JPS60249568A - Polishing of semiconductor wafer - Google Patents

Polishing of semiconductor wafer

Info

Publication number
JPS60249568A
JPS60249568A JP59100640A JP10064084A JPS60249568A JP S60249568 A JPS60249568 A JP S60249568A JP 59100640 A JP59100640 A JP 59100640A JP 10064084 A JP10064084 A JP 10064084A JP S60249568 A JPS60249568 A JP S60249568A
Authority
JP
Japan
Prior art keywords
carrier
wafer
polishing
semiconductor wafer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59100640A
Other languages
Japanese (ja)
Inventor
Osamu Shikatani
鹿谷 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59100640A priority Critical patent/JPS60249568A/en
Publication of JPS60249568A publication Critical patent/JPS60249568A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce cracking or chipping of semiconductor wafer considerably in such polishing method where a semiconductor wafer is inserted into a carrier then pressed by upper and lower surface plates and rotated, by placing buffer material between the wafer and the carrier. CONSTITUTION:Buffer material 13 such as soft polyvinyl-chrolide, wood (cork), felt, rubber, Teflon, mica, etc. is employed while profiling the shape of semiconductor wafer W. When polishing a circular wafer, for example, a planar ring of soft polyvinyl-chloride smaller than the bore diameter of an outercircumferential carrier C having the innercircumference larger than the diameter of the wafer W and the thickness thinner than the finish thickness of the wafer W and approximately same with the thickness of the carrier C is employed as the buffer material 13 and inserted into the bore section of carrier C then the wafer W is inserted into said planar ring. When polishing, the planar ring is repelled by the carrier C to perform spiral motion but only the inside of planar ring and the outercircumference of wafer W will collide resulting in reduction of impact to be applied onto the wafer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体ウェハの両面研磨方法の改良に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to improvements in a method for polishing both sides of semiconductor wafers.

(従来の技術) 近年超LSI等の微細加工技術が同上するのに伴ない半
導体ウェハに対する表面性状精度の要求が高まりつつあ
る。この要求は単にシリコンウェハ丈に望まnるもので
はなく、化合物半導体、例えばGaA日I日用C用基板
平面度良く周辺加工を施した鏡面ウェハがめられる。
(Prior Art) In recent years, with the advancement of microfabrication technology such as ultra-LSI, the demand for surface quality accuracy for semiconductor wafers has been increasing. This requirement does not simply depend on the length of a silicon wafer, but also requires mirror-finished wafers with peripheral processing for good flatness of substrates for compound semiconductors, such as GaA and I/C.

これらの要求に応じるため、結晶材料のイノゴツトは、 (1)半導体ウエノ・に切断する1ライジング(2)半
導体ウエノ・周辺を所定の形状に面取りするベベリング
加工 (3) 主として厚みを揃えるラッピング(粗研磨)(
4)表面精度向上と加工歪層除去の為のエッチ /グ (5) 半導体ウェハ面を鏡面に仕上げるポリシング(
仕上げ研磨) の諸加工工程を通じて製造さnている。
In order to meet these demands, crystalline material inogots are manufactured by: (1) one rising process to cut the semiconductor wafer into pieces; (2) beveling process to chamfer the semiconductor wafer and its periphery into a predetermined shape; and (3) lapping (rough) to make the thickness even. Polishing) (
4) Etching to improve surface precision and remove process-distorted layers (5) Polishing to make the semiconductor wafer surface mirror-like (
It is manufactured through various processing steps (finish polishing).

この際、粗研磨・仕上研磨に適用される研磨方法には (1) 半導体ウエノ・全ワックス等の接着剤でマウ/
テングプレートに貼付は回転する定盤に圧接して研磨す
る片面研磨方法。
At this time, the polishing methods applied to rough polishing and final polishing include (1) machining with an adhesive such as semiconductor wax or wax;
Attaching to the teng plate is a single-sided polishing method in which it is pressed against a rotating surface plate and polished.

(2) ワックス等の接着剤全使用せず、上定盤と下定
盤の間に介在するキャリア中に半導体ウェハを挿着し、
2つの定盤間に挟圧し、回転させることにより研磨する
両面研磨方法、の2方式が適用されている。
(2) The semiconductor wafer is inserted into a carrier interposed between the upper surface plate and the lower surface plate without using any adhesive such as wax,
Two methods have been applied: a double-sided polishing method in which polishing is performed by pressing between two surface plates and rotating them.

