JPS6024941A - Heat-insulating laminated part - Google Patents

Heat-insulating laminated part

Info

Publication number
JPS6024941A
JPS6024941A JP13338783A JP13338783A JPS6024941A JP S6024941 A JPS6024941 A JP S6024941A JP 13338783 A JP13338783 A JP 13338783A JP 13338783 A JP13338783 A JP 13338783A JP S6024941 A JPS6024941 A JP S6024941A
Authority
JP
Japan
Prior art keywords
metal
ceramic
heat
interface layer
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13338783A
Other languages
Japanese (ja)
Other versions
JPS621817B2 (en
Inventor
正佳 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP13338783A priority Critical patent/JPS6024941A/en
Publication of JPS6024941A publication Critical patent/JPS6024941A/en
Publication of JPS621817B2 publication Critical patent/JPS621817B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は機械的及び熱的に強靭なセラミック被覆を有し
、かつ断熱性界面層全介在せしめた断熱性積層部品に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-insulating laminate component having a mechanically and thermally strong ceramic coating and having a heat-insulating interfacial layer interposed therebetween.

従来、ガソリンエンジン、ディーゼルエンジン等は鋳鉄
やアくレミニウム合金などの金属部材によシ構成されて
いた。しかし、最近省エネルギーの見地からエンジンの
排気や冷却による大きな熱損失を低減し、エンジンの熱
効率を高めようとする研究が盛んに行われ、エンジン部
品に耐熱性、断熱性及び機械的強度のすぐれたセラミッ
クスを単独又はセラミックスと金属とを積層とした複合
構造体などを用いる方法が多く提案されてい・る。
Conventionally, gasoline engines, diesel engines, etc. have been constructed of metal members such as cast iron and aluminum alloy. However, recently, from the perspective of energy conservation, research has been actively conducted to reduce the large heat loss caused by engine exhaust and cooling, and to increase the thermal efficiency of engines. Many methods have been proposed using ceramics alone or composite structures made of ceramics and metals laminated.

しかしながら、セラミックス単独の使用及びセラミック
ス−金属の焼き嵌め、ボルト締め、かしめ等に用いるセ
ラミックスは何れの場合も高強度の部材とするため、そ
の出発原材料の調製、成形及び焼結条件、さらに焼結体
の仕上加工等、非常に高度で厳密な製造技術が要求され
る。従って著しくコスト高となり、さらに断熱効果を高
めるためセラミック部材の層を可成シ厚くする必要があ
る。このことは一般に、セラミックスと金属部材との大
きな熱膨張係数の差異から、品温状態下において組み合
せ金属部材との隙間の発生、゛がたつき”及び熱歪等に
より亀裂の発生や剥離が生じ易く、従って信頼性に乏し
く、実用化には未だ多くの問題を残している。
However, in either case, ceramics used alone or used for ceramic-metal shrink fitting, bolting, caulking, etc., are made into high-strength components, so the preparation of the starting raw materials, molding and sintering conditions, and sintering Extremely advanced and precise manufacturing techniques are required, including finishing the body. This results in a significant increase in cost, and it is necessary to make the layer of the ceramic member considerably thicker in order to further improve the heat insulation effect. Generally, due to the large difference in coefficient of thermal expansion between ceramics and metal components, cracks and peeling may occur due to gaps between the combined metal components, rattling, and thermal strain under product temperature conditions. It is easy to use, and therefore has poor reliability, and there are still many problems in practical application.

本発明は、このような従来の問題点を解決するもので、
高度の製造技術を必要とすることなく、また比較的簡易
な製造工程で信頼性の高い断熱性積層部品を提供するこ
とを目的とするものである。
The present invention solves these conventional problems,
The purpose of the present invention is to provide a highly reliable heat-insulating laminate component using a relatively simple manufacturing process without requiring sophisticated manufacturing technology.

