JPS60250229A - Inspecting device of plastic substrate - Google Patents

Inspecting device of plastic substrate

Info

Publication number
JPS60250229A
JPS60250229A JP10793084A JP10793084A JPS60250229A JP S60250229 A JPS60250229 A JP S60250229A JP 10793084 A JP10793084 A JP 10793084A JP 10793084 A JP10793084 A JP 10793084A JP S60250229 A JPS60250229 A JP S60250229A
Authority
JP
Japan
Prior art keywords
laser beam
plastic substrate
electric signal
angle
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10793084A
Other languages
Japanese (ja)
Inventor
Junichi Umegaki
梅垣 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10793084A priority Critical patent/JPS60250229A/en
Publication of JPS60250229A publication Critical patent/JPS60250229A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure rapidly coefficient of complex refraction, by installing laser beam generating means, fixing and rotating means of a substrate, its displacement means, 1/2 wave length board, optical analyzer, means for converting light energy into an electric signal and means of displaying and recording the electric signal. CONSTITUTION:A specimen plastic substrate 9 is fastened to a fixing unit 10, and by driving rotating unit 11 and diametral direction driving unit 12, the measuring point on the board 9 is displaced to a position where a laser beam 1 of a random polarized ray passes. Further, the beam 1 is converted to an electric signal by a photodetector 6 through polarizer 3 having a transmission axis in the C direction located by counter-clockwise rotation through an angle of 45 deg., substrate 9, 1/2 wave length board 4 in which vibration element in the D direction lags behind that in the E direction, and optical analyzer 5 having a transmission axis in the F direction located by counter-clockwise rotation through an angle of 45 deg.. Further, an output of the detector 6 is introduced in a display and recording apparatus (not shown) for observation of a coefficient of complex refraction as a quantity proportional to 1-cos delta corresponding to a phase lag of the measured light intensity by the detector 6.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はプラスチック基板検査装置、特に、光デイスク
用プラスチック基板の複屈折率全検査するプラスチック
基板検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a plastic substrate inspection device, and more particularly to a plastic substrate inspection device for fully inspecting the birefringence of a plastic substrate for an optical disk.

〔従来技術〕[Prior art]

従来の光デイスク用プラスチック基板の杓屈折率の検査
には、2枚の偏光板による目視検査法やエリプソメトリ
による精密定量測定法が用いられていた。
Conventionally, a visual inspection method using two polarizing plates or a precision quantitative measurement method using ellipsometry has been used to inspect the refractive index of a plastic substrate for an optical disk.

前者は、2つの偏光板の間に被測定物を置いて、複屈折
によシ生ずる透過光量の分布全目視検査するもので、定
性的な測定であるため測定精度が低かった。
In the former method, the object to be measured is placed between two polarizing plates and the entire distribution of transmitted light amount caused by birefringence is visually inspected, and the measurement accuracy is low because it is a qualitative measurement.

一方、後者は2つの直交する振動成分をもつ偏光の振1
〕比と位相差を測定し、対象の光学的特性を決定するも
ので、定量的な測定が可能であるが、検光子を回転させ
て各方向における光強度を測定し、極めて複雑な演算処
理を行なうため測定時間が長いという欠点があった。
On the other hand, in the latter case, the amplitude of polarized light with two orthogonal vibration components is 1.
] It measures the ratio and phase difference to determine the optical properties of the object, and quantitative measurements are possible, but the analyzer is rotated to measure the light intensity in each direction and requires extremely complicated calculation processing. The disadvantage is that the measurement time is long.

一般に、プラスチック基板の製造に用いられる射出成形
法ではその熱サイクルとしての性格から連続的に成形を
続けながら最適々成形条件を探索することが多く、この
場合には、成形したプラスチック基板の特性全短時間に
測定し、成形条件のパラメータに速やかにフィードバッ
クをかけることが、極めて重要であり、測定時間が長い
ということは致命的な欠点となっている。
In general, in the injection molding method used to manufacture plastic substrates, the optimal molding conditions are often searched for while continuing molding due to its thermal cycle nature. It is extremely important to take measurements in a short period of time and provide prompt feedback to molding condition parameters, and the long measurement time is a fatal drawback.