然し乍ら、半導体ウニ/・の大口径化に伴って益々高精
度の710王が要求される動向の中で片面研磨方法では (1) ワックスなどの笈着剤全使用するので、その厚
みむらで高い平面度の加工ができない、(2)半導体ウ
エノ・の接着・剥離が面倒で自動化上も困難である、 (3)研磨後の半導体ウニ・・の洗浄が大変である、等
の種々の問題1有するので寸法精度の高い両面研磨方法
の採用が増加しつつちる。
However, as the diameter of semiconductor chips increases, 710 mm is increasingly required, and the single-sided polishing method (1) uses all adhesives such as wax, so it is expensive due to uneven thickness. Various problems such as the inability to process flatness, (2) adhesion and peeling of semiconductor wafers are troublesome and difficult to automate, and (3) cleaning of semiconductor wafers after polishing is difficult. Because of this, the adoption of double-sided polishing methods with high dimensional accuracy is increasing.

(発明が解決しようとしている問題点)両面研磨方法は
通常第1図・第2図のような両面研磨盤を使用して実施
される。
(Problems to be Solved by the Invention) The double-sided polishing method is usually carried out using a double-sided polishing machine as shown in FIGS. 1 and 2.

対回せる上定盤1と下定盤5に夫々ポリシングシート2
・4を貼着け(ラッピングの場合はポリシ/グシート全
使用せず定盤kffi接とする)その間に太陽ギヤ5と
インタナルギヤ6とに嵌合するよう同辺に嵌合ギヤ12
t−’Ifする複数枚のキャリアC(第2図の例では3
枚)に、研磨すべき半導体ウニ/・wyキャリアCの穴
明き部(第2図の例ではキャリア1枚に付き半導体ウェ
ハ4枚)に挿着し、上定盤1徐々に降下し、半導体ウェ
ハ全挟圧する。
Polishing sheet 2 on each of the upper surface plate 1 and lower surface plate 5 that can be rotated
・Attach the fitting gear 12 on the same side so that it fits into the sun gear 5 and internal gear 6.
t-'If a plurality of carriers C (3 in the example of Fig. 2)
The semiconductor wafer to be polished is inserted into the perforated part of the carrier C (in the example of FIG. 2, four semiconductor wafers per carrier), and the upper surface plate 1 is gradually lowered. Squeeze the entire semiconductor wafer.

この時半導体ウエノ・厚〉キャリア厚とし、上下定盤間
に化学的研磨液(粗研磨の場合は砥粒W)金流し乍ら、
軸8・10により太陽ギヤ5およびインタナルギヤ6全
回転させれば、これに嵌合するキャリアCは自転と公転
全行い、半導体ウェハWはキャリアCに押されて定盤間
で螺旋運動をし乍ら軸7を中心に回転する。下定盤3を
軸?、土足盤1vil−上軸で夫々回転させれば、定盤
と半導体ウェハWの研磨面間が擦り合わさn研磨される
At this time, the semiconductor wafer thickness is greater than the carrier thickness, and a chemical polishing liquid (abrasive grains W in the case of rough polishing) is applied between the upper and lower surface plates while gold is flowing.
When the sun gear 5 and the internal gear 6 are fully rotated by the shafts 8 and 10, the carrier C fitted thereon completes its rotation and revolution, and the semiconductor wafer W is pushed by the carrier C and moves spirally between the surface plates. rotates around axis 7. Axis lower surface plate 3? , and the polishing surfaces of the surface plate and the semiconductor wafer W are rubbed against each other and polished.

以上の如く両面研磨方法はワックス等の接着剤を使用す
ることなく研磨できるので平面度よく、一度に多数枚研
磨できる等の利点を有するが、反面半導体ウェハのII
I n %欠けが多い、という欠点を持つ。この傾向は
GaAO,■nP等の化合物半導体のように81 に比
し軟らかく骨間性に富む脆性材料に特に顕著である。
As described above, the double-sided polishing method can polish without using adhesives such as wax, so it has the advantage of having good flatness and being able to polish many wafers at once.
It has the disadvantage that there are many I n % defects. This tendency is particularly noticeable in brittle materials such as compound semiconductors such as GaAO and ■nP, which are softer than 81 and rich in interosseous properties.

