding temperature is too low, the melt will solidify, which is not preferable. It is sufficient for the time to be maintained at the holding temperature to be 30 minutes or more, but in practice it is preferably within the range of 30 to 180 minutes.

このように保持温度に一定時間保持した後、溶融物を例
えば水中に投入してほぼ常温にまで急速に冷却して固化
せしめ、この固化物を回収して以てテルルの含有割合が
12〜35重量%でかつ前記第1の感光体用材料におけ
るよりも小さい割合のハロゲンを含有する或いは含有し
ない第2の感光体用材料を得る。
After being maintained at the holding temperature for a certain period of time, the molten material is poured into water, for example, and rapidly cooled to approximately room temperature to solidify it, and the solidified material is collected to reduce the tellurium content to 12 to 35. A second photoreceptor material is obtained which contains or does not contain halogen in a weight percent smaller than that in the first photoreceptor material.

この第2の感光体用材料におけるハロゲンの含有割合は
第1の感光体用材料におけるよりも小さければよいが、
実用上5重量ρpm未満であることが好ましく、場合に
よっては0重M p p m即ちハロゲンが含有されな
くてもよい。また第2の感光体用材料におけるハロゲン
の含有割合が第1の感光体用材料におけるそれよりも大
きい場合には、ハロゲンの添加効果が無意味なものとな
る。
The content of halogen in the second photoconductor material may be smaller than that in the first photoconductor material, but
Practically speaking, it is preferably less than 5 weight ρpm, and in some cases, it may be 0 weight ρpm, that is, no halogen may be contained. Further, if the content of halogen in the second photoreceptor material is higher than that in the first photoreceptor material, the effect of adding halogen becomes meaningless.

以上CTL用材料として用いる第1の感光体用材料及び
CGL用材料として用いる第2の感光体用材料の製造例
について説明したが、このようにして得られる第1及び
第2の感光体用材料を用いてそれぞれCTLおよびCG
Lを形成するための手段としては、例えば蒸着法を好ま
しいものとして挙げることができる。具体的には、例え
ば第1図に示すように、導電性支持体1上に既述の第1
の感光体用材料の蒸着膜を設けてCTL3を形成し、こ
のCTL a上に既述の第2の感光体用材料の蒸着膜を
設けてCGL 2を形成し、これらのCGL 2とCT
L 3とにより感光層4を構成する。
The manufacturing examples of the first photoreceptor material used as the CTL material and the second photoreceptor material used as the CGL material have been described above, and the first and second photoreceptor materials obtained in this way CTL and CG using
As a means for forming L, for example, a vapor deposition method can be cited as a preferable method. Specifically, for example, as shown in FIG.
A vapor deposited film of the photoreceptor material is provided to form CTL3, and a vapor deposited film of the second photoreceptor material described above is provided on this CTL a to form CGL 2, and these CGL 2 and CT
L 3 constitutes the photosensitive layer 4.

ここに前記導電性支持体1の材質としては、例えばアル
ミニウム、ニッケル、銅、亜鉛、パラジウム、銀、イン
ジウム、錫、白金、金、ステンレス鋼、真鍮等の金属の
シートを用いることができる。
Here, as the material of the conductive support 1, for example, a sheet of metal such as aluminum, nickel, copper, zinc, palladium, silver, indium, tin, platinum, gold, stainless steel, or brass can be used.

前記CGL 2の厚さは、通常1〜10ミクロン、好ま
しくは2〜5ミクロンである。また前記CTL3の厚さ
は、通常30〜100ミクロン、好ましくは50〜60
ミクロンである。
The thickness of the CGL 2 is usually 1-10 microns, preferably 2-5 microns. The thickness of the CTL 3 is usually 30 to 100 microns, preferably 50 to 60 microns.
It is micron.