また、後者では複雑な演算処理機能が必要なため、装置
が高価になる欠点があった。
In addition, the latter method requires complicated arithmetic processing functions, which has the disadvantage of making the device expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は光デイスク用プラスチック基板の複屈折
率を極めて短時間で定量的に精度よく測定でき、しかも
安価なプラスチック基板検査装置全提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive plastic substrate inspection apparatus that can quantitatively and accurately measure the birefringence of a plastic substrate for an optical disk in a very short period of time.

〔発明の構成〕 本発明のプラスチック基板検査装置は直線偏光のレーザ
ビームを発生する手段と、プラスチック基板の表面が前
記レーザビームと直交する姿勢に保持し、回転させる保
持回転手段と、前記保持回転手段全搭載し前記レーザビ
ームの光軸と旧交しかつ偏光の方向と45°を外す方向
に移動して前記プラスチック基板全前記レーザビーム上
に差入れレーザスポラトラ前記プラスチック基板の半径
方向に走査せしむる移動手段と、前記レーザビーム上で
差入れられたプラスチック基板の後方に位置して前記レ
ーザビームと直交しかつ偏光の方向と45°をなす方向
に軸をもつ2分の1波長板と、前記レーザビーム上で前
記2分の1波長板の後方に位置し、前記レーザビームの
偏光方向と同じ方向に透過軸をもつ検光子と、前記レー
ザビーム上で前記検光子の後方に位置し、前記レーザビ
ームの光エネルギ全電気信号に変換する手段と、前記電
気信号を定量的に表示記録する手段とを含んで構成され
る。
[Structure of the Invention] The plastic substrate inspection apparatus of the present invention includes means for generating a linearly polarized laser beam, holding and rotating means for holding and rotating the plastic substrate in an attitude in which the surface of the plastic substrate is perpendicular to the laser beam, and the holding and rotating means for The entire plastic substrate is loaded onto the laser beam and moved in a direction that intersects the optical axis of the laser beam and deviates from the direction of polarization by 45 degrees, and the laser sporatra scans the plastic substrate in the radial direction. a half-wave plate located behind the plastic substrate inserted above the laser beam and having an axis perpendicular to the laser beam and at an angle of 45° with the direction of polarization; an analyzer located behind the half-wave plate on the laser beam and having a transmission axis in the same direction as the polarization direction of the laser beam; The apparatus includes means for converting the optical energy of the laser beam into a total electric signal, and means for quantitatively displaying and recording the electric signal.

〔実施例の説明〕[Explanation of Examples]

次に、本発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例全売す斜視図である。FIG. 1 is a perspective view of an embodiment of the present invention.

第2図は同実施例の電気信号処理系を示すブロック図で
ある。
FIG. 2 is a block diagram showing the electrical signal processing system of the same embodiment.

