JPH022401Y2 - - Google Patents

Info

Publication number
JPH022401Y2
JPH022401Y2 JP1984137825U JP13782584U JPH022401Y2 JP H022401 Y2 JPH022401 Y2 JP H022401Y2 JP 1984137825 U JP1984137825 U JP 1984137825U JP 13782584 U JP13782584 U JP 13782584U JP H022401 Y2 JPH022401 Y2 JP H022401Y2
Authority
JP
Japan
Prior art keywords
compressor
gas
evaporator
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984137825U
Other languages
Japanese (ja)
Other versions
JPS6155901U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984137825U priority Critical patent/JPH022401Y2/ja
Publication of JPS6155901U publication Critical patent/JPS6155901U/ja
Application granted granted Critical
Publication of JPH022401Y2 publication Critical patent/JPH022401Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、例えば排液、排有機溶剤海水、果汁
等を濃縮、蒸留するのに利用される装置に関す
る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to an apparatus used for concentrating and distilling waste liquid, waste organic solvent seawater, fruit juice, etc., for example.

従来の技術 蒸気再圧縮式蒸発装置は、原液を加熱すること
により発生した蒸気を圧縮して高温高圧にし、こ
の高温高圧の蒸気を原液の加熱源として利用する
所にあり、潜熱を回収できてエネルギー効率が良
く、成績係数は10〜20にもなり、ランニングコス
トが安い等の利点がある。
Conventional technology A vapor recompression type evaporator compresses the vapor generated by heating the raw liquid to high temperature and high pressure, and uses this high temperature and high pressure steam as a heating source for the raw liquid, and can recover latent heat. It has advantages such as high energy efficiency, coefficient of performance of 10 to 20, and low running costs.

このような従来の蒸気再圧縮式蒸発装置の系統
図を第4図に示してある。
A system diagram of such a conventional vapor recompression type evaporator is shown in FIG.

濃縮原液は、2つの予熱器1,2で並行に予熱
されて蒸発缶3に入る。蒸発缶3には熱交換器4
が備えられており、予熱されて供給された原液は
熱交換器4にて加熱されて蒸気となる。蒸発缶3
で発生した蒸気は、デミスタ5で液滴を分離後、
遠心式、ルーツ式等のコンプレツサ6に吸入さ
れ、圧縮されて高温高圧の蒸気となる。この高温
高圧蒸気は原液より飽和蒸気温度が高いので、熱
交換器4にて蒸発缶3へ導入された原液を加熱で
き、その結果高温高圧の蒸気は凝縮して蒸留液と
なる。蒸留液はポンプ7で予熱器1へ供給され、
ここで濃縮原液を予備加熱後蒸留液として、一般
には図示しないタンクに溜められる。一方、蒸発
缶3において濃縮された原液はポンプ8で予熱器
2に送られ、濃縮原液を予備加熱後濃縮液とし
て、一般には図示しないタンクに溜められる。な
お、コンプレツサ6は電動機、内燃機関、スチー
ムタービン等の駆動源9で駆動されている。
The concentrated stock solution is preheated in parallel by two preheaters 1 and 2 and then enters the evaporator 3. A heat exchanger 4 is installed in the evaporator 3.
The preheated stock solution is heated in a heat exchanger 4 and turned into steam. Evaporator 3
After the vapor generated is separated into droplets by demister 5,
It is sucked into a compressor 6 such as a centrifugal type or Roots type, and is compressed into high-temperature, high-pressure steam. Since this high-temperature, high-pressure steam has a saturated steam temperature higher than that of the stock solution, the stock solution introduced into the evaporator 3 can be heated by the heat exchanger 4, and as a result, the high-temperature, high-pressure steam condenses to become a distilled liquid. The distillate is supplied to the preheater 1 by a pump 7,
Here, the concentrated stock solution is preheated and then stored as a distillate in a tank (not shown). On the other hand, the concentrated stock solution in the evaporator 3 is sent to the preheater 2 by a pump 8, and after preheating, the concentrated stock solution is stored in a tank (not shown) as a concentrated solution. Note that the compressor 6 is driven by a drive source 9 such as an electric motor, an internal combustion engine, or a steam turbine.

ところで、蒸発缶3で発生した蒸気は飽和蒸気
であり、コンプレツサ6に吸入される時には放熱
ロス、動圧による減圧により若干の湿り状態とな
つてしまい、コンプレツサ6が腐食してしまうの
で、スーパーヒートする為に調整弁10を設けて
コンプレツサ6からの高温の吐出ガスをコンプレ
ツサ6の吸入側へバイパスして加熱している。
By the way, the steam generated in the evaporator 3 is saturated steam, and when it is sucked into the compressor 6, it becomes slightly moist due to heat radiation loss and decompression due to dynamic pressure, and the compressor 6 corrodes. In order to do this, a regulating valve 10 is provided to bypass and heat the high temperature discharged gas from the compressor 6 to the suction side of the compressor 6.