〔発明の効果〕〔Effect of the invention〕

本発明電子写真感光体は以上のような構成であるから、
後述する実施例の説明からも理解されるように、感光層
の高温下での結晶化が確実に抑止され、このため高温下
にさらされる場合があっても、感光層は依然として十分
な暗抵抗を有し、しかも光感度が十分に高くて良好な光
導電性を示し、結局電子写真プロセスを多数回に亘り繰
り返したときにも残留電位の上昇が大幅に抑制され、環
境温度の影響を受けることなく電子写真プロセスを長期
間安定して多数回に亘り繰り返して行なうことができる
。このような効果が得られる理由は厳密には解明されて
いないが、感光層のCTL及びCGLを形成する第1及
び第2の感光体用材料の製造において、セレン原料をテ
ルルの融点以下の特定範囲内の加熱温度で加熱溶融し、
次いで溶融物を一気に冷却せずに加熱温度よりは若干低
い温度で依然として溶融状態を維持できる保持温度に一
定時間以上保持するため、これにより得られるセレン物
質が確実に結晶化しにくい特性を有するものとなり、こ
の特性がそのままCTL及びCGLとなったときにおい
ても引き継がれ、この結果テルルを含有する場合であっ
てもCTL及びCGLにおける高温時の結晶化が確実に
抑制されるようになるものと考えられる。
Since the electrophotographic photoreceptor of the present invention has the above structure,
As will be understood from the description of the examples below, the crystallization of the photosensitive layer at high temperatures is reliably suppressed, and therefore even when exposed to high temperatures, the photosensitive layer still has sufficient dark resistance. Moreover, it has sufficiently high photosensitivity and good photoconductivity, and as a result, even when the electrophotographic process is repeated many times, the increase in residual potential is greatly suppressed, and it is not affected by the environmental temperature. The electrophotographic process can be stably repeated for a long period of time without any problems. The reason why such an effect is obtained has not been strictly elucidated, but in the production of the first and second photoreceptor materials that form the CTL and CGL of the photosensitive layer, the selenium raw material is specified to have a temperature below the melting point of tellurium. Heat and melt at a heating temperature within the range,
Next, the molten material is not cooled all at once, but held at a temperature slightly lower than the heating temperature at which it can still maintain its molten state for a certain period of time, ensuring that the resulting selenium substance has the property of being resistant to crystallization. It is thought that this property is inherited as it is when it becomes CTL and CGL, and as a result, even when it contains tellurium, crystallization at high temperatures in CTL and CGL is reliably suppressed. .

そしてCGLは、既述のCGL用の第2の感光体用材料
を蒸着して形成することにより、テルルの含有割合が1
2〜35重量%のものとなるので光導電性が高くて優れ
たキャリア発生機能を有し、一方CTLは、既述のCT
L用の第1の感光体用材料を蒸着して形成することによ
り、テルルの含有割合が12重量%未満のものとなるの
で暗減衰が小さくて電荷保持性が高く優れたキャリア輸
送機能を有するものとなる。
CGL is formed by vapor-depositing the second photoreceptor material for CGL, which has been described above, so that the tellurium content ratio is 1.
Since it has a content of 2 to 35% by weight, it has high photoconductivity and an excellent carrier generation function.
By forming the first photoreceptor material for L by vapor deposition, the tellurium content is less than 12% by weight, so it has low dark decay, high charge retention, and excellent carrier transport function. Become something.

又ハロゲンは第1及び第2の感光体用材料中に各々均一
に含有されることとなるので、その結果としてこれらの
感光体用材料を蒸着して形成したCTL及びCGLにお
いてもハロゲンが所要の割合で均一に分散された状態で
含有されるようになるので、ハロゲンの添加効果がCT
L及びCGLの各々においてそれぞれ固有の態様でしか
も感光層全体に均等に得られ、結局感光特性が一定化し
た特性むらのない感光層を得ることができる。
Furthermore, since halogen is uniformly contained in each of the first and second photoreceptor materials, as a result, the required amount of halogen is also reduced in CTL and CGL formed by vapor-depositing these photoreceptor materials. Since the halogen is contained in a uniformly dispersed state, the effect of adding halogen is
Each of L and CGL can be obtained in a unique manner and uniformly over the entire photosensitive layer, and as a result, a photosensitive layer with constant photosensitive characteristics and no unevenness in characteristics can be obtained.

またCGL及びCTLの2層構成の感光層の形成におい
ては、蒸着源を変えて蒸着を繰り返し“0行なうことと
なるが、2回目の蒸着時に1回目に蒸着した蒸着膜を加
熱しながら蒸着を行なうようにしても、1回目に蒸着し
た蒸着膜の結晶化が発生せず、従って感光特性の劣化を
招くことなく良好な蒸着を行なうことができ、この結果
得られる感光層は良好な感光特性を有するものとなる。
In addition, in the formation of a photosensitive layer with a two-layer structure of CGL and CTL, the evaporation source is changed and the evaporation is repeated until "0" is performed, but during the second evaporation, the evaporation film is heated while the first evaporation film is being deposited. Even if this is done, crystallization of the first vapor-deposited film does not occur, and therefore good vapor deposition can be performed without deterioration of photosensitivity, and the resulting photosensitive layer has good photosensitivity. It will have the following.