この原因はキャリアCの穴明き部に半導体ウェハw’2
挿着するには、その間に多少のギヤツブ全有し、研磨時
には半導体ウェハWは(1)挟圧さizる上下定盤の回
転による摩擦力、(2) 自転および公転するキャリア
Cの穴明き部と半導体ウニノー周辺との繰ジ返し衝突に
よる衝撃力、 を受け限定された平面を運動する。キャリアCは太陽ギ
ヤ5およびインクナルギヤ6からの駆動力を受け半導体
ウニ・・の運動を規制する為にあシ且つ半導体ウェアよ
り薄い為強度的に優れ変形し難い材料が選ばれ通常ブル
ースチール(ステ/レス)又はガラスエポキシ等が使用
される。
The cause of this is that the semiconductor wafer w'2 is placed in the perforated part of the carrier C.
In order to insert and attach, there are some gears between them, and during polishing, the semiconductor wafer W is subjected to (1) frictional force due to the rotation of the upper and lower surface plates that are pinched, (2) hole drilling of the carrier C that rotates and revolves. It moves in a limited plane due to the impact force caused by repeated collisions between the hollow part and the surrounding area of the semiconductor. The carrier C receives the driving force from the sun gear 5 and the ink null gear 6 and regulates the movement of the semiconductor sea urchin.It is thinner than the semiconductor wear, so it is made of a material that has excellent strength and is difficult to deform.It is usually made of blue steel (steel). /res) or glass epoxy, etc. are used.

従って半導体つ千ハWとキャリアCとの衝突によってウ
ェハ周辺にチッピングが発生し、更にこれにより生じた
微小砕片がウェハ上にスクラッチやクラックを惹き起こ
す。
Therefore, chipping occurs around the wafer due to the collision between the semiconductor chip W and the carrier C, and furthermore, the microscopic fragments generated thereby cause scratches and cracks on the wafer.

こn等の高精度加工半導体ウェハの割れ、欠けによる研
磨歩留りの低下は半導体ウエハコストヲ高価にし、生産
上大きな問題になっている。
Decrease in polishing yield due to cracking and chipping of highly precisely processed semiconductor wafers increases the cost of semiconductor wafers and poses a major problem in production.

本発明は上記のような問題点を解決するためになさ扛た
ものであり、割n、欠けの少ない改良された両面研磨方
法を提供すること全目的とする。
The present invention has been devised to solve the above-mentioned problems, and its entire purpose is to provide an improved double-sided polishing method with less chipping.

(問題点を解決するための手段) 上記の目的は、半導体ウェハをキャリアに挿着し、それ
を上定盤と下定盤により挟圧した状態で回転させて研磨
する方法において、該半導体ウェハとキャリア間に緩衝
物を介在させて研磨を行なうこと全特徴とする半導体ウ
エノ・の研磨方法によって達成される。すなわち、割れ
や欠けの原因は、研磨中に繰り返し生じるウエノ・周辺
部とキャリア穴明部との衝撃にあるため、これらの間隙
に適度の弾力性を有する緩衝物を挿入してそのK ”l
 k fa和しようとするものである。この緩衝物とし
ては軟質塩化ビニル、木材(コルク)、フェルト、ゴム
、テフロン、マイカ等の材料全半導体ウェハの形状に応
じて任意の形状に構成したものを用いる。
(Means for Solving the Problems) The above object is to provide a method for polishing a semiconductor wafer by inserting it into a carrier and rotating the semiconductor wafer while being held under pressure by an upper surface plate and a lower surface plate. This is achieved by a method for polishing semiconductor wafers, which is characterized in that polishing is performed with a buffer interposed between carriers. In other words, the cause of cracks and chips is the repeated impact between the hollow area and the holed area of the carrier during polishing, so a cushioning material with appropriate elasticity is inserted into the gap between them.
kfa is intended to be summed. As this buffer material, materials such as soft vinyl chloride, wood (cork), felt, rubber, Teflon, mica, etc. are used, all of which are configured in an arbitrary shape depending on the shape of the semiconductor wafer.