また、コンプレツサ6の吐出ガスは過熱蒸気と
なつてしまうので、そのまま熱交換器4へ供給す
ると、温度差が付き過ぎ、スケールがこびり付く
ので、減温の為にポンプ7の出口側から熱交換器
4の入口側へ蒸留液を導く配管11を設けて、高
温高圧の吐出ガス中に蒸留液を噴射するようにし
ている。
In addition, the discharge gas from the compressor 6 becomes superheated steam, so if it is supplied directly to the heat exchanger 4, there will be too much temperature difference and scale will stick to it. A pipe 11 is provided to guide the distillate to the inlet side of the exchanger 4, so that the distillate is injected into the high-temperature, high-pressure discharge gas.

この運転状態を第5図のモリエル線図で説明す
ると、蒸発缶3での発生蒸気aは調整弁10を介
して供給されるコンプレツサ6の吐出ガスで加熱
されてbとなり、コンプレツサ6に吸入され加圧
されてc′となる(断熱圧縮であればc点となる
が、実際にはロスがありc′となる)。次に、コン
プレツサ6の吐出ガスは蒸留液の噴射を受けて減
温されてd点となつて、熱交換器4に送られる。
To explain this operating state using the Mollier diagram shown in FIG. It is pressurized and becomes point c' (if it were adiabatic compression, it would be point c, but in reality there is a loss and it becomes point c'). Next, the discharged gas from the compressor 6 is injected with distillate and its temperature is reduced to a point d, where it is sent to the heat exchanger 4.

考案が解決しようとする問題点 従来の様に、吐出ガスを吸入側へバイパスする
ためには、コンプレツサ6の容量を大きくする必
要があり動力も増え、発生蒸気量の変化に対して
調整弁10の開度を変化させる自動制御が必要と
なり、装置が複雑で高価となり、信頼性の低下を
招くという欠点があつた。また、吐出ガスをバイ
パスする代りに、加熱器を設けてスチームで吸入
ガスを加熱する従来の別な方法もあるが、この方
法は、スチームを消費し、ランニングコストの増
大をもたらし、スチームの流量を調整する必要が
あり、高価で信頼性の低下を招くという欠点があ
つた。そこで、本考案は、このような従来の問題
点を解消しようとしてなされたものである。
Problems that the invention aims to solve: In order to bypass the discharged gas to the suction side as in the past, it is necessary to increase the capacity of the compressor 6, which also increases the power, and the adjustment valve 10 has to be adjusted in response to changes in the amount of steam generated. This requires automatic control to change the degree of opening of the valve, making the device complicated and expensive, and resulting in a decrease in reliability. In addition, there is another conventional method in which a heater is installed to heat the suction gas with steam instead of bypassing the discharge gas, but this method consumes steam, increases running costs, and increases the flow rate of the steam. The disadvantage is that it requires adjustment, which is expensive and reduces reliability. Therefore, the present invention has been made in an attempt to solve these conventional problems.

問題点を解決するための手段 本考案は、蒸気再圧縮式蒸発装置の蒸発缶(蒸
発機)とコンプレツサ(圧縮機)とを結ぶ流体経
路に、コンプレツサに吸入される飽和蒸気(吸入
流体)とコンプレツサから吐出される高温高圧蒸
気(吐出流体)とを熱交換させる熱交換器を設け
ることにより、従来の問題点を解決している。
Means for Solving the Problems The present invention provides a method for connecting saturated vapor (suction fluid) to be sucked into the compressor into a fluid path connecting the evaporator and compressor of a vapor recompression type evaporator. The conventional problems are solved by providing a heat exchanger that exchanges heat with high-temperature, high-pressure steam (discharge fluid) discharged from the compressor.

実施例 以下本考案に係る蒸気再圧縮式蒸発装置の一実
施例について図面を参照して詳細に説明する。
Embodiment Hereinafter, an embodiment of the vapor recompression type evaporator according to the present invention will be described in detail with reference to the drawings.

