JPS60249A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS60249A
JPS60249A JP58107061A JP10706183A JPS60249A JP S60249 A JPS60249 A JP S60249A JP 58107061 A JP58107061 A JP 58107061A JP 10706183 A JP10706183 A JP 10706183A JP S60249 A JPS60249 A JP S60249A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
area
main circuit
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58107061A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Satoshi Imabayashi
敏 今林
Toshimoto Kajitani
俊元 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58107061A priority Critical patent/JPS60249A/en
Publication of JPS60249A publication Critical patent/JPS60249A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps

Abstract

PURPOSE:To miniaturize the heat exchanger by a method wherein gas area in the heat exchanger for hot-water supplying is decreased to increase the rate of two-phase area and use the heat exchanger in the high area of heat exchanging efficiency. CONSTITUTION:A branch tube 9, provided at the heat source side fluid entrance 10 of the heat exchanger 21, is connected to an intermediate entrance port 12 on the way of a main circuit a b c d e. High temperature high pressure superheated gas, discharged from a compressor 1, is branched at the entrance 10 and the main stream of the gas flows into the main circuit to dissipate the heat to water side and is condensed, while a branched stream, passing through the branch tube 9, flows into the main circuit through the hole 12 in the form of the superheated gas as it is and increases the drying degree of the condensed main stream as well as the heat transmission of the heat source fluid after joining of the flow. The main stream after branching decreases the amount of heat dissipation in the superheated gas area in accordance with the decrease of the flow amount thereof, therefore, it begins to condense quickly and the area of large heat transmitting rate is maintained whereby necessary pipe length may be shortened and the heat exchanger may be miniaturized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はヒートポンプサイクルを利用した給湯機におけ
る給水加熱用の熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat exchanger for heating feed water in a water heater using a heat pump cycle.

従来例の構成とその問題点 従来、ヒートポンプサイクルの凝縮熱で水を加熱昇温す
るヒートポンプ給湯機では、第1図に示すように圧縮機
1、給湯用熱交換器2、膨張装置3、集熱器4、アキュ
ムレータ6を順次冷媒配管で連結して密閉回路を構成し
ている。6は貯湯槽、7は給水管、8は出湯管である。
Conventional structure and its problems Conventionally, in a heat pump water heater that heats and raises the temperature of water using the condensation heat of the heat pump cycle, as shown in FIG. The heating device 4 and the accumulator 6 are successively connected through refrigerant piping to form a sealed circuit. 6 is a hot water storage tank, 7 is a water supply pipe, and 8 is a hot water outlet pipe.

ここで、圧縮機1から吐出された高温高圧の過熱ガス冷
媒は貯湯槽6内に挿入された給湯用熱交換器2において
貯湯槽6内の水側に放熱して凝縮し、ガス、二相状態、
液と相変化して液冷媒となって流出する。この熱交換過
程において、ガス冷媒域は放熱量が少ないにもかかわら
ず給湯用熱交換器2の全管長に対して比較的大きな割合
を占有するため、給湯用熱交換器2が大型化したり、逆
に給湯用熱交換器2の設置スペースに制約がある場合に
は貯湯槽6の沸上げ水温が低くなるという欠点がめった
。これを第2図、第3図、第4図で具体的に説明する。
Here, the high-temperature, high-pressure superheated gas refrigerant discharged from the compressor 1 radiates heat to the water side of the hot water storage tank 6 in the hot water heat exchanger 2 inserted into the hot water storage tank 6 and condenses, resulting in gas and two-phase situation,
It changes phase with liquid and flows out as liquid refrigerant. In this heat exchange process, the gas refrigerant region occupies a relatively large proportion of the total pipe length of the hot water supply heat exchanger 2 even though the amount of heat radiated is small, so the hot water supply heat exchanger 2 becomes large. On the other hand, when there is a restriction in the installation space of the hot water supply heat exchanger 2, the disadvantage is that the temperature of the boiling water in the hot water storage tank 6 becomes low. This will be explained in detail with reference to FIGS. 2, 3, and 4.

給湯用熱交換器6内の冷媒各域の放熱量は冷媒循環量G
Rとエンタルピ差Δ1 (ガス域ΔiG 二相域lip
 液域ΔiL)の積で示され、実用上でガス域:二相域
:液域ζ0.1e : 0.8 :0.04程度で、ガ
ス域での放熱量は全体の約16%である。
The heat radiation amount of each region of the refrigerant in the hot water supply heat exchanger 6 is the refrigerant circulation amount G
R and enthalpy difference Δ1 (gas region ΔiG two-phase region lip
It is expressed as the product of the liquid region ΔiL), and in practical terms, it is about gas region: two-phase region: liquid region ζ0.1e: 0.8: 0.04, and the amount of heat dissipated in the gas region is about 16% of the total. .