例えば円形の半導体ウニ・・全研磨する場合、第6図(
a)、及び(1))のように、外周はキャリア穴径より
小さく内周は半導体ウェハ径よりも太きく(好1しくば
1〜2−大きく)、厚さは研磨する半導体ウエノ〜の仕
上げ厚より薄く且キャリア厚に略等しい軟質塩化ビニー
ルの平板リングを緩衝材として用いキャリア穴部に挿着
し、その平板リング内に半導体つ゛エバを挿着する。
For example, if a circular semiconductor sea urchin is to be completely polished, Figure 6 (
As in a) and (1)), the outer periphery is smaller than the carrier hole diameter and the inner periphery is thicker (preferably 1 to 2 times larger) than the semiconductor wafer diameter, and the thickness is the same as that of the semiconductor wafer to be polished. A flat ring made of soft vinyl chloride, which is thinner than the finished thickness and approximately equal to the carrier thickness, is used as a cushioning material and inserted into the carrier hole, and a semiconductor evaporator is inserted into the flat ring.

研暦時その平板リング内シートアに弾かn螺旋運動する
が、その内部の半導体ウニ/・も亦その周辺を平板リン
グと接触、衝突金繰り返し乍ら研磨さnる。
When it is polished, it moves in a spiral motion against the seat in the flat ring, but the semiconductor urchin inside it also comes into contact with the flat ring, and is repeatedly polished by collisions with the metal.

この際衝突するのは平板リングの内側と半導体ウェハの
外周であり、平版リングの寸法上の自由度と材質上の弾
力性により半導体ウニ/・に加わる衝撃力は小さくなり
、割汎や、欠けが生じ難くなる。
At this time, what collides is the inside of the flat ring and the outer periphery of the semiconductor wafer, and due to the dimensional freedom of the flat ring and the elasticity of the material, the impact force applied to the semiconductor wafer is small, causing splitting and chipping. becomes less likely to occur.

以上iL偽物が平板リングの場合によりa明したが、こ
の際緩衝物の構成形態にエリ (1) キャリアと一体構造で且つ半導体ウニl〜とは
自由揉触のもの(笹3図) (2)キャリアと一体構造でPつ半一体ウェ/−にも同
形状で接触のもの(第5図) (3) キャリアとは自由接触し且つ半導体ウェハにも
自由接触のもの(第6図) (4) キャリアとは自由接触し且つ生4休ウェハとは
同形状で接触のもの(卯、7図) (5)上記(2)、 (4)に於いて半導体ウェハ角部
の接触を避は平坦部のみ接触したもの(第8図)等種々
の実施態様が考えられるが、要は欠は易い半導体ウニ・
・と硬いキャリアの衝撃を避ける為に、その間にクッシ
ョンとなる媒体を介して研磨することにより那工精度の
良い半導体ウェハ葡歩留り良く得ようとすることに帰結
する。
As explained above, the iL counterfeit is a flat ring, but in this case, the structure of the cushioning material is (1) integral with the carrier, and the semiconductor sea urchin is in free contact (Fig. 3) (2) ) One that has an integral structure with the carrier and is in contact with the P half-integral wafer in the same shape (Fig. 5) (3) One that is in free contact with the carrier and also in free contact with the semiconductor wafer (Fig. 6) ( 4) One that is in free contact with the carrier and has the same shape and contact with the wafer (Figure 7) (5) In (2) and (4) above, contact at the corner of the semiconductor wafer should be avoided. Various embodiments are possible, such as one in which only the flat part is in contact (Fig. 8), but the point is that the semiconductor sea urchin, which is easily damaged,
・In order to avoid the impact of the hard carrier, polishing is performed with a cushioning medium in between, resulting in a high yield of semiconductor wafers with high precision.

(本発明の実施例) 次に本発明の実施例について述べる。(Example of the present invention) Next, examples of the present invention will be described.

第1表ij 50 myφの円形およびD形GaAs単
結晶ウェハを両面ラップ、エツチング、両面ボリシング
を施こした場合の割れ、欠けの発生状況を調べたもので
ある。
Table 1 ij The occurrence of cracks and chips was investigated when circular and D-shaped GaAs single crystal wafers of 50 myφ were subjected to double-sided lapping, etching, and double-sided boring.