第1図において、説明を簡明にするため、レーザビーム
1を7オトデテクタ6側から観察して、鉛直上方向ky
軸方向A、水平右方向をX軸方向Bとする0 第1図、第2図に示すプラスチック基板検査装置は、ラ
ンダム偏光のレーザビームl’lk発生するHe−Ne
レーザ管2と、前記レーザビーム1の光軸上でX軸から
反時計回りに45°回転した方向Cに透過軸をもつ姿勢
で固定された偏光子3と、前記レーザビーム1の光軸上
で前記偏光子3の後方に位置し、X軸方向りの振動成分
がy軸方向Eの振動成分に対して遅れる姿勢で固定され
た2分の1波長板4と、前記レーザビーム1の光軸上で
前5− 記2分の1波長板4の後方に位置し、X軸から反時計回
りに45°回転した方向Fに透過軸をもつ姿勢で固定さ
れた検光子5と、前記レーザビーム1の光軸上で前記検
光子5の後方に位置し、前記偏光子3.プラスチック基
板9.前記2分の1波長板4.前記検光子5を透過した
レーザビーム1を受光して、その光量を電気信号aに変
換するフォトデテクタ6と、前記フォトデテクタ6から
の電気信号a’f増巾して電圧出力すに変換する処理部
13と、前記処理部で得られた電圧出力すの時間変化を
表示するオシロスコープ7と、記録するペン書きレコー
ダ8と、前記プラスチック基板9を前記レーザビーム1
と直交する姿勢に保持する保持部10と前記レーザビー
ム1の光軸と同じ高さで平行な軸を中心に前記プラスチ
ック基板9を回転させる回転部11と、前記保持部10
と前記回転部11を搭載してX軸方向に移動する径方向
移動部12とを含んで構成される。
In FIG. 1, in order to simplify the explanation, the laser beam 1 is observed from the 7-otode detector 6 side, and the laser beam 1 is observed in the vertically upward direction.
The plastic substrate inspection apparatus shown in Figs. 1 and 2 has an axial direction A and a horizontal right direction as the X-axis direction B.
a laser tube 2; a polarizer 3 fixed on the optical axis of the laser beam 1 with its transmission axis in a direction C rotated 45 degrees counterclockwise from the X axis; a half-wave plate 4 located behind the polarizer 3 and fixed in an attitude in which the vibration component in the X-axis direction lags behind the vibration component in the y-axis direction E; and the light of the laser beam 1. An analyzer 5 located behind the half-wave plate 4 on the axis and fixed in a posture with its transmission axis in a direction F rotated by 45 degrees counterclockwise from the X axis, and the laser The polarizer 3. is located behind the analyzer 5 on the optical axis of the beam 1. Plastic substrate9. Said half wavelength plate4. A photodetector 6 receives the laser beam 1 that has passed through the analyzer 5 and converts the amount of light into an electrical signal a, and amplifies the electrical signal a'f from the photodetector 6 and converts it into a voltage output. A processing section 13, an oscilloscope 7 for displaying the temporal change in the voltage output obtained by the processing section, a pen writing recorder 8 for recording, and a laser beam 1 for the plastic substrate 9.
a holding section 10 that holds the plastic substrate 9 in a position perpendicular to the optical axis of the laser beam 1; a rotating section 11 that rotates the plastic substrate 9 about an axis parallel to and at the same height as the optical axis of the laser beam 1;
and a radial moving section 12 that mounts the rotating section 11 and moves in the X-axis direction.

これを動作するには、測定すべきプラスチック基板9を
保持部10に固定したのち、回転部116一 と径方向移動部12全駆動してプラスチック基板9上の
被測定点をレーザビーム1が透過する位置へ移動する。
To operate this, after fixing the plastic substrate 9 to be measured to the holding part 10, the rotating part 116 and the radial moving part 12 are fully driven so that the laser beam 1 passes through the point to be measured on the plastic substrate 9. Move to the desired position.

このとき移動方向は水平方向で、測定点をプラスチック
基板9の半径方向に移動させることができる。また、回
転、移動により測定点を変えても、測定点においては常
にプラスチック基板9の半径方向がX軸方向A1円周方
向がy軸方向Bに対応している。次に、He−Neレー
ザ2を点灯すれば、偏光子3を透過後、 レーザビーム1の各振動成分は式(1)α′)となる。
At this time, the moving direction is horizontal, and the measurement point can be moved in the radial direction of the plastic substrate 9. Furthermore, even if the measuring point is changed by rotation or movement, the radial direction of the plastic substrate 9 always corresponds to the X-axis direction A1 and the circumferential direction corresponds to the Y-axis direction B at the measuring point. Next, when the He-Ne laser 2 is turned on, each vibrational component of the laser beam 1 after passing through the polarizer 3 becomes the following equation (1) α').