以下本発明を図面によシ詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

本発明は、図に示すように鉄基合金又はアルミニウム合
金からなる金属製基体1と、鉄又は鉄基合金からなる金
属部材2との重合面間に金属多孔体及び(又F:r、)
セラミックスからなる断熱性界面層3を介在せしめ、こ
れら相互の重合面を金属ろう接による融着層或はクロム
酸の焼成に伴う酸化クロムの化学結合層4で固着し、か
つ金属部材2の外側表面に溶射セラミックス及び(又は
)酸化クロムにより化学結合されたセラミック被覆5を
施こしたものである。このようにすると比較的多孔質の
断熱性界面層3とセラミック被覆層5とにより有効な断
熱効果が得られ、その上、金属部材2の表面の耐熱性、
耐摩耗性のセラミック被覆層5は比較的薄い被覆であシ
、界面層3との二段構造によシ大きな熱衝撃や温度傾斜
の緩和を計ることができるう なお、本発明の金属基体1に用いられる金属は、鉄基合
金及びアルミ基合金であシ、例えば鋳鉄、炭素鋼、アル
ミニウム合金鋳物などをあけることができる。
As shown in the figure, the present invention provides a metal porous body (also F: r,
A heat insulating interface layer 3 made of ceramic is interposed, and the mutually overlapping surfaces are fixed with a fused layer by metal soldering or a chemical bonding layer 4 of chromium oxide produced by firing chromic acid, and the outer side of the metal member 2 is A ceramic coating 5 chemically bonded with thermally sprayed ceramics and/or chromium oxide is applied to the surface. In this way, an effective heat insulating effect can be obtained by the relatively porous heat insulating interface layer 3 and the ceramic coating layer 5, and in addition, the heat resistance of the surface of the metal member 2 can be improved.
The wear-resistant ceramic coating layer 5 is a relatively thin coating and has a two-stage structure with the interface layer 3, which can greatly alleviate thermal shock and temperature gradients. The metal used for this purpose may be an iron-based alloy or an aluminum-based alloy, such as cast iron, carbon steel, or aluminum alloy casting.

また、セラミック5によシ被覆される金・属部材2は鉄
及び鉄基合金であり、例えば鋳鉄、炭素鋼、ステンレス
鋼、耐熱鋼等をあけることができる。
Further, the metal member 2 coated with the ceramic 5 is made of iron or an iron-based alloy, and can be made of, for example, cast iron, carbon steel, stainless steel, heat-resistant steel, or the like.

次に、前記鉄基合金からなる金属部材2の外側表面に被
覆されるセラミックス5は溶射セラミックス及び(又は
)酸化クロムにより化学結合されたセラミックスであシ
、例えば安定化及び部分安定化ZrO2、CaZr0a
、8rZr03、MgZrO3、Y2Zr20y等の酸
化物から選ばれた1種以上の酸化物をプラズマ溶射して
なる被膜である。また、酸化クロムによシ化学結合され
たセラミック被覆は、各種耐熱性酸化物、例えばZrO
2,8102、A11.03、’rioz、CaZrO
3、MgZrO3等の酸化物から選ばれた1種又は1種
以上の酸化物の微粉末5〜20重量部を比重1.5〜1
.70H20r04の水溶液100重量部に加え、ボー
ルミルを用いてよく混成せしめたスラリーを金属部材2
の一方の面に塗布し、これを450〜650℃において
熱処理した酸化クロムによシ化学結合されたセラミック
被覆体であシ、この塗装及び”熱処理を繰シ返し操作し
て被膜の厚さを適当に調節する。また前記プラズマ溶射
層は本質的に多孔質であるので、との溶射被膜を前記の
HaCrOtを含むスラリーをもって塗布及び熱処理す
ることによシ低気孔化並びに被覆の強化を行うことで一
段と好ましい被覆が得られる。
Next, the ceramic 5 coated on the outer surface of the metal member 2 made of the iron-based alloy is a thermal sprayed ceramic and/or a ceramic chemically bonded with chromium oxide, such as stabilized and partially stabilized ZrO2, CaZrOa.
, 8rZr03, MgZrO3, Y2Zr20y, etc., by plasma spraying. Ceramic coatings chemically bonded with chromium oxide can also be coated with various heat-resistant oxides, such as ZrO.
2,8102, A11.03, 'rioz, CaZrO
3. 5 to 20 parts by weight of fine powder of one or more oxides selected from oxides such as MgZrO3 with a specific gravity of 1.5 to 1
.. In addition to 100 parts by weight of an aqueous solution of 70H20r04, a slurry that was thoroughly mixed using a ball mill was added to the metal member 2.
A ceramic coating chemically bonded to chromium oxide is applied to one side of the coating and heat-treated at 450 to 650°C.This coating and heat treatment are repeated to reduce the thickness of the coating. Since the plasma sprayed layer is essentially porous, the plasma sprayed coating can be coated with the slurry containing HaCrOt and heat treated to reduce porosity and strengthen the coating. A more favorable coating can be obtained.