はじめに第1表試験番号1.2について述べる。First, test number 1.2 in Table 1 will be described.

第3図は直径約50Wnφ、厚さ420μmのGaAe
円形ウニ/つヲラツビングする際に用いたキャリアの上
面図である。
Figure 3 shows GaAe with a diameter of approximately 50Wnφ and a thickness of 420μm.
It is a top view of the carrier used when circular sea urchin/tsuworubbing.

キャリアCは厚さ500μmのガラスエポキシを用い、
その内部に半導体ウェア挿入用の穴11、穴径60箇φ
、4穴を対称にあけ、穴明き部内周に沿って軟質塩化ビ
ニールの平板リング134、巾3fm、厚さ300μ、
m’@接着剤を用−いてキャリアCと一体構造になるよ
う取付ける。
Carrier C uses glass epoxy with a thickness of 500 μm,
Inside it, there are 11 holes for inserting semiconductor wear, hole diameter 60 φ
, 4 holes are drilled symmetrically, and a flat ring 134 of soft vinyl chloride is formed along the inner circumference of the perforated part, width 3fm, thickness 300μ,
Attach it to carrier C using m'@adhesive so that it becomes an integral structure.

この緩衝物の厚みはキャリア厚みと同じであるが、半導
体ウエノ・の−以上〜キャリア厚が望まま しい。このキャリア8枚を両面ラップ盤にセットし、各
穴に前記GaAe単結晶ウニ・・52枚を挿着した。
The thickness of this cushioning material is the same as the carrier thickness, but it is desirable that the thickness be greater than or equal to that of a semiconductor wafer. Eight of these carriers were set on a double-sided lapping machine, and 52 pieces of the GaAe single crystal sea urchin were inserted into each hole.

第4図(a)は、この状態で砥粒液を供給し上定盤を下
降させ半導体ウェー・面に120 ? 7cm2の圧力
が加わるよう加圧し九時の断面図である。図中Wt半導
体ウェーへ厚み約420μmであ5、atはキャリア厚
み=緩衝物(軟質塩化ビニール)の厚み一300μmと
した。研磨砥粒14は半導体ウェハおよびキャリアの上
下面ならびに半導体ウェハの側面と緩衝材円環との間隙
15に入っている。以上の状態で上定盤−右廻りに50
rpm、下定盤=左廻りに4Orpm、キャリア公転を
右廻り5回転とし、半専体つェア厚みf39opm迄ラ
ップして割れ欠けの発生状況を観察した@ その後加工歪を除くためエツチング全施し30〜35μ
t−欺シ除き、同様構造のキャリアを用い上定盤1下定
盤5に夫々ポリシングシート2゜4を貼付けである両面
ポリシャにかけ機械的化学研磨を実施した。この結果従
来法の同一研磨条件で行った試験番号5と比較して半減
している事が確認できた。
FIG. 4(a) shows that in this state, abrasive liquid is supplied, the upper surface plate is lowered, and the surface of the semiconductor wafer is 120 mm thick. It is a sectional view at 9 o'clock when pressurized so that a pressure of 7 cm2 is applied. In the figure, the thickness of the Wt semiconductor wafer was approximately 420 μm, and at was the carrier thickness = the thickness of the buffer material (soft vinyl chloride) − 300 μm. The abrasive grains 14 enter the upper and lower surfaces of the semiconductor wafer and the carrier, as well as the gap 15 between the side surface of the semiconductor wafer and the cushion ring. In the above condition, the upper surface plate - 50° clockwise
rpm, lower surface plate = 4 orpm counterclockwise, carrier revolution 5 rotations clockwise, semi-exclusive gear wrapping to thickness f39opm and occurrence of cracks and chips was observed. After that, complete etching was performed to remove machining distortion 30 ~35μ
Using a carrier having the same structure except for the T-shape, a polishing sheet 2.4 was pasted on the upper surface plate 1 and the lower surface plate 5, respectively, and mechanical and chemical polishing was carried out using a double-sided polisher. As a result, it was confirmed that the polishing amount was reduced by half compared to Test No. 5 conducted under the same polishing conditions using the conventional method.