EX = E□ exp(−iwt) (1)Ey =
 E□ exp(−iwt) (1’)ここでEx、 
BYはそれぞれX軸方向、y軸方向の振動成分である。
EX = E□ exp(-iwt) (1) Ey =
E□ exp(-iwt) (1') where Ex,
BY are vibration components in the X-axis direction and the y-axis direction, respectively.

次に、このレーザビーム1がプラスチック基板9を透過
すると、材料の歪みや分子配向などの樹脂成形に起因す
る変質により複屈折を生じ位相のずれが起こる。
Next, when this laser beam 1 passes through the plastic substrate 9, birefringence occurs due to alterations caused by resin molding, such as material distortion and molecular orientation, resulting in a phase shift.

光デイスク用プラスチック基板の樹脂成形法として、一
般的な射出成形法によれば通常、樹脂はプラスチック基
板中心部のゲートから周辺部へ向けて充てんされるので
複屈折の軸としてはプラスチック基板9の半径方向と円
周方向になり、この2つの方向の振動成分の位相ずれを
測定すれば、そのプラスチック基板の複屈率全測定する
ことができる。
According to the general injection molding method used for resin molding of plastic substrates for optical disks, the resin is normally filled from the gate in the center of the plastic substrate toward the periphery, so the axis of birefringence is the axis of the plastic substrate 9. By measuring the phase shift of the vibration components in the radial direction and the circumferential direction, the total birefringence of the plastic substrate can be measured.

ここでこれら2方向に袖ケもつ複屈折により半径方向の
振動成分に対して、円周方向の振動成分にδの位相ずれ
が生じると、プラスチック基板透過後のレーザビーム1
は式(2)(イ)となるEX = E□ exp(−i
wt) (2)Ey=E□ exp(−iwt)exp
 iδ C)さらに、x、y軸方向に軸をもつ2分の1
波長板4會透過すると式(3)(3’)となるEX =
 E□ exp(−iwt) (3)Ey =E□ e
xp(−iwt)exp i (δ十π)σ)このレー
ザビームがX軸から反時計回りに45゜回転した方向に
透過輪金もつ検光子を透過すると、この方向の成分だけ
が通過することになるので式%式%) () 光の強度は各振巾の2乗の和であるから、フォトデテク
タ6で測定される光強度は式(5)σ)となる。
If a phase shift of δ occurs in the circumferential vibration component with respect to the radial vibration component due to birefringence in these two directions, the laser beam 1 after passing through the plastic substrate
is the formula (2) (a) EX = E□ exp(-i
wt) (2) Ey=E□ exp(-iwt)exp
iδ C) Furthermore, 1/2 with axes in the x and y axes directions
When transmitted through 4 wave plates, the formula (3) (3') is obtained.EX =
E□ exp(-iwt) (3)Ey =E□ e
xp(-iwt)exp i (δ1π)σ) When this laser beam passes through an analyzer with a transmission ring in a direction rotated 45 degrees counterclockwise from the X axis, only the component in this direction passes through. () Since the intensity of light is the sum of the squares of each amplitude, the intensity of light measured by the photodetector 6 is expressed by equation (5) σ).

I = 1/2 E□ ((1−cosδ) +stn
δ)(5)=Eo(1−cosδ) (イ) 従って、フォトデテクタ6で測定される光の強度は位相
ずれδに対応した1−cosδに比例した量となり、こ
れ全電気信号に変換すればオシロスコープ7やペン書き
レコーダ8で瞬時に複屈折率を観察記録することができ
る。
I = 1/2 E□ ((1-cosδ) +stn
δ) (5) = Eo (1-cos δ) (a) Therefore, the intensity of the light measured by the photodetector 6 is an amount proportional to 1-cos δ corresponding to the phase shift δ, and this must be converted into a total electric signal. For example, the birefringence can be observed and recorded instantly using an oscilloscope 7 or a pen recorder 8.