即ち、比重1.6〜1ニアのE2Cr04の水溶液又は
この溶液中のH2CrOt 1モルに対しMgO又はC
ttOを0.1〜0.4モル加えて溶解した溶液或は比
重1.6〜1.7のH2CrOtの水溶液に少量の耐熱
性酸化物、例えば安定化ZrO2、TlO2,5102
、Al2os及びCaZrO3などのうちから選ばれた
1種以上の酸化物の微粉末を少量、好ましく杖5〜12
重量%加え、よく混和してスラリーを調製し、このスラ
リーをもって溶射セラミックの気孔に含浸せしめ、45
0〜650℃において熱処理を施し、さらにこの処理を
数回繰シ返して行うことで被覆層の開放気孔をなくし、
かつ被膜が強化される。なお、前記金属部材2に被覆す
るセラミックス5の膜厚は燃焼ガスの熱エネルギによる
熱衝撃及びセラミックスの熱伝導率及び熱膨張特性等か
ら勘案し、さらに実験結果から50〜250μmとし、
好ましくは130μm程度・である。
That is, an aqueous solution of E2Cr04 with a specific gravity of 1.6 to 1 nia or MgO or C
A small amount of heat-resistant oxide, such as stabilized ZrO2, TlO2, 5102, is added to a solution in which 0.1 to 0.4 mole of ttO is added or dissolved, or to an aqueous solution of H2CrOt with a specific gravity of 1.6 to 1.7.
, Al2os, CaZrO3, etc., a small amount of fine powder of one or more oxides, preferably 5 to 12
% by weight, mix well to prepare a slurry, and impregnate the pores of the thermal sprayed ceramic with this slurry.
Heat treatment is performed at 0 to 650°C, and this treatment is repeated several times to eliminate open pores in the coating layer.
And the film is strengthened. The thickness of the ceramic 5 coated on the metal member 2 is set to 50 to 250 μm in consideration of the thermal shock caused by the thermal energy of combustion gas, the thermal conductivity and thermal expansion characteristics of the ceramic, and based on experimental results.
Preferably it is about 130 μm.

次に、断熱性界面層3に用いられる部材の1つは金属多
孔体であり、例えば金属繊維焼結体、金属メツシュ積層
焼結体、金属粉末焼結体などをあげることができる。こ
れらの金属多孔体は平均空孔径lO〜100μm、空孔
率40〜75憾、好ましくは最大孔径犯〜ωμm、空孔
率50チ程度を有するステンレス鋼繊維焼結体であり、
焼結体の強度を高め、かつ界面層3の両側の金属面1.
3との接合強度を高める点においてステンレス鋼繊維の
両面に補強金鋼が焼結一体化されたものが部材として最
適である。
Next, one of the members used for the heat insulating interface layer 3 is a metal porous body, such as a metal fiber sintered body, a metal mesh laminated sintered body, a metal powder sintered body, etc. These metal porous bodies are stainless steel fiber sintered bodies having an average pore diameter of 10 to 100 μm, a porosity of 40 to 75, preferably a maximum pore diameter of ω μm, and a porosity of about 50,
The strength of the sintered body is increased, and the metal surfaces 1 on both sides of the interface layer 3.
In terms of increasing the bonding strength with 3, it is best to use stainless steel fibers with reinforcing steel sintered on both sides.

また、界面層3に用いられる部材がセラミックスである
ときは、例えば安定化又は部分安定化ZrO2,0n(
Sr 、Mg)Zr03、Y2 Z r20フ等から選
ばれた1種以上の酸化物の微粉末100重量部に対し、
zrC微粉微粉末1量 く混合した粉末を成形し, 1500℃以上においてよ
く焼結し、見掛気孔率を10−20チに調製したセラミ
ックスであシ、好ましくは、この焼結体を前記同様に酸
化物の微粉を)12C’r04の濃水溶液に加え、調製
したスラリーを用い、セラミックスの気孔に含浸及び熱
処理を行い、この処理を4〜5回繰シ返し行うことで断
熱性を低下させることなく高強度のセラミック質界面層
が形成される。
Further, when the member used for the interface layer 3 is ceramic, for example, stabilized or partially stabilized ZrO2,0n (
For 100 parts by weight of fine powder of one or more oxides selected from Sr, Mg) Zr03, Y2 Z r20, etc.
The powder is formed by mixing one quantity of ZrC fine powder, and is made of ceramic which is well sintered at 1500°C or higher and has an apparent porosity of 10-20cm.Preferably, this sintered body is molded in the same manner as above. Add fine powder of oxide) to a concentrated aqueous solution of 12C'r04, and use the prepared slurry to impregnate the pores of the ceramic and heat treat it. Repeat this process 4 to 5 times to reduce the heat insulation properties. A high-strength ceramic interface layer is formed without any damage.