〔実施例〕〔Example〕

以下本発明の実施例を詳細に説明するが、本発明はこれ
らの実施例に限定されるものではない。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.

実施例1 (CGL用材粉材料造) ルツボ中に入れた、約78重量%の粒状セレン(純度9
9.999%)、約22重量%の粒状テルル(純度99
.999%)及び2重量ppmの粒状塩化セレン(純度
99.999%)よりなるセレン原料を、窒素ガス雰囲
気とした電気炉内において室温から390℃の加熱温度
にまで急激に昇温せしめて溶融し、溶融物をスクリュー
攪拌器により攪拌しながらその加熱温度に60分間に亘
り保った。続いて溶融物を依然として溶融状態が保たれ
る保持温度300℃にまで急激に降下せしめ、溶融物を
スクリュー攪拌器により攪拌しながら、当該保持温度に
30分間に亘り保持した。この保持に続いてルツボ中の
溶融物を温度20℃の水中に石英製の直径2重量のノズ
ルを通して投入して急激に冷却して固化せしめた。次い
で水中から固化物を回収して約22重量%のテルルとハ
ロゲンとを含有するセレン物質よりなる第2の感光体用
材料を得た。
Example 1 (Production of wood powder material for CGL) Approximately 78% by weight of granular selenium (purity 9
9.999%), about 22% by weight of granular tellurium (99% purity)
.. A selenium raw material consisting of granular selenium chloride (purity 99.999%) and 2 ppm by weight was melted by rapidly raising the temperature from room temperature to 390°C in an electric furnace with a nitrogen gas atmosphere. The melt was kept at the heating temperature for 60 minutes while being stirred by a screw stirrer. Subsequently, the melt was rapidly lowered to a holding temperature of 300° C. at which it remained in a molten state, and the melt was held at the holding temperature for 30 minutes while being stirred by a screw stirrer. Following this holding, the molten material in the crucible was poured into water at a temperature of 20.degree. C. through a nozzle made of quartz and having a diameter of 2 weight, and was rapidly cooled and solidified. Next, the solidified material was recovered from the water to obtain a second photoreceptor material made of a selenium substance containing about 22% by weight of tellurium and halogen.

(CTL用材料の製造) ルツボ中に入れた、約95重量%の粒状セレン(純度9
9.999%)、約5重量%の粒状テルル(純度99.
999%)及び30重量ppmの粒状塩化セレン(純度
99.999%)よりなるセレン原料を、窒素ガス雰囲
気とした電気炉内において室温から380℃の加熱温度
にまで急激に昇温せしめて溶融し、溶融物をスクリュー
攪拌器により攪拌しながらその加熱温度に60分間に亘
り保った6続いて溶融物を依然として溶融状態が保たれ
る保持温度300℃にまで急激に降下せしめ、溶融物を
スクリュー攪拌器により攪拌しながら、当該保持温度に
30分間に亘り保持した。この保持に続いてルツボ中の
溶融物を温度20℃の水中に石英製の直径211のノス
ルを通して投入して急激に冷却して固化せしめた。次い
で水中から固化物を回収して約5重量%のテルルと第2
の感光体用材料におけるよりも含有割合の大きいハロゲ
ンとを含有するセレン物質よりなる第1の感光体用材料
を得た。
(Manufacture of CTL material) Approximately 95% by weight granular selenium (purity 9
9.999%), approximately 5% by weight of granular tellurium (99.99% purity).
A selenium raw material consisting of granular selenium chloride (99.999%) and 30 ppm by weight (purity 99.999%) is melted by rapidly raising the temperature from room temperature to 380°C in an electric furnace with a nitrogen gas atmosphere. The melt was kept at that heating temperature for 60 minutes while being stirred with a screw stirrer6.Then, the melt was rapidly lowered to a holding temperature of 300°C at which the melted state was still maintained, and the melt was stirred with a screw. The holding temperature was maintained for 30 minutes while stirring with a vessel. Following this holding, the molten material in the crucible was poured into water at a temperature of 20.degree. C. through a nostle made of quartz with a diameter of 211 mm, and rapidly cooled and solidified. Next, the solidified material is recovered from the water and about 5% by weight of tellurium and the second
A first photoreceptor material made of a selenium substance containing halogen in a higher proportion than that in the photoreceptor material was obtained.