また、ここで、プラスチック基板9を回転させれは円周
方向の複屈折率の変化を瞬時に観察記録することができ
る。
Furthermore, by rotating the plastic substrate 9, changes in birefringence in the circumferential direction can be observed and recorded instantaneously.

さらに、プラスチック基板9を半径方向に移動すれば半
径方向の複屈折率の変化を瞬時に観察記録することがで
きる。
Furthermore, by moving the plastic substrate 9 in the radial direction, changes in the birefringence index in the radial direction can be observed and recorded instantaneously.

〔発明の効果〕〔Effect of the invention〕

本発明のプラスチック基板検査装置は、回転部9− 11と径方向移動部を設けて被測定点におけるプラスチ
ック基板の半径方向と円周方向が常に一定となるように
プラスチック基板を回転、移動するとともに、2分の1
波長板4と検光子5によシ、最も重要な半径方向と円周
方向の振動成分間の位相ずれのみを抽出(−て瞬時に観
察、記録できるので、複雑な演算処理が不要で、複屈折
率を短時間で定量的に精度よく測定できるという効果が
ある。
The plastic substrate inspection apparatus of the present invention includes a rotating section 9-11 and a radial moving section, and rotates and moves the plastic substrate so that the radial direction and circumferential direction of the plastic substrate at the measurement point are always constant. , 1/2
By using the wave plate 4 and analyzer 5, only the most important phase shift between the radial and circumferential vibration components can be extracted (-) and can be observed and recorded instantly, eliminating the need for complex arithmetic processing. This method has the effect of being able to quantitatively and accurately measure the refractive index in a short period of time.

また、装置の構成が簡単であり、演算処理機能が不要な
ので、装置を安価に提供できるという効果がある。
Furthermore, since the device has a simple configuration and does not require arithmetic processing functions, it has the advantage that the device can be provided at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図は同実
施例の電気信号処理系を示すブロック図である。 1・・・レーザビーム、2・・・He−Neレーザ管、
3・・・偏光子、4・・・2分の1波長板、5・・・検
光子、6・・・フォトデテクタ、7・・・オシロスコー
プ、8・・・ペンt!レコーダ、9・・・プラスチック
基板、10・・・10− 保持部、11・・・回転部、12・・・径方向移動部、
13・・・処胛部、 a・・・電気信号、b・・・電気出力。 11− % r 図 Z?図
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG. 2 is a block diagram showing an electrical signal processing system of the same embodiment. 1... Laser beam, 2... He-Ne laser tube,
3...Polarizer, 4...Half wavelength plate, 5...Analyzer, 6...Photodetector, 7...Oscilloscope, 8...Pen t! Recorder, 9... Plastic substrate, 10... 10- Holding section, 11... Rotating section, 12... Radial direction moving section,
13... Processing part, a... Electric signal, b... Electric output. 11- % r Figure Z? figure

Claims (1)

【特許請求の範囲】[Claims] 直線偏光のレーザビームを発生する手段と、プラスチッ
ク基板の表面が前記レーザビームと直交する姿勢に保持
し回転させる保持回転手段と、前記保持回転手段全搭載
し前記レーザビームの光軸と直交し、かつ、偏光の方向
と45°をなす方向に移動して、前記プラスチック基板
を前記レーザビーム上に差入れ、レーザスポラ)k前記
プラスチック基板の半径方向に走査せしむる移動手段と
、前記レーザビーム上で差入れられたプラスチック基板
の後方に位置して前記レーザビームと直交しかつ偏光の
方向と45°金なす方向に軸全もつ2分の1波長板と、
前記レーザビーム上で前記2分の1波長板の後方に位置
し前記レーザビームの偏光方向と同じ方向に透過軸をも
つ検光子と、前記レーザビーム上で前記検光子の後方に
位置し、前記レーザビームの光エネルギを電気信号に変
換する手段と、前記電気信号を定量的に表示記録する手
段とを含むことを特徴とするプラスチック基板検査装置
a means for generating a linearly polarized laser beam; a holding and rotating means for holding and rotating the surface of a plastic substrate in a posture orthogonal to the laser beam; and a moving means for moving in a direction making a 45° angle to the direction of polarization, inserting the plastic substrate onto the laser beam, and scanning the plastic substrate in the radial direction; a half-wave plate located behind the inserted plastic substrate and having its entire axis perpendicular to the laser beam and at a 45° angle with the direction of polarization;
an analyzer located behind the half-wave plate on the laser beam and having a transmission axis in the same direction as the polarization direction of the laser beam; A plastic substrate inspection apparatus comprising: means for converting optical energy of a laser beam into an electrical signal; and means for quantitatively displaying and recording the electrical signal.
JP10793084A 1984-05-28 1984-05-28 Inspecting device of plastic substrate Pending JPS60250229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10793084A JPS60250229A (en) 1984-05-28 1984-05-28 Inspecting device of plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10793084A JPS60250229A (en) 1984-05-28 1984-05-28 Inspecting device of plastic substrate