さらに、金属・セラミックス複合組織からなる界面層に
用いられる金属は金属多孔体を用い、例えばステンレス
鋼のメツシュ積層及び繊維焼結体、ステンレス繊維フェ
ルトなどをあげることができる。比較的大きい孔径でカ
サ密度40〜70%のものを用いる。また、セラミック
原材料は耐熱性酸化物、例えば安定化又は部分安定化Z
r0g、Ca(Sr 、Mg)Zr01等のうちから選
ばれた1′m以上の44μm以下の粉末加〜沁重量部を
比重1.45〜1 、6 U) H2CrO番の水溶液
100重量部に加え、ボールミルを用いてよく混合して
スラリーを調製し、このスラリーを前記金属多孔体の気
孔部分に含浸、充填し、乾燥後450〜650℃に熱処
理を施す。この含浸及び熱処理を反復して6〜8回処理
することによシ強固な断熱性複合組織からなる界面層が
形成される。
Furthermore, the metal used for the interface layer consisting of a metal-ceramic composite structure is a metal porous body, such as a stainless steel mesh laminate, a fiber sintered body, a stainless steel fiber felt, and the like. A material with a relatively large pore diameter and a bulk density of 40 to 70% is used. Ceramic raw materials may also contain refractory oxides, such as stabilized or partially stabilized Z
Add to 100 parts by weight of an aqueous solution of H2CrO with a specific gravity of 1.45 to 1.6 U) and add to 100 parts by weight of a powder of 1'm or more and 44 μm or less selected from R0g, Ca (Sr, Mg) Zr01, etc. A slurry is prepared by thoroughly mixing using a ball mill, and the slurry is impregnated and filled into the pores of the metal porous body, and after drying, heat treatment is performed at 450 to 650°C. By repeating this impregnation and heat treatment 6 to 8 times, an interfacial layer consisting of a strong heat-insulating composite structure is formed.

次に本発明の積層構造部品の各層の組み・合せ、接合に
ついて実施例によシさらに詳細に説明する。
Next, the combination, combination, and bonding of each layer of the laminated structure component of the present invention will be explained in more detail with reference to examples.

実施例−1 構成材料が炭素鋼にセラミック溶射被覆された金属部材
、界面層にはステンレス鋼繊維焼結体、金属基体として
アルミニウム合金鋳物より形成される場合、 先ず、炭素鋼545C ( JIS )の沁×(資)×
2.5簡の試片を用意し、この両面を250μmのサン
ドブラストで粗面化し、この片面にCaO 6重iチと
ugo 10重量悌で安定化されたZrO2を0.2m
の厚さにグラ1ズマ溶射してセラミック被覆を形成し′
だ。
Example 1 When the constituent material is a metal member made of carbon steel coated with ceramic spraying, the interface layer is a stainless steel fiber sintered body, and the metal base is an aluminum alloy casting, first, carbon steel 545C (JIS) is used.沁×(fund)×
A 2.5-piece specimen was prepared, both sides of which were roughened by 250 μm sandblasting, and 0.2 m of ZrO2 stabilized with 6 layers of CaO and 10 layers of UGO was placed on one side.
A ceramic coating is formed by Glazma spraying to a thickness of '
is.

別に、前記同様IIC C!ao−+MgOによシ安定
化された1011m以下のZrOs+粉末3重量部及び
5μm以下の8102粉末3重量部を比重1.5の12
cr04の水溶液】00重量部に加え、ボールミルを用
い24hr粉砕混合してスラリーを調製しておき、この
スラリー中に前記溶射セラミック被覆した鋼板を約15
分間浸漬して被膜の気孔にスラリーを含浸せしめ、被膜
表面に付着した余分のスラリーを拭きとシ、電気炉にお
いて4℃/minで温度をあげ、550℃において約2
0m i n熱処理した,この含浸・熱処理を4回縁シ
返し行うことKよシ溶射セラミック被覆の見掛気孔率は
1チ以下となシ、この低気孔化と共に金属部材との接合
強度は390 Kf/cm2以上(エポキシ系樹脂系接
着剤を用い、引張シ強度試験によシ測定し、樹脂接着面
で剥離した数値)に補強された。なお、鋼板のセラミッ
ク被覆と反対の表面は後記のように金属質の界面層と接
合する必要があるので、前記スラリー処理を行う前に予
めその面にマスキングテープを貼っておき、スラリー処
理物を乾燥した後、テープをはがし取ると次工程での接
合が可能となる。なおテープの代シにポリスチレン系の
樹脂塗料でマスキングしてもよい。これは熱処理中に分
解消失する。
Separately, as above, IIC C! 3 parts by weight of ZrOs+ powder of 1011 m or less stabilized by ao-+MgO and 3 parts of 8102 powder of 5 μm or less were added to 12
00 parts by weight of cr04 aqueous solution], grind and mix for 24 hours using a ball mill to prepare a slurry, and add about 15 parts of the above thermal sprayed ceramic coated steel plate to the slurry.
The slurry was soaked in the pores of the film for 1 minute, and the excess slurry adhering to the surface of the film was wiped off.
The apparent porosity of the thermal sprayed ceramic coating is 1 inch or less, and the bonding strength with the metal member is 390 mm. It was reinforced to Kf/cm2 or more (measured by a tensile strength test using an epoxy resin adhesive and peeled off at the resin adhesive surface). Note that the surface of the steel sheet opposite to the ceramic coating needs to be bonded to a metallic interface layer as described below, so masking tape is pasted on that surface before the slurry treatment is performed, and the slurry-treated material is After drying, the tape can be peeled off and bonded in the next step. Note that masking may be performed with a polystyrene resin paint instead of the tape. This decomposes and disappears during heat treatment.