以上のようにして得られた第1の感光体用材料を蒸発源
として用い、真空蒸着法により温度280℃で加熱蒸発
せしめて、アルミニウムよりなり、厚さ4鶴の円筒状の
導電性支持体上に膜W−60ミクロンのCTLを形成し
た。このCTL上に、上述のようにして得られた第2の
感光体用材料を蒸発源として用い、真空蒸着法により温
度280℃で加熱蒸発せしめて、膜厚5ミクロンのCG
Lを形成し、もって第1図に示した構成と同様の電子写
真感光体を得た。これを「試料1」とする。
The first photoreceptor material obtained as described above was used as an evaporation source and was heated and evaporated at a temperature of 280°C by a vacuum evaporation method to form a cylindrical conductive support made of aluminum and having a thickness of 4 mm. A film W-60 micron CTL was formed on top. Using the second photoconductor material obtained as described above as an evaporation source, the CTL was heated and evaporated at a temperature of 280°C by a vacuum evaporation method to form a CG film with a thickness of 5 microns.
L was formed, thereby obtaining an electrophotographic photoreceptor having the same structure as shown in FIG. This will be referred to as "Sample 1".

実施例2〜5及び比較例1〜4 CGL用またはCTL用の感光体用材料の製造条件を下
記第1表に示す通りとした他は実施例1と同様にして電
子写真感光体を得た。これらをそれぞれ「試料2」〜「
試料5」及び「比較試料1」〜「比較試料4」とする。
Examples 2 to 5 and Comparative Examples 1 to 4 Electrophotographic photoreceptors were obtained in the same manner as in Example 1, except that the manufacturing conditions for photoreceptor materials for CGL or CTL were as shown in Table 1 below. . These are "sample 2" to "
"Sample 5" and "Comparative Sample 1" to "Comparative Sample 4."

尚第2図〜第16図は各々感光体用材料の製造時におけ
る温度と時間との関係の概略を示す線図であり、上記の
実施例及び比較例の各々におけるCGL用材用材型造及
びCTL用材料の製造では、第2図〜第16図にそれぞ
れ示した曲線a −oの何れかひとつに従って処理され
ており、その対応関係は第1表中1図の符号」の欄にa
 −oの符号を何して示した。
FIGS. 2 to 16 are diagrams schematically showing the relationship between temperature and time during the production of photoconductor materials, and show the relationship between CGL material molding and CTL material in each of the above Examples and Comparative Examples. In the production of raw materials, processing is performed according to one of the curves a - o shown in Figures 2 to 16, respectively, and the correspondence relationship is shown in the column "a" in Figure 1 in Table 1.
-What is the sign of o?

以上のようにして得られた試料及び比較試料の各々を電
子写真複写機rU −Bix 1600J (小西六写
真工業社製)に装着し、温度20℃で相対湿度65%の
環境下において帯電及び露光試験を行ない、帯電電位及
び残留電位について調べた。帯電電位は、6.OKV、
200μへの帯電条件で、現像部位置に配置した表面電
位計プローブで測定される表面電位で評価した。また残
留電位については、帯電器により感光ドラムの表面を1
00OVに帯電せしめた後、露光量が 201ux−s
ecとなるようハロゲン光を露光するプロセスを100
0回繰り返した後において感光ドラムの表面に蓄積され
た電位を測定し、これを残留電位とした。
Each of the samples and comparative samples obtained as described above was installed in an electrophotographic copying machine rU-Bix 1600J (manufactured by Konishiroku Photo Industries Co., Ltd.), and charged and exposed in an environment of a temperature of 20°C and a relative humidity of 65%. A test was conducted to investigate the charging potential and residual potential. The charging potential is 6. OKV,
Evaluation was made using the surface potential measured with a surface electrometer probe placed at the developing area under charging conditions of 200μ. Regarding the residual potential, the surface of the photosensitive drum is
After charging to 00OV, the exposure amount is 201ux-s
The process of exposing halogen light to ec
After repeating 0 times, the potential accumulated on the surface of the photosensitive drum was measured, and this was taken as the residual potential.

次に上記試料及び比較試料を取り外してこれらを温度6
0℃、相対湿度50%の環境下に3日間放置することに
より強制的な劣化処理を施し、その後再び同様にして試
験を行ない帯電電位及び残留電位について調べた。
Next, remove the above sample and comparative sample and heat them to 6
A forced deterioration treatment was performed by leaving it in an environment of 0° C. and 50% relative humidity for 3 days, and then the same test was conducted again to examine the charged potential and residual potential.