第1図は本考案装置の一実施例を示す系統図で
あり、第4図に示した従来の装置の調整弁10が
削除され、その代りにガス−ガス熱交換器12が
設けられており、その他の構成は従来の装置と同
様である。従つて、第1図において第4図と同一
部分には同一符号を附してあるのでその部分の説
明は省略する。
FIG. 1 is a system diagram showing one embodiment of the device of the present invention, in which the regulating valve 10 of the conventional device shown in FIG. 4 is deleted and a gas-gas heat exchanger 12 is provided in its place. , the other configurations are the same as the conventional device. Therefore, in FIG. 1, the same parts as those in FIG. 4 are given the same reference numerals, and the explanation of those parts will be omitted.

第1図において、ガス−ガス熱交換器12は蒸
発缶3とコンプレツサ6を結ぶ経路に設けられて
いる。すなわち蒸発缶3には熱交換器4が備えら
れており、この熱交換器4によつて蒸発缶3へ導
入される予熱された濃縮原液が加熱されて蒸発
し、この蒸気はデミスタ5へ供給されて液滴が分
離される。そしてデミスタ5を経て液滴の分離さ
れた飽和蒸気がガス−ガス熱交換器12へ供給さ
れ、このガス−ガス熱交換器12を経てコンプレ
ツサ6へ吸入されて圧縮される。そして、コンプ
レツサ6から吐出される高温高圧蒸気はガス−ガ
ス熱交換器12へ供給され、これを経て熱交換器
4へ導入される。
In FIG. 1, a gas-gas heat exchanger 12 is provided in a path connecting the evaporator 3 and the compressor 6. That is, the evaporator 3 is equipped with a heat exchanger 4, and the preheated concentrated stock solution introduced into the evaporator 3 is heated and evaporated by the heat exchanger 4, and this vapor is supplied to the demister 5. to separate the droplets. The saturated vapor from which the droplets have been separated is supplied to the gas-gas heat exchanger 12 via the demister 5, and is sucked into the compressor 6 via the gas-gas heat exchanger 12 and compressed. The high-temperature, high-pressure steam discharged from the compressor 6 is supplied to the gas-gas heat exchanger 12, and then introduced into the heat exchanger 4.

上記のガス−ガス熱交換器12の具体例とし
て、第2図、第3図に示したものが使用できる。
すなわち、第2図に示したものは一般的なガス−
ガス熱交換器12であり、外板20で囲まれた内
部に伝熱管21と端板22とにより、2種類のガ
スが混合することなく熱交換を行なう2つの経路
が形成され、夫々に入口23a,23b、出口2
4a,24bが設けられている。従つて、デミス
タ5を経た蒸気は、入口23aから導入されて出
口24aへ排出され、その蒸気はコンプレツサ6
に吸入される。一方、コンプレツサ6から吐出さ
れた高温高圧蒸気は入口23bから導入されて出
口24bへ排出され、その高温高圧蒸気は熱交換
器4へ供給される。よつて、伝熱管21を介して
飽和蒸気と高温高圧蒸気との熱交換が行なわれ
る。この伝熱管21としては、平滑管、コルゲー
ト管、スパイラル管等種々のものが使用でき、ま
たププレート状のもの、蓄熱タイプのもの等もあ
る。
As a specific example of the above gas-gas heat exchanger 12, those shown in FIGS. 2 and 3 can be used.
In other words, what is shown in Figure 2 is a general gas
The gas heat exchanger 12 is surrounded by an outer plate 20 and has two paths formed by heat transfer tubes 21 and end plates 22 for heat exchange without mixing two types of gas, each with an inlet. 23a, 23b, exit 2
4a and 24b are provided. Therefore, the steam that has passed through the demister 5 is introduced from the inlet 23a and discharged to the outlet 24a, and the steam is passed through the compressor 6.
is inhaled. On the other hand, high-temperature, high-pressure steam discharged from the compressor 6 is introduced from the inlet 23b and discharged to the outlet 24b, and the high-temperature, high-pressure steam is supplied to the heat exchanger 4. Therefore, heat exchange between the saturated steam and the high-temperature, high-pressure steam is performed via the heat exchanger tube 21. Various types of heat exchanger tubes 21 can be used, such as smooth tubes, corrugated tubes, and spiral tubes, as well as plate-shaped tubes, heat storage type tubes, and the like.

また、第3図に示したものはヒートパイプを用
いたガス−ガス熱交換器12であり、2系統のダ
クト25a,25bにヒートパイプ26を介在さ
せたものである。従つて、一方のダクト25aの
入口23aから出口24aへ飽和蒸気が流れ、他
方のダクト25aの入口23bから出口24bへ
高温高圧蒸気が流れ、両蒸気はヒートパイプ26
を介して熱交換が行なわれる。
Moreover, what is shown in FIG. 3 is a gas-gas heat exchanger 12 using heat pipes, in which a heat pipe 26 is interposed between two systems of ducts 25a and 25b. Therefore, saturated steam flows from the inlet 23a of one duct 25a to the outlet 24a, high-temperature, high-pressure steam flows from the inlet 23b of the other duct 25a to the outlet 24b, and both steams flow through the heat pipe 26.
Heat exchange takes place via.