これに対し、給湯用熱交換器2における冷媒各域の管長
割合は、第4図の液域A、二相域B、ガス域Cにおける
冷媒側の熱伝達率が異なり二相域が最も優れ、ガス域C
および置載Aは二相域Bより大巾に小さいために各域の
放熱量割合とは一致せず、第3図のようにガス域LG:
二相域LP :液域LL ’=0.32 : 0.6 
: 0.08程度となり、ガス域LGは全管長の約32
%を占めている。このようにガス域LGはその放熱量に
比較して大きな管長割合が必要で、熱交換器の小型化の
妨げとなっていた。なお第3図の一点鎖線は等混線であ
る。
On the other hand, the pipe length ratio of each refrigerant region in the hot water supply heat exchanger 2 is different in the heat transfer coefficient on the refrigerant side in the liquid region A, two-phase region B, and gas region C in Fig. 4, and the two-phase region is the best. , gas region C
Since the installation A is much smaller than the two-phase region B, the heat release ratio of each region does not match, and as shown in Fig. 3, the gas region LG:
Two-phase region LP: liquid region LL'=0.32: 0.6
: Approximately 0.08, and the gas area LG is approximately 32 of the total pipe length.
%. As described above, the gas region LG requires a large pipe length ratio compared to its heat dissipation amount, which has been an obstacle to downsizing the heat exchanger. Note that the dashed-dotted line in FIG. 3 is an equimixture line.

発明の目的 本発明は、以上のような従来の問題点を解消するもので
、給湯用熱交換器でのガス域を減少せしめ二相域割合を
高くして熱交換効率の高い領域で使用することにより、
熱交換器の小型化を図ることを目的とする。
Purpose of the Invention The present invention solves the above-mentioned conventional problems by reducing the gas region in a heat exchanger for hot water supply and increasing the two-phase region ratio to use it in an area with high heat exchange efficiency. By this,
The purpose is to downsize heat exchangers.

発明の構成 本発明では、熱源側流体入口部に分岐管を設け、分岐管
の一方は全管長にわたる熱源側流体主回路を形成し、分
岐管の他方はこの主回路の途中に設けた中間入口孔に接
続したものである0この構成により、主回路の入口から
流入する流量を減少させて主回路でのガス域を減少させ
、凝縮して二相状態となったところに中間入口孔よシ過
熱ガスを混入させて、瞬時にこの過熱ガスを二相状態に
することにより全体のガス域割合を低減でき、熱交換効
率の高い領域を使用することによシ熱交換器の小型化が
達成できるものである0実施例の説明 第6図に本発明の一実施例を説明する。なお、従来例と
同一のところは同一番号を付し説明は省略する。
Structure of the Invention In the present invention, a branch pipe is provided at the fluid inlet on the heat source side, one of the branch pipes forms a heat source side fluid main circuit spanning the entire pipe length, and the other branch pipe forms an intermediate inlet provided in the middle of this main circuit. This configuration reduces the flow rate flowing in from the inlet of the main circuit to reduce the gas area in the main circuit, and connects the intermediate inlet hole to the gas area in the main circuit where it condenses into a two-phase state. By mixing superheated gas and instantly turning it into a two-phase state, the overall gas region ratio can be reduced, and by using regions with high heat exchange efficiency, the heat exchanger can be made smaller. DESCRIPTION OF EMBODIMENTS OF THE INVENTION An embodiment of the present invention will be described in FIG. Incidentally, the same parts as in the conventional example are given the same numbers and explanations are omitted.

9は給湯用熱交換器21の熱源側流体入口部1゜に設け
た分岐管、11は分岐管9に直列に配した流量調整部、
12は給湯用熱交換器21の主回路(a−+b−+c 
−+ d −) e )の途中に設けた中間入口孔であ
り、前記分岐管9は中間入口孔12に接続されている。
9 is a branch pipe provided at the heat source side fluid inlet portion 1° of the hot water heat exchanger 21; 11 is a flow rate adjustment unit arranged in series with the branch pipe 9;
12 is the main circuit of the hot water heat exchanger 21 (a-+b-+c
-+ d -) This is an intermediate inlet hole provided in the middle of e), and the branch pipe 9 is connected to the intermediate inlet hole 12.