また既述と同様にして作製した試料及び比較試料の各々
を温度65℃、相対湿度50%に維持された恒温槽内に
放置して感光層の熱劣化を強制的に生ぜしめ感光層の表
面が白化し始めるまでの時間を調べた。感光層の表面が
白化するのは熱によってアモルファス状の構造が変化し
て結晶化が進行するからであり、この時間が大きいもの
ほど高温耐久性の優れたものである。
In addition, each of the samples prepared in the same manner as described above and the comparative samples were left in a constant temperature bath maintained at a temperature of 65°C and a relative humidity of 50% to forcibly cause thermal deterioration of the photosensitive layer. We investigated the time it takes for the skin to start turning white. The surface of the photosensitive layer becomes white because the amorphous structure is changed by heat and crystallization progresses, and the longer this time, the better the high temperature durability.

以上の試験の結果を第1表に併せて示す。The results of the above tests are also shown in Table 1.

この第1表の結果から理解されるように、本発明の電子
写真感光体である試料1〜5によれば、感光層が高温耐
久性に優れていて、高温下にさらされた場合にも依然と
して高い帯電電位を保持ししかも残留電位が小さく、電
子写真プロセスを多数回に亘り安定に繰り返して実行す
ることができた。これに対して比較試料1及び2は、C
TL及びCGLを形成するための第1及び第2の感光体
用材料が、その製造時において、保持温度に保持する過
程を経ずに一気に冷却して製造されるため、これを用い
て作製した感光層は高温耐久性が著しく低く、高温下に
さらされた場合には帯電電位が相当に低下し、かつ残留
電位が大幅に上昇し早期に実用に供することができなく
なるものであった。
As can be understood from the results in Table 1, according to Samples 1 to 5, which are electrophotographic photoreceptors of the present invention, the photosensitive layer has excellent high-temperature durability and even when exposed to high temperatures. It still maintained a high charging potential and had a small residual potential, making it possible to stably repeat the electrophotographic process many times. On the other hand, comparative samples 1 and 2 have C
The first and second photoreceptor materials for forming the TL and CGL are manufactured by cooling them all at once without going through a process of holding them at a holding temperature, so this material was used to produce the material. The photosensitive layer has extremely low high-temperature durability, and when exposed to high temperatures, the charged potential decreases considerably and the residual potential increases significantly, making it impossible to put it into practical use at an early stage.

また比較試料3及び4は、CTL及びCGLを形成する
ための第1及び第2の感光体用材料が、その製造時にお
いて、保持温度に一定時間以上保持する過程を経るもの
の加熱温度がそれぞれ370〜430℃及び380〜4
50℃の範囲外であるため、これらの感光体用材料を用
いて作製した感光層は高温耐久性が若干劣り、高温下に
おける結晶化を確実に防止することのできないものであ
った。又比較試料4はハロゲンを全く含有していないた
め残留電位が高いものであった。
Comparative samples 3 and 4 were heated at a heating temperature of 370°C, although the first and second photoreceptor materials for forming CTL and CGL underwent a process of holding at a holding temperature for a certain period of time or more during manufacture. ~430℃ and 380~4
Since the temperature was outside the range of 50° C., photosensitive layers prepared using these photoreceptor materials had slightly poor high-temperature durability, and crystallization at high temperatures could not be reliably prevented. Comparative sample 4 did not contain any halogen and therefore had a high residual potential.

また蒸発源の加熱温度を変えた以外は上述と同様にして
感光体を作製し、同様の試験を1うなったところ、上記
と同様の傾向の結果が得られた。
Further, a photoreceptor was prepared in the same manner as described above except that the heating temperature of the evaporation source was changed, and when the same test was performed, results similar to those described above were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の構成例を示す説明用断
面図、第2図〜第16図は各々CGL用またはCTL用
の感光体用材料の製造時における温度と時間との関係の
概略を示す線図である。 1・・・・導電性支持体 2・・・・キャリア発生層(ceL) 3・・・・キャリア輸送層(CTL) 4・・・・感光層 第1図 第2図 第6図 第4図 第5、図 υ buソU 分 0 6090 修 築6図 第7図 第8図 第9図 第10図 第11図 第12図 第14図 第16図 0 6090 分 第13図 第15図
FIG. 1 is an explanatory sectional view showing an example of the structure of the electrophotographic photoreceptor of the present invention, and FIGS. 2 to 16 show the relationship between temperature and time during the production of photoreceptor materials for CGL or CTL, respectively. It is a line diagram showing an outline. 1... Conductive support 2... Carrier generation layer (ceL) 3... Carrier transport layer (CTL) 4... Photosensitive layer Figure 1 Figure 2 Figure 6 Figure 4 5, fig.