一万り形半導体ウェハについては、第7図(eL)の如
く緩衝材に外@は円形、内側はウェハ形状を有し、半導
体ウェハとの間には多少の間隙を有するものを用いて同
様の研磨状条で試験した。
For a 10,000-round semiconductor wafer, as shown in Figure 7 (eL), the same thing can be done using a cushioning material that has a circular outer part, a wafer-shaped inner part, and a slight gap between it and the semiconductor wafer. Tested on abrasive strips.

第1表試験番号6.4にその結果を示す。The results are shown in Table 1 Test No. 6.4.

こnによると試験番号乙の従来法に比し、割れ欠けが大
巾に減少しているのが判る。
According to this figure, it can be seen that the number of cracks and chips is greatly reduced compared to the conventional method of Test No. B.

第4図(1))はこの場合のラップ時断面図であり緩衝
物もキャリアから自由に動く事ができる。
FIG. 4 (1)) is a sectional view during wrapping in this case, and the cushioning material can also move freely from the carrier.

第1表 半導体ウェハ研磨条件と結果 (発明の効果) 以上の実施例において述べた如く、本発明により、半導
体ウェハの割れ・欠けを大幅に減らすことが可能である
Table 1 Semiconductor wafer polishing conditions and results (effects of the invention) As described in the above examples, the present invention makes it possible to significantly reduce cracks and chips in semiconductor wafers.

尚、実施例においては、円形およびD形GaASを用い
て比較したが、半導体ウェハ形状が矩形。
In the examples, circular and D-type GaAS were used for comparison, but the semiconductor wafer shape was rectangular.

台形成はD形状等コーナエツジを含む半導体ウェハでは
チッピングがコーナエツジ部に集中して発生しているこ
とから、第8図のような緩衝材を用いれば更に大きい効
果が期待できる。又、GaAeウェハ以外の半導体ウェ
ハの脆性材料にも用いる事ができ効果が期待できる。
In semiconductor wafers with corner edges such as D-shaped pedestal formation, chipping occurs concentrated at the corner edges, so using a cushioning material as shown in FIG. 8 can be expected to have an even greater effect. Furthermore, it can be used for brittle materials such as semiconductor wafers other than GaAe wafers, and is expected to be effective.