作 用 上記のように構成された本考案の蒸気再圧縮式
蒸発装置において、デミスタ5を出た蒸気は、ガ
ス−ガス熱交換器12にてコンプレツサ6の吐出
ガスからの伝熱を受けて過熱状態となつてコンプ
レツサ6に吸入される。そして、コンプレツサ6
で加圧されて過熱蒸気となり、この過熱蒸気はガ
ス−ガス熱交換器12にてコンプレツサ6に吸入
されるべきデミスタ5を出た蒸気からの伝熱を受
けて、減温される。この減温された蒸気にはまだ
過熱温度が付き過ぎている場合の為に、ポンプ7
から送り出される蒸留液の一部を配管11を介し
て噴射してさらに減温したうえで熱交換器4に送
られる。
Function In the vapor recompression type evaporator of the present invention configured as described above, the vapor exiting the demister 5 is superheated by receiving heat transferred from the discharge gas of the compressor 6 in the gas-gas heat exchanger 12. state and is sucked into the compressor 6. And Compressa 6
The superheated steam is pressurized to become superheated steam, and this superheated steam receives heat transferred from the steam exiting the demister 5 to be sucked into the compressor 6 in the gas-gas heat exchanger 12, and its temperature is reduced. In case this cooled steam is still too hot, pump 7
A part of the distilled liquid sent from the tank is injected through the pipe 11 to further reduce the temperature, and then sent to the heat exchanger 4.

この運転状態を第5図のモリエル線図で示す
と、蒸発缶3で発生した蒸気aはガス−ガス熱交
換器12でコンプレツサ6からの吐出ガスによつ
て加熱されてbとなり、更にコンプレツサ6で圧
縮されてc′となる。そして、コンプレツサ6の吐
出ガスはガス−ガス熱交換器12で減温されて
d′となり、蒸留液の噴射でさらに冷却されてdと
なる。
If this operating state is shown in the Mollier diagram of FIG. is compressed to become c′. The discharge gas from the compressor 6 is then cooled down in the gas-gas heat exchanger 12.
It becomes d' and is further cooled by injection of distillate to become d.

なお、コンプレツサ6の圧縮において過熱温度
の付きにくい有機物のテトラクロロエチレン、
R114等は、ガス−ガス熱交換器12後の蒸留液
の噴射の必要がない場合が多いので、この場合に
は配管11を省略するか或いは配管11に弁を設
けてこの弁により蒸留液の通過を遮断すればよ
い。
Note that tetrachloroethylene, an organic material that is difficult to overheat during compression in the compressor 6,
For R114 etc., there is often no need to inject the distillate after the gas-gas heat exchanger 12, so in this case, the piping 11 can be omitted or a valve can be provided in the piping 11 and the distillate can be injected using this valve. Just block the passage.

考案の効果 以上詳述したように、本考案によれば、コンプ
レツサの吸入における加熱と吐出における冷却を
ガス−ガス熱交換器で互いに熱交換するようにし
たので、システムが簡単となり、余分なコンプレ
ツサ容量とコンプレツサ動力や余分なスチームの
消費を避けられるので、経済的になり、かつ信頼
性が向上する蒸気再圧縮式蒸発装置が提供され
る。
Effects of the invention As detailed above, according to the invention, heating at the suction and cooling at the discharge of the compressor are exchanged with each other using a gas-gas heat exchanger, which simplifies the system and eliminates the need for an extra compressor. A vapor recompression evaporator is provided that is more economical and more reliable because capacity and compressor power and excess steam consumption are avoided.

そして、本考案によれば、コンプレツサから吐
出される吐出ガスの減温は、蒸発缶に供給される
原液ではなくて、コンプレツサへ入る流入流体を
予熱することで行われるので、原液の供給が連続
していないシステムであつても、吐出ガスの減温
を連続して行うことができる。
According to the present invention, the temperature of the discharged gas discharged from the compressor is lowered by preheating the inflow fluid entering the compressor rather than the undiluted solution supplied to the evaporator, so that the undiluted solution is continuously supplied. Even in systems that do not, the temperature of the discharged gas can be reduced continuously.