Publications (1)

Publication Number Publication Date
JPS60250229A true JPS60250229A (en) 1985-12-10

Family

ID=14471654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10793084A Pending JPS60250229A (en) 1984-05-28 1984-05-28 Inspecting device of plastic substrate

Country Status (1)

Country Link
JP (1) JPS60250229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245951A (en) * 1986-04-18 1987-10-27 Pioneer Electronic Corp Disk measuring instrument
JPH02234922A (en) * 1989-01-26 1990-09-18 Truetzschler Gmbh & Co Kg Apparatus provided for card, waste cotton cleaner etc,for cotton fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245951A (en) * 1986-04-18 1987-10-27 Pioneer Electronic Corp Disk measuring instrument
JPH0569374B2 (en) * 1986-04-18 1993-09-30 Pioneer Electronic Corp
JPH02234922A (en) * 1989-01-26 1990-09-18 Truetzschler Gmbh & Co Kg Apparatus provided for card, waste cotton cleaner etc,for cotton fiber

Similar Documents

Publication Publication Date Title
CN102183360B (en) The detection method of polarization extinction ratio of optical polarizer and pick-up unit
EP0831295B1 (en) Optical differential profile measurement apparatus and process
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
CN105716756B (en) A kind of device for accurately measuring of optical material microstress spatial distribution
US3157727A (en) Polarimeter
US2974561A (en) Polarimeter
CN100383499C (en) Method and device for measuring parameters of liquid crystal unit
KR100293008B1 (en) Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
CA1048806A (en) Rotating-compensator ellipsometer
JPS60250229A (en) Inspecting device of plastic substrate
CN109781317A (en) Optical glass stress detection system and detection method
JPH0518856A (en) Apparatus for measuring polarization and double refraction
KR20080061196A (en) Measuring apparatus and method for rubbing angle of liquid crystal alignment film
TWI405959B (en) Method and apparatus for measuring physical parameters of an anisotropic material by phase-sensitive heterodyne interferometry
CN1303006A (en) Standard device for calibrating polarized-light stressometer and method for locating minimal light intensity
US6317209B1 (en) Automated system for measurement of an optical property
JP2791479B2 (en) Retardation measurement method
CN106383000B (en) A kind of device of the double Electro-optical Modulation real-time measurement optical material microstresses of based single crystal body
EP0249923B1 (en) Method of and apparatus for measuring polarization beat-length in highly-birefringent single-mode optical fibres
JP2713190B2 (en) Optical property measuring device
Lin et al. Theoretical analysis of sensitivity-tunable total-internal-reflection heterodyne interferometer
JP2776333B2 (en) Liquid crystal alignment film inspection method and inspection apparatus
JP4971733B2 (en) Birefringence measuring apparatus, birefringence measuring method, program, and recording medium
Schulz et al. High accuracy polarimetric calibration of quartz control plates
Shribak Autocollimating detectors of birefringence