【図面の簡単な説明】 第1図は両面研磨盤の断面図 第2図は両面研磨盤下定盤の上面図 第3図以降は本発明にかかわり 第3図は緩衝物がキャリアと一体型の上面図第4図(a
)は緩衝物がキャリアと一体型の断面図〃(b)は緩衝
物がキャリアと分離型の断面図第5図は緩衝物がキャリ
アと一体型であり且内部形状がウェハ形状に合致するも
のの上面図 第6図は緩衝物がキャリアと分離型で且内部が円形であ
りウェハちとも自由に運動できノる例の上面図 〃(a)は円形ウェハの場合 〃(b)はオリエンテーションフラット付円形ウェハの
場合 〃(C)は台形ウェハの場合 〃(d)はD形つェハの場合 第7図は緩衝物がキャリアと分離型で且つ内部がウェハ
形状に合致する場合の上面図 〃(a)は円形ウェハの場合 〃(b)はオリエンテーションフラット付円形ウェハの
場合 〃(C)は台形ウェハの場合 〃(d)はD形つェハの場合 第8図は第7図(C)の改良例での上面図である。 図中 1、 上定盤 2 ポリシングシ一ト 五 下定盤 4. ポリシングシート 5 太陽ギヤ へ インタナルギヤ Z 中心軸 11に9.1C1,中空軸11、キャリア
穴 12. キャリア嵌合ギヤ1S 緩衝物 14. 
砥 籾 15、ウェハと緩衝材とのギャップ 16 キャリアと緩衝材とのギャップ Cキャリア W ウェハ 代理人 内1) 明 代理人 萩原亮− 第2図 第3図 第4図 ((1) 第6図
[Brief explanation of the drawings] Figure 1 is a cross-sectional view of the double-sided polishing machine. Figure 2 is a top view of the lower surface plate of the double-sided polishing machine. Figure 3 and subsequent figures relate to the present invention. Top view Figure 4 (a
) is a sectional view where the buffer is integrated with the carrier; (b) is a sectional view where the buffer is separated from the carrier. Figure 5 is a sectional view where the buffer is integrated with the carrier and whose internal shape matches the wafer shape. Top view Figure 6 is a top view of an example in which the buffer is separate from the carrier and has a circular interior so that it can move freely with the wafer ((a) is for a circular wafer; (b) is for an orientation flat) In the case of a circular wafer〃(C) is the case of a trapezoidal wafer〃(d) is the case of a D-shaped wafer Figure 7 is a top view when the buffer is separate from the carrier and the inside matches the wafer shape〃 (a) is for a circular wafer; (b) is for a circular wafer with an orientation flat; (C) is for a trapezoidal wafer; (d) is for a D-shaped wafer. ) is a top view of an improved example. In the diagram 1. Upper surface plate 2. Polishing sheet 5. Lower surface plate 4. Polishing sheet 5 To sun gear Internal gear Z Center shaft 11 to 9.1C1, hollow shaft 11, carrier hole 12. Carrier fitting gear 1S buffer 14.
Grinding grain 15, Gap between wafer and cushioning material 16 Gap between carrier and cushioning material C Carrier W Wafer agent 1) Akira agent Ryo Hagiwara - Figure 2 Figure 3 Figure 4 ((1) Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)半導体ウェハ金キャリアに挿着し、該半導体ウェ
ハ全上定盤と下定盤によシ挾圧した状、態で回転させて
研磨する方法において、該半導体ウェハとキャリア間に
緩衝物を介在させて研JFi ’(r行なうこと全特徴
とする半導体ウェハの研磨力法。
(1) In a method of polishing by inserting a semiconductor wafer into a gold carrier and rotating the semiconductor wafer with pressure applied to the entire upper surface plate and lower surface plate, a buffer is placed between the semiconductor wafer and the carrier. A polishing force method for semiconductor wafers characterized by intervening polishing.
(2)緩衝物がキャリアと一体構造である特許請求の範
囲第1項記載の方法。
(2) The method according to claim 1, wherein the buffer has an integral structure with the carrier.
(3) 緩衝物の半導体ウェハ挿着部分が半導体ウェハ
形状に合致している特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein the semiconductor wafer insertion portion of the buffer conforms to the shape of the semiconductor wafer.
(4) キャリアは円形の穴を有し、該円形穴にキャリ
アとは独立して外周が円形で内周が円形もしくは半導体
ウェハ形状に合致する緩衝物を挿着して研磨する特許請
求の範囲第1項記載の方法。
(4) The carrier has a circular hole, and a buffer material having a circular outer periphery and a circular inner periphery or matching the shape of a semiconductor wafer is inserted into the circular hole independently of the carrier for polishing. The method described in paragraph 1.
JP59100640A 1984-05-21 1984-05-21 Polishing of semiconductor wafer Pending JPS60249568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100640A JPS60249568A (en) 1984-05-21 1984-05-21 Polishing of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100640A JPS60249568A (en) 1984-05-21 1984-05-21 Polishing of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS60249568A true JPS60249568A (en) 1985-12-10

Family

ID=14279420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100640A Pending JPS60249568A (en) 1984-05-21 1984-05-21 Polishing of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS60249568A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310057U (en) * 1986-07-07 1988-01-22
JPH0557842U (en) * 1991-02-19 1993-07-30 九州電子金属株式会社 Carrier for wrapping semiconductor substrates
EP0599299A1 (en) * 1992-11-27 1994-06-01 Kabushiki Kaisha Toshiba Method and apparatus for polishing a workpiece
EP0776030A3 (en) * 1995-11-27 1997-06-04 Shin-Etsu Handotai Company Limited Apparatus and method for double-side polishing semiconductor wafers
WO1999004931A1 (en) * 1997-07-23 1999-02-04 Speedfam-Ipec Corporation Apparatus for holding workpieces during lapping, honing, and polishing
JP2007036225A (en) * 2005-07-21 2007-02-08 Siltronic Ag Method of processing semiconductor wafer, carrier, and semiconductor wafer
JP2011020239A (en) * 2009-07-21 2011-02-03 Kyocera Kinseki Corp Polishing apparatus
JP2013502719A (en) * 2009-08-21 2013-01-24 エルジー シルトロン インコーポレーテッド Double-side polishing apparatus and carrier therefor
WO2014076955A1 (en) * 2012-11-16 2014-05-22 株式会社デンソー Device for polishing both surfaces of semiconductor wafer and production method for semiconductor wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555957U (en) * 1978-10-09 1980-04-16
JPS5741164A (en) * 1980-08-12 1982-03-08 Citizen Watch Co Ltd Dual carrier for lapping