また、ガス−ガス熱交換器にヒートパイプを用
いれば、熱交換器通過の圧損が減り、熱交換性能
も良くコンパクトになる。
Furthermore, if a heat pipe is used in the gas-gas heat exchanger, the pressure loss passing through the heat exchanger will be reduced, and the heat exchange performance will be improved and the system will be more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る蒸気再圧縮式蒸発装置の
一実施例を示す系統図、第2図及び第3図は本考
案で使用されるガス−ガス熱交換器の具体例を説
明するために示した断面図、第4図は従来の蒸気
再圧縮式蒸発装置を示す系統図、第5図は本考案
装置の運転状態を説明するためのモリエル線図で
ある。 3……蒸発缶、4……熱交換器、6……コンプ
レツサ、12……ガス−ガス熱交換器。
Figure 1 is a system diagram showing an embodiment of the vapor recompression type evaporator according to the present invention, and Figures 2 and 3 are for explaining a specific example of the gas-gas heat exchanger used in the present invention. 4 is a system diagram showing a conventional vapor recompression type evaporator, and FIG. 5 is a Mollier diagram for explaining the operating state of the device of the present invention. 3... Evaporator, 4... Heat exchanger, 6... Compressor, 12... Gas-gas heat exchanger.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 原液を蒸発機で加熱して蒸発させ、この蒸発機
で発生した蒸気を圧縮機で圧縮して高温高圧蒸気
とし、この圧縮機からの高温高圧蒸気を前記蒸発
機の加熱源とする蒸気再圧縮式蒸発装置におい
て、前記圧縮機に吸入される吸入流体と前記圧縮
機から吐出される吐出流体とを熱交換させる熱交
換器を前記蒸発機と圧縮機とを結ぶ流体経路に介
在させた蒸気再圧縮式蒸発装置。
Vapor recompression, in which the raw solution is heated and evaporated in an evaporator, the vapor generated by the evaporator is compressed into high-temperature, high-pressure steam, and the high-temperature, high-pressure steam from the compressor is used as the heating source for the evaporator. In the type evaporator, a heat exchanger for exchanging heat between suction fluid drawn into the compressor and discharge fluid discharged from the compressor is interposed in a fluid path connecting the evaporator and the compressor. Compression evaporator.
JP1984137825U 1984-09-13 1984-09-13 Expired JPH022401Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984137825U JPH022401Y2 (en) 1984-09-13 1984-09-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984137825U JPH022401Y2 (en) 1984-09-13 1984-09-13

Publications (2)

Publication Number Publication Date
JPS6155901U JPS6155901U (en) 1986-04-15
JPH022401Y2 true JPH022401Y2 (en) 1990-01-22

Family

ID=30696230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984137825U Expired JPH022401Y2 (en) 1984-09-13 1984-09-13

Country Status (1)

Country Link
JP (1) JPH022401Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481808B2 (en) * 2008-07-31 2014-04-23 千代田化工建設株式会社 Method for operating separation process module, method for operating integrated separation process module, method for operating large scale integrated separation process module
JP5756900B2 (en) * 2012-02-01 2015-07-29 国立大学法人 東京大学 Distillation equipment

Also Published As

Publication number Publication date
JPS6155901U (en) 1986-04-15

Similar Documents

Publication Publication Date Title
US4932204A (en) Efficiency combined cycle power plant
CN1061643A (en) The circulation of combined steamed gas turbine circuit reheated steam
US4542628A (en) Coupled dual loop absorption heat pump
US4333515A (en) Process and system for boosting the temperature of sensible waste heat sources
US5369950A (en) Method for operating a gas and steam turbine system, and gas and stream turbine system operating by the method
US5727397A (en) Triple effect absorption refrigeration system
US4291545A (en) Absorption heat pump
JPH0621732B2 (en) Heating device
US4474025A (en) Heat pump
JP2782555B2 (en) Absorption heat pump
JPH022401Y2 (en)
RU2153080C2 (en) Combined-cycle power generation process and combined-cycle plant
CN207957817U (en) A kind of combination system of MGGH systems and low-temperature multi-effect evaporator
JPH0933004A (en) Waste heat recovery boiler
CN108507219A (en) A kind of compound two-stage type lithium bromide absorption type heat pump and working method
JPS60168582A (en) Steam compression type water distillation apparatus
JPS63210579A (en) Cold and hot water production facility
JPS6117320Y2 (en)
JPS6311571Y2 (en)
JPS621796U (en)
JPS6016802Y2 (en) Two-stage pressure type exhaust gas economizer
JPS6136662A (en) Absorption type heat pump device
JPS6051622B2 (en) Effective energy utilization method in heat supply equipment consisting of a combination of heat pump cycle and cogeneration steam cycle
JPH027412Y2 (en)
JPS62793A (en) Combination heater