断熱性界面層としては51) X 50 X 4 mm
、気孔率約50係を有する市販のステンレス繊維焼結体
を用いた。この種の焼結体には両面に補強金銅が同時に
焼結されたものも適用できる。使用した界面層の熱伝導
率は約0.008 Ca1l/cm・5ec−’C(熱
線法による測定値)であった。
51) x 50 x 4 mm as a heat insulating interface layer
A commercially available stainless steel fiber sintered body having a porosity of about 50 was used. This type of sintered body may also have reinforcing gold copper sintered on both sides at the same time. The thermal conductivity of the interface layer used was approximately 0.008 Ca1l/cm·5ec-'C (value measured by hot wire method).

そして前記炭素鋼板の素肌面は純銅の微粉末をニトロセ
ルローズ20ts溶液でペースト状にしたろう剤を約0
.2鱈程度の厚さに塗布し、この上に前記ステンレス繊
維焼結体を重ね合せ、上方から約50O fの重シをの
せ、ブタン変成ガスの還元雰囲気(008〜10チ)下
において約1125℃でろう接合を行った。
The bare surface of the carbon steel plate was coated with about 0% of a brazing agent made of fine powder of pure copper made into a paste with a 20ts solution of nitrocellulose.
.. The stainless steel fiber sintered body is layered on top of the coating, and a heavy film of about 50Of is placed from above, and it is heated to about 1125F in a reducing atmosphere of butane conversion gas (008 to 10OF). Brazing joints were performed at ℃.

次に、前記接合体と金属基体との接合を行う。Next, the bonded body and the metal base are bonded.

金銭基体にはアルミニウム合金鋳物としてJISAC’
5A(市販Y合金)、50 X 50 X 10闘を使
用した。この基体面にAA!−8i系アルミニウムろう
( ’.rxsBAao相蟲)の薄板を敷設し、次に、
フシツクスを塗布、その上に前記の接合体の界面層を重
ね合せ、上部よシ約500tの重シをのせ、電気炉にお
いて還元d囲気下において560℃に加熱し、ろう接合
を行い、断熱性積層品を試作した。このような組み合せ
の積層品は、初めに各金属累月を夫々金属系ろう材を用
いて接合し、その後工程においてセラミック溶射被覆及
び酸化クロムの化学結合による被覆の強化処理を行うこ
とも好結果が得られる。また、前記アルミニウム合金基
体の代シに鉄基合金を用いるときは純銅ろうで界面層を
同時に接合することができる。この場合における積層部
品の熱伝導率は0.007〜0.006 Ca4/cm
−sec・6C,で十分満足できる性能であった。
JISAC' is used as aluminum alloy casting for monetary base.
5A (commercially available Y alloy), 50 x 50 x 10 pieces, was used. AA on this base surface! - Laying a thin plate of 8i-based aluminum solder ('.rxsBAao Aimushi), then
The interfacial layer of the above bonded body was applied on top of the adhesive, and a heavy sheet of about 500 tons was placed on top, and heated to 560°C in an electric furnace under a reducing atmosphere to perform soldering and heat insulation. We made a prototype of a laminated product. It is also possible to produce such a combination of laminated products by first joining each metal layer using a metal brazing filler metal, and then in the subsequent process strengthening the coating by ceramic spray coating and chemical bonding of chromium oxide. is obtained. Further, when an iron-based alloy is used as a substitute for the aluminum alloy substrate, the interface layers can be simultaneously bonded using pure copper solder. The thermal conductivity of the laminated parts in this case is 0.007 to 0.006 Ca4/cm
-sec・6C, the performance was sufficiently satisfactory.