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555957U (en) * 1978-10-09 1980-04-16
JPS5741164A (en) * 1980-08-12 1982-03-08 Citizen Watch Co Ltd Dual carrier for lapping

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310057U (en) * 1986-07-07 1988-01-22
JPH0453896Y2 (en) * 1986-07-07 1992-12-17
JPH0557842U (en) * 1991-02-19 1993-07-30 九州電子金属株式会社 Carrier for wrapping semiconductor substrates
EP0599299A1 (en) * 1992-11-27 1994-06-01 Kabushiki Kaisha Toshiba Method and apparatus for polishing a workpiece
EP0776030A3 (en) * 1995-11-27 1997-06-04 Shin-Etsu Handotai Company Limited Apparatus and method for double-side polishing semiconductor wafers
US5914053A (en) * 1995-11-27 1999-06-22 Shin-Etsu Handotai Co., Ltd. Apparatus and method for double-sided polishing semiconductor wafers
WO1999004931A1 (en) * 1997-07-23 1999-02-04 Speedfam-Ipec Corporation Apparatus for holding workpieces during lapping, honing, and polishing
US6030280A (en) * 1997-07-23 2000-02-29 Speedfam Corporation Apparatus for holding workpieces during lapping, honing, and polishing
JP2007036225A (en) * 2005-07-21 2007-02-08 Siltronic Ag Method of processing semiconductor wafer, carrier, and semiconductor wafer
JP2011020239A (en) * 2009-07-21 2011-02-03 Kyocera Kinseki Corp Polishing apparatus
JP2013502719A (en) * 2009-08-21 2013-01-24 エルジー シルトロン インコーポレーテッド Double-side polishing apparatus and carrier therefor
WO2014076955A1 (en) * 2012-11-16 2014-05-22 株式会社デンソー Device for polishing both surfaces of semiconductor wafer and production method for semiconductor wafer

Similar Documents

Publication Publication Date Title
JP3925580B2 (en) Wafer processing apparatus and processing method
US7582221B2 (en) Wafer manufacturing method, polishing apparatus, and wafer
EP1755156B1 (en) Process for producing silicon wafers
EP2042267B1 (en) Carrier for double-side polishing apparatus, double-side polishing apparatus using the same,and double-side polishing method
US9293318B2 (en) Semiconductor wafer manufacturing method
US7488145B2 (en) Method for manufacturing a doughnut-shaped glass substrate
WO2006046403A1 (en) Production method of semiconductor wafer, and semiconductor wafer
JPH09270401A (en) Polishing method of semiconductor wafer
JP2002305168A (en) Polishing method, polishing machine and method for manufacturing semiconductor device
JP3328193B2 (en) Method for manufacturing semiconductor wafer
JPS60249568A (en) Polishing of semiconductor wafer
WO2005070619A1 (en) Method of grinding wafer and wafer
JPH08274285A (en) Soi substrate and manufacture thereof
CN109571232B (en) Wafer grinding method and grinding system thereof
JP2004087521A (en) One-side mirror surface wafer and its manufacturing method
CN112872921B (en) Polishing method for improving flatness of wafer edge
WO2018116690A1 (en) Single-wafer one-side polishing method for silicon wafer
JPH11188590A (en) Edge polishing device
JPH11285963A (en) Polishing body composed of wafer polishing cloth or polishing surface plate and wafer polishing method using same
JP2015129056A (en) Method of cutting glass substrate and method of manufacturing glass substrate for magnetic recording medium
JPH11207583A (en) Manufacture of semiconductor substrate, and manufacturing device for the same
KR101128932B1 (en) Polishing cloth, polishing cloth processing method, and substrate manufacturing method using same
JPH09262761A (en) Method for polishing semi-conductor wafer
JPH03213265A (en) Surface plate for lapping machine
KR101050089B1 (en) Apparatus for double side processing of wafer