この回路構成において熱源側流体としてフロンを用いヒ
ートポンプサイクルにより被加熱側流体の水を加熱昇温
する場合を説明する0 圧縮機1より吐出された高温高圧の過熱ガスは給湯用熱
交換器21の熱源側流体入口部10において分流し、主
流は主回路に流入して水側に放熱し凝縮し、分岐管9を
通る分岐流は過熱ガスのまま中間入口孔12よシ主回路
に流入し、すでに凝縮している主流の乾き度を上げ、合
流後の熱源流体の熱伝達を上げる作用をする。第6図は
以上説明した給湯用熱交換器内の熱源流体の相変化状態
を示し、実線は本実施例の場合、破線は従来の場合であ
る。分流後の主流は流量減少に応じて過熱ガス域の放熱
量が減少するため、従来例の場合よりもはやく凝縮を開
始し、分岐流の合流によシその乾き度は上昇し熱伝達率
の大きい領域が維持される。従って熱交換器の必要管長
はLl となり従来方式での管長L2より短縮される。
In this circuit configuration, a case will be explained in which fluorocarbons are used as the heat source fluid and water as the fluid to be heated is heated and heated by a heat pump cycle. The fluid is separated at the heat source side fluid inlet 10, the main flow flows into the main circuit, radiates heat to the water side and condenses, and the branched flow passing through the branch pipe 9 flows into the main circuit through the intermediate inlet hole 12 as superheated gas, It increases the dryness of the already condensed mainstream and increases the heat transfer of the heat source fluid after merging. FIG. 6 shows the phase change state of the heat source fluid in the hot water supply heat exchanger described above, where the solid line is for this embodiment and the broken line is for the conventional case. The amount of heat dissipated in the superheated gas region of the main stream after the branch flow decreases as the flow rate decreases, so it starts condensing earlier than in the conventional case, and as the branch streams merge, its dryness increases and the heat transfer coefficient decreases. Large areas are maintained. Therefore, the required pipe length of the heat exchanger is Ll, which is shorter than the pipe length L2 in the conventional system.

このように給湯用熱交換器は熱源流体側熱伝達率が高い
二相域を十分活用できるため、熱交換器の熱通過率Kを
高くできる。従って熱交換器の小型化が達成できる。
In this way, the heat exchanger for hot water supply can fully utilize the two-phase region where the heat transfer coefficient on the heat source fluid side is high, so the heat transfer coefficient K of the heat exchanger can be increased. Therefore, the heat exchanger can be made smaller.

また、熱交換器の大きさを従来のままとすれば熱通過率
にの向上分だけ熱交換量Qが増大するが、熱交換量Qが
一定ならば加熱側流体と被加熱側流体との温度差ΔTが
減少できる。すなわち貯湯槽6内の水温をよシ高くでき
る。
Also, if the size of the heat exchanger remains the same as before, the heat exchange amount Q will increase by the improvement in the heat transfer rate, but if the heat exchange amount Q is constant, the heating side fluid and the heated side fluid The temperature difference ΔT can be reduced. In other words, the water temperature in the hot water storage tank 6 can be made much higher.

さらに、分岐管9と中間入口孔12という簡単な構成の
ため性能向上を低コストで達成できる。
Furthermore, due to the simple configuration of the branch pipe 9 and the intermediate inlet hole 12, improved performance can be achieved at low cost.

その上に流量調整部11を分岐管9に直列に配して分岐
管を流れる流量を制御することにより、より効率的に熱
交換が促進できるだけでなく、熱源側流体の循環量、入
口での過熱ガス状態の変化に対応して巾広い条件で適応
できるようになる。
Moreover, by arranging the flow rate adjustment unit 11 in series with the branch pipe 9 to control the flow rate flowing through the branch pipe, not only can heat exchange be promoted more efficiently, but also the circulation amount of the heat source side fluid and the flow rate at the inlet can be improved. It becomes possible to adapt to a wide range of conditions in response to changes in superheated gas conditions.

発明の効果 本発明の熱交換器は熱源側流体入口部に分岐管を設け、
一方は全管長にわたる熱源側流体主回路を形成し、他方
の分岐管はこの主回路の途中に設けた中間入口孔に接続
し、熱源側流体の凝縮相変化によシ放熱して被加熱側流
体を加熱するので1 ガス域割合が低減され、熱交換効
率の良h二相域を活用するため熱交換器の熱通過率Kが
大きく、熱交換器の小型化ができる。
Effects of the Invention The heat exchanger of the present invention is provided with a branch pipe at the fluid inlet on the heat source side,
One side forms a heat source side fluid main circuit that spans the entire pipe length, and the other branch pipe is connected to an intermediate inlet hole provided in the middle of this main circuit, and the heat is radiated by the condensed phase change of the heat source side fluid to the heated side. Since the fluid is heated, the proportion of the gas region is reduced, and the heat exchange efficiency is high.Since the two-phase region is utilized, the heat transfer rate K of the heat exchanger is large, and the heat exchanger can be made smaller.

2 熱通過率Kが大きいので給湯水の高温沸上げができ
る。
2. Since the heat transfer coefficient K is large, hot water can be boiled to a high temperature.