実施例−2 酸化クロムにより化学結合されたセラミック被覆を有す
る金属部材とセラミック質断熱性界面層と金属基体とか
らなる断熱性積層部品の場合、金属部材として球状黒鉛
鋳鉄(JIS、 FCD40)、刃×(支)X2.3m
の板を用い、この両面を実施例−1と同様にサンドブラ
ストで粗面化し、その片面に比重1.56のH2Cro
、の濃水溶液100重量部に対し、5μm以下の510
2粉末9重量部、5μm以下のAl2O3粉末3重量部
及びCa08重′tCI)にょシ溶融安定化されたZr
O2の10μm以下の粉末9重量部を加え、ボールミル
を用い24hr粉砕混合して調製したスラリーを塗布し
、乾燥後550°Cにおいて約20 min熱処理を施
し、さらに前記塗布及び熱処理を5回反復処理を行った
。この処理にょシスラリ−中のHQCrO。
Example 2 In the case of a heat-insulating laminate component consisting of a metal member having a ceramic coating chemically bonded with chromium oxide, a ceramic heat-insulating interface layer, and a metal base, spheroidal graphite cast iron (JIS, FCD40) and blades were used as the metal members. ×(support)×2.3m
Using a plate of
510 parts of 5 μm or less for 100 parts by weight of a concentrated aqueous solution of
2 powder, 3 parts by weight of Al2O3 powder of 5 μm or less, and melt-stabilized Zr
A slurry prepared by adding 9 parts by weight of O2 powder of 10 μm or less and pulverizing and mixing for 24 hours using a ball mill was applied, and after drying, heat treatment was performed at 550°C for about 20 minutes, and the above application and heat treatment were repeated 5 times. I did it. HQCrO in the slurry during this treatment.

が分解、CrCl3−+ Cr2O3に変換し、共存す
る5in2、Al2O3,2102粒子及び鋳鉄相互と
強固に化学結合し、約120μm厚のセラミック被膜が
形成された。
was decomposed and converted to CrCl3-+ Cr2O3, which strongly chemically bonded with the coexisting 5in2, Al2O3, 2102 particles and cast iron, forming a ceramic coating with a thickness of about 120 μm.

次に、さらにこの被膜の結合強度を高めるため比重1.
65のH,lCr0.単味の濃水溶液中K10分間浸漬
し、乾燥後550°ClICおいて熱処理を施し、さら
にこの溶液による浸漬及び熱処理を2回繰り返し行った
Next, in order to further increase the bonding strength of this coating, the specific gravity is 1.
65 H, lCr0. The sample was immersed in a simple concentrated aqueous solution for 10 minutes, dried, and then heat treated at 550° C.I.C., and the immersion and heat treatment in this solution were repeated twice.

このようにして得られるセラミック被膜の熱伝導率の値
はレザーパルス法ニょF) 約0.006〜0.007
であることが認められた。
The thermal conductivity value of the ceramic coating thus obtained is approximately 0.006 to 0.007 using the laser pulse method.
It was recognized that

断熱性セラミック界面層にはCaO15重量係+Mgo
 IQ重葉チにより安定化された44μm以下のZrO
2粉末too重量部、108m以下のZrC12重骨部
、5mm以下のCaCO35重量部及び加μm以下のM
gZrO3粉末50重量部からなる混合粉末を1500
 KW/crrt2で加圧成形し、1500’Cにおい
て焼結した。その見掛気孔率15.6 %であり、この
焼結体を強化するため、次の処理を行った。即ち、強化
剤として比重1.55のH2CrO4の水溶液100重
量部に対し、CaO18重量%で安定化された10μm
以下のZ r02粉末8重景部及び5μm以下のS↓o
2粉末12重量部を加え、ボールミルを用い24hr粉
砕混合して調整したスラリーを用いた。このスラリー中
に前記セラミック焼結体を浸漬し、l mmHgの減圧
下においてセラミックスの気孔中にスラリーヲ含浸させ
、電気炉により4°C/minで昇温し、650°Cに
おいて約30 min熱処理を行い、さらにこの含浸・
熱処理t6回繰り返した。得られたセラミック界面層は
見掛気孔率2.3俤、熱伝導率は0.005 Ca17
cm −5ea−°Cであり、断熱性界面層として満足
できる性能を有するものであった。
The insulating ceramic interface layer contains CaO15 weight factor + Mgo
ZrO of 44 μm or less stabilized by IQ heavy leaf chip
2 powder too parts by weight, ZrC12 heavy bone part of 108m or less, CaCO35 parts by weight of 5mm or less, and M of less than μm
1500 g of mixed powder consisting of 50 parts by weight of ZrO3 powder
Pressure molded at KW/crrt2 and sintered at 1500'C. Its apparent porosity was 15.6%, and in order to strengthen this sintered body, the following treatment was performed. That is, for 100 parts by weight of an aqueous solution of H2CrO4 with a specific gravity of 1.55 as a reinforcing agent, 10 μm stabilized with 18% by weight of CaO
The following Z r02 powder 8 layers and S↓o of 5 μm or less
A slurry prepared by adding 12 parts by weight of powder No. 2 and grinding and mixing for 24 hours using a ball mill was used. The ceramic sintered body was immersed in this slurry, the slurry was impregnated into the pores of the ceramic under a reduced pressure of 1 mmHg, the temperature was raised at 4°C/min in an electric furnace, and heat treatment was performed at 650°C for about 30 min. This impregnation/
The heat treatment was repeated 6 times. The obtained ceramic interface layer has an apparent porosity of 2.3 yen and a thermal conductivity of 0.005 Ca17
cm -5ea-°C, and had satisfactory performance as a heat insulating interface layer.