Claims (1)

【特許請求の範囲】 1)キャリア発生層とキャリア輸送層とを組合せてなる
感光層を導電性支持体上に設けてなる電子写真感光体に
おいて、 前記キャリア輸送層が、セレン原料を370〜430℃
の範囲内の温度で加熱溶融し、次いで加熱温度よりも低
い温度に一定時間以上保持し、その後冷却固化せしめて
得られた、テルルの含有割合が12重量%未満でかつハ
ロゲンを含有する第1の感光体用材料より形成され、前
記キャリア発生層が、セレン原料を380〜450℃の
範囲内の温度で加熱溶融し、次いで加熱温度よりも低い
温度に一定時間以上保持し、その後冷却固化せしめて得
られた、テルルの含有割合力月2〜35重量%でかつ前
記第1の感光体用材料におけるよりも小さい割合のハロ
ゲンを含有する或いは含有しない第2の感光体用材料よ
り形成されることを特徴とする電子写真感光体。
[Scope of Claims] 1) An electrophotographic photoreceptor in which a photosensitive layer comprising a combination of a carrier generation layer and a carrier transport layer is provided on a conductive support, wherein the carrier transport layer contains a selenium raw material of 370 to 430%. ℃
A first material having a tellurium content of less than 12% by weight and containing halogen, obtained by heating and melting at a temperature within the range of The carrier generation layer is formed from a material for a photoreceptor, in which the selenium raw material is heated and melted at a temperature within the range of 380 to 450°C, then held at a temperature lower than the heating temperature for a certain period of time or more, and then cooled and solidified. A second photoconductor material containing 2 to 35% by weight of tellurium and containing or not containing a smaller proportion of halogen than the first photoconductor material. An electrophotographic photoreceptor characterized by:
JP10567284A 1984-05-26 1984-05-26 Electrophotographic sensitive body Pending JPS60250357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10567284A JPS60250357A (en) 1984-05-26 1984-05-26 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10567284A JPS60250357A (en) 1984-05-26 1984-05-26 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS60250357A true JPS60250357A (en) 1985-12-11

Family

ID=14413926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10567284A Pending JPS60250357A (en) 1984-05-26 1984-05-26 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS60250357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431869A (en) * 1990-05-29 1992-02-04 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body consisting of selenium and tellurium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431869A (en) * 1990-05-29 1992-02-04 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body consisting of selenium and tellurium

Similar Documents

Publication Publication Date Title
US3467548A (en) Method of making xerographic plate by vacuum evaporation of selenium alloy
US4842973A (en) Vacuum deposition of selenium alloy
JPS5913021B2 (en) Composite photoreceptor material
US3524745A (en) Photoconductive alloy of arsenic,antimony and selenium
US4822712A (en) Reduction of selenium alloy fractionation
JPS60250357A (en) Electrophotographic sensitive body
JPS60250356A (en) Electrophotographic sensitive body
EP0337683B1 (en) Control of selenium alloy fractionation
US4894307A (en) Processes for preparing and controlling the fractionation of chalcogenide alloys
JPS60250351A (en) Production of material for electrophotographic sensitive body
US5002734A (en) Processes for preparing chalcogenide alloys
JPS616655A (en) Manufacture of electrophotographic sensitive body
JPS60250354A (en) Production of material for electrophotographic sensitive body
JPS60250352A (en) Production of material for electrophotographic sensitive body
JPS60250353A (en) Production of material for electrophotographic sensitive body
US4920025A (en) Control of selenium alloy fractionation
JPS60250355A (en) Production of material for electrophotographic sensitive body
US4049505A (en) Photoconductors for electrostatic imaging systems
US5035857A (en) Processes for preparing chalcogenide alloys
JPS61109057A (en) Reforming method of selenium
JPS59223436A (en) Photosensitive body of selenium-tellurium alloy
JP2574485B2 (en) Method for controlling crystallization of chalcogenide alloys
JPS60250358A (en) Electrophotographic sensitive body
US3941591A (en) Electrophotographic photoconductive member employing a chalcogen alloy and a crystallization inhibiting element
JPS60252354A (en) Electrophotographic sensitive selenium and selenium photosensitive film and its manufacture