3 構造が簡単なため、低コストである。3. Low cost due to simple structure.

など、その効果は太きいものである。The effect is profound.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のヒートポンプ給湯機の構成図、第2図は
ヒートサイクルポンプを示す圧力−エンタルピ線図、第
3図は給湯用熱交換器での状態変化説明図、第4図は相
変化各域における熱伝達特性図、第5図は本発明の一実
施例の熱交換器を使用したヒートポンプ給湯機の構成図
、第6図は本発明の一実施例の熱交換器における相変化
状態説明図である。 1・・・・・・圧縮機、2,21・・・・・・給湯用熱
交換器、9・・・・・・分岐管、11・・・・・・流量
調整部、12・・・・・・中間入口孔。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 合 肩咳中−)翫さ 8 第5図 第6 人 口 管長L
Figure 1 is a configuration diagram of a conventional heat pump water heater, Figure 2 is a pressure-enthalpy diagram showing a heat cycle pump, Figure 3 is an explanatory diagram of state changes in a heat exchanger for hot water supply, and Figure 4 is a phase change. Heat transfer characteristic diagrams in each region, Figure 5 is a configuration diagram of a heat pump water heater using a heat exchanger according to an embodiment of the present invention, and Figure 6 is a phase change state in a heat exchanger according to an embodiment of the present invention. It is an explanatory diagram. DESCRIPTION OF SYMBOLS 1... Compressor, 2, 21... Hot water supply heat exchanger, 9... Branch pipe, 11... Flow rate adjustment section, 12... ...Intermediate entrance hole. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 3 Shoulder cough -) 8 Figure 5 Figure 6 Population Director L

Claims (2)

【特許請求の範囲】[Claims] (1)熱源側流体入口部に分岐管を設け、分岐管の一方
は全管長にわたる熱源側流体主回路を形成し、分岐管の
他方はこの主回路の途中に設けた中間入口孔に接続し、
熱源側流体の凝縮相変化により放熱して被加熱側流体を
加熱する構成とした熱交換器。
(1) A branch pipe is provided at the fluid inlet on the heat source side, one of the branch pipes forms a heat source side fluid main circuit spanning the entire pipe length, and the other branch pipe is connected to an intermediate inlet hole provided in the middle of this main circuit. ,
A heat exchanger configured to radiate heat through a condensed phase change of the fluid on the heat source side and heat the fluid on the heated side.
(2)流量調整部を分岐管に直列に設けた特許請求の範
囲第1項記載の熱交換器。
(2) The heat exchanger according to claim 1, wherein the flow rate adjustment section is provided in series with the branch pipe.
JP58107061A 1983-06-15 1983-06-15 Heat exchanger Pending JPS60249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107061A JPS60249A (en) 1983-06-15 1983-06-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107061A JPS60249A (en) 1983-06-15 1983-06-15 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS60249A true JPS60249A (en) 1985-01-05

Family

ID=14449499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107061A Pending JPS60249A (en) 1983-06-15 1983-06-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS60249A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649621A (en) * 1986-02-21 1987-03-17 Artos Engineering Company Wire processing apparatus having control means

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432299U (en) * 1977-08-05 1979-03-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432299U (en) * 1977-08-05 1979-03-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649621A (en) * 1986-02-21 1987-03-17 Artos Engineering Company Wire processing apparatus having control means

Similar Documents

Publication Publication Date Title
US4646538A (en) Triple integrated heat pump system
TW513515B (en) Method and apparatus for preheating of and dewatering from the steam inlet ducts which are communicated with the steam turbines
US4476922A (en) Forced bilateral thermosiphon loop
EP3090213B1 (en) Heat exchanger, heating device, heating system and method for heating water
JPS60249A (en) Heat exchanger
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
JP2002162123A (en) Heat pump
JPS6234147Y2 (en)
JPS58138988A (en) Heat exchanger
JPH0157269B2 (en)
JP2002054854A (en) Absorptive cooling/heating water heater
CN214172556U (en) Carbon dioxide heat pump water supply unit
JPS58187767A (en) Absorption type heat pump air-conditioning hot-water supply system
RU2151344C1 (en) Water heating system
JP2735017B2 (en) Plate fin coil
JPH022401Y2 (en)
JP3308437B2 (en) Water heater heat exchanger
JP2003294338A (en) Heat exchanger
JP3915635B2 (en) Water heater
JPS5947836B2 (en) steam condenser
JP2921372B2 (en) Double-effect absorption heat pump
JPS6215662Y2 (en)
JPH08242705A (en) Heater using warm water boiler
JPS6146740B2 (en)
JPH1019374A (en) Heat pump equipment