次に、金属基体としてねずみ鋳鉄(JI日FC35)を
用い、これと前記のセラミック被覆された球状黒鉛鋳鉄
部材及びセラミック界面層とを積層とする接合には酸化
クロムの化学結合による方法を甲い走。この方法は特願
昭58−61660号及び特願昭58−61661号に
詳細に記載されている。即ち、接合剤にはCrO350
0fを水圧溶解し、比重1.fi5〜1.7のH2Cr
O4の溶液をつくり、これにZnO25S’及びMgO
50fの粉末を溶解し、水を加えて比重1.85の溶液
にし、さらKこの溶液500 fに対しl(l im以
下の安定化ZrO2粉末151.10μm以下のTiO
粉末15 f及び5μm以下の8102粉末3Ofを添
加し、ボールミルを用い、24hr粉砕・混合し、接合
剤を8周胴1.た。
Next, gray cast iron (JI Nippon FC35) was used as the metal base, and a method using chemical bonding of chromium oxide was used to bond this to the ceramic-coated spheroidal graphite cast iron member and the ceramic interface layer in a laminated manner. Run. This method is described in detail in Japanese Patent Application No. 58-61660 and Japanese Patent Application No. 58-61661. That is, the bonding agent contains CrO350
0f was hydraulically dissolved and the specific gravity was 1. H2Cr with fi5~1.7
A solution of O4 is made, and ZnO25S' and MgO are added to it.
Dissolve 50 f of powder, add water to make a solution with a specific gravity of 1.85, and add K to 500 f of this solution.
15 f of powder and 3 Of of 8102 powder of 5 μm or less were added, ground and mixed for 24 hours using a ball mill, and the binder was added to the 8-round cylinder 1. Ta.

前記のセラミック被覆された鋳鉄部材及び基体とするね
ずみ鋳鉄(Fe12.50X50X51jllサイズ)
とを接合の前処理として、85°Cに加温された比重1
.450H2CrO,(7)水溶液中に浸漬し、約15
 min 、 85°Cに加熱保持して、両鋳鉄表面に
露呈(〜でいる黒鉛を除去した。
The above ceramic-coated cast iron member and gray cast iron as the base (Fe12.50X50X51jll size)
and specific gravity 1 heated to 85°C as a pretreatment for bonding.
.. 450H2CrO, (7) immersed in an aqueous solution, about 15
The graphite exposed on both cast iron surfaces was removed by heating and holding at 85°C.

前記脱黒鉛処理されたねずみ鋳鉄基体、セラミック界面
層及びセラミック被覆された球状黒鉛鋳鉄部材の夫々の
接合面、に前記接合剤のスラリーを刷毛を用いてよく塗
布し、約5 min経過後接合面を夫々重ね合せ、細い
針金で積層物を固定し、電気炉を用い4°C/minで
昇温し、5fiO’Cにおいて約30 min加熱保持
し1、断熱性積層部品を試作したうこの試作品より接合
面15 x 15闘の寸法に切断し、エポキシ系接着剤
を用いて引張試験用試片を作成し、接合強度を測定した
結果、樹脂接着部において剥離し、その強度は385 
Kp/cWL″以−上であることが認められた。また、
その積層部品の熱伝導率は0.004 Cal 7cm
 −sec ・°Cであった。
The slurry of the bonding agent was thoroughly applied using a brush to the bonding surfaces of the degraphitized gray cast iron base, the ceramic interface layer, and the ceramic-coated spheroidal graphite cast iron member, and after about 5 minutes, the bonding surfaces were bonded. The laminate was fixed with a thin wire, heated at 4°C/min using an electric furnace, and kept heated for about 30 min at 5fiO'C. The piece was cut to a size of 15 x 15 mm on the bonded surface, and a tensile test specimen was made using epoxy adhesive to measure the bond strength. As a result, it peeled off at the resin bonded part, and its strength was 385.
Kp/cWL'' or higher was observed.Also,
The thermal conductivity of the laminated part is 0.004 Cal 7cm
-sec ·°C.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明断熱性積層部品の構成を示す断面図である。 ■・・・金属製基体、2・・・金属部材、3・・・界面
層、4・・・接合1召、5・・・セラミック被覆特許出
願人 臼井国際産業株式会社 代 理 人 押 1) 良 久[晶
The figure is a sectional view showing the structure of the heat insulating laminate component of the present invention. ■...Metal base, 2...Metal member, 3...Interface layer, 4...Joining layer, 5...Ceramic coating Patent applicant Usui Kokusai Sangyo Co., Ltd. Agent 1) Yoshihisa [Akira]

Claims (2)

【特許請求の範囲】[Claims] (1) 鉄基合金又はアルミニウム合金からなる金属製
基体と鉄又は鉄基合金からなる金属部材との重合面間に
断熱性界面層を敷設介在して、これら相互の重合面を金
属ろう接によるろう融着層或はクロム酸の焼成に伴う酸
化クロムの化学結合層をもって固着し、かつ金属部拐の
外側表面には溶射又は酸化クロムによシ化学結合された
セラミック被覆を施こしたご七を特徴とする断熱性積層
部品。
(1) A heat insulating interface layer is interposed between the overlapping surfaces of a metal base made of an iron-based alloy or an aluminum alloy and a metal member made of iron or an iron-based alloy, and these mutual overlapping surfaces are bonded by metal soldering. It is fixed with a solder bonding layer or a chemical bonding layer of chromium oxide produced by firing chromic acid, and the outer surface of the metal part is coated with a ceramic coating that is thermally sprayed or chemically bonded with chromium oxide. A heat-insulating laminate component featuring:
(2)断熱性界面層は金属多孔体又はセラミック或は金
属とセラミックスとの複合体である特許請求の範囲第1
項記載の断熱性積層部品。
(2) The heat-insulating interface layer is a porous metal body, a ceramic, or a composite of metal and ceramics.
Insulating laminate parts as described in section.
JP13338783A 1983-07-21 1983-07-21 Heat-insulating laminated part Granted JPS6024941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13338783A JPS6024941A (en) 1983-07-21 1983-07-21 Heat-insulating laminated part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13338783A JPS6024941A (en) 1983-07-21 1983-07-21 Heat-insulating laminated part

Publications (2)

Publication Number Publication Date
JPS6024941A true JPS6024941A (en) 1985-02-07
JPS621817B2 JPS621817B2 (en) 1987-01-16

Family

ID=15103548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13338783A Granted JPS6024941A (en) 1983-07-21 1983-07-21 Heat-insulating laminated part

Country Status (1)

Country Link
JP (1) JPS6024941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752535A (en) * 1985-02-01 1988-06-21 Norsk Hydro A.S Aluminium-based article having a protective ceramic coating, and a method of producing it
CN111574223A (en) * 2020-05-29 2020-08-25 Oppo广东移动通信有限公司 Reinforced zirconia ceramic and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752535A (en) * 1985-02-01 1988-06-21 Norsk Hydro A.S Aluminium-based article having a protective ceramic coating, and a method of producing it
CN111574223A (en) * 2020-05-29 2020-08-25 Oppo广东移动通信有限公司 Reinforced zirconia ceramic and preparation method thereof

Also Published As

Publication number Publication date
JPS621817B2 (en) 1987-01-16

Similar Documents

Publication Publication Date Title
US4615913A (en) Multilayered chromium oxide bonded, hardened and densified coatings and method of making same
EP0396240B1 (en) Ceramic meterial and method for producing the same
US5820976A (en) Thin insulative ceramic coating and process
JPS58194782A (en) Composite material coating material and application to article
JPS6024941A (en) Heat-insulating laminated part
JPS59203784A (en) Formation of electroconductive coating on non-oxide ceramic sintered body
JPS6155589B2 (en)
JPS6293359A (en) Ceramic coating
JPH0250994B2 (en)
JP3081764B2 (en) Carbon member having composite coating and method of manufacturing the same
JPS6232275B2 (en)
JPS6033361A (en) Preparation of ceramic-metal bonded body
JPS646274B2 (en)
JP3039269B2 (en) Method of forming thermal insulation film
JPH0361754B2 (en)
JPS6126781A (en) Heat resisting laminated body and its manufacture
JPS59131586A (en) Bonded body of aluminum or aluminum alloy member and ceramicmember and bonding method
JP2984654B1 (en) Method for producing ceramic laminate having sprayed ceramic layer
JPS59156976A (en) Metal member-ceramic member bonded body and method therefor
JPH0157665B2 (en)
RU2689588C2 (en) Method of producing thick-layer ceramic heat-insulating coating on metal substrate
JPH0458433B2 (en)
JPH03189063A (en) Ferrous porous reinforced material and combined body of this and non-ferrous metal
JPS6140874A (en) Adhesive for ceramic member and bonding method
JPS59128276A (en) Adhesion bonded structure of ceramic to metal member surface