JPS60249307A - Quenching protection circuit of superconductive coil system - Google Patents

Quenching protection circuit of superconductive coil system

Info

Publication number
JPS60249307A
JPS60249307A JP59104686A JP10468684A JPS60249307A JP S60249307 A JPS60249307 A JP S60249307A JP 59104686 A JP59104686 A JP 59104686A JP 10468684 A JP10468684 A JP 10468684A JP S60249307 A JPS60249307 A JP S60249307A
Authority
JP
Japan
Prior art keywords
coil
breaker
coils
discharged
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59104686A
Other languages
Japanese (ja)
Inventor
Tsutomu Fujioka
藤岡 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59104686A priority Critical patent/JPS60249307A/en
Publication of JPS60249307A publication Critical patent/JPS60249307A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To avoid the excessive overload state of a coil or an excitation power source enabling to maintain other normal coil group under a rated current in the case that one coil is quenched and discharged during a superconductive coil system operation only by adding a simple circuit based upon a conventional coil protection circuit. CONSTITUTION:When a coil 1-1 is quenched in a circuit unit B-1, coil energy is discharged through a discharge resistance 2-1 cutting a DC breaker 3-1 and an auxiliary DC breaker 5-1 off simultaneously. At the same time, DC breakers 3-1-3-n are cut off in circuit units B-2-B-n. In this case, the coil energy of each normal coil 1-2-1-n is discharged by each discharge resistance 2-2-2-n and each control resistance 6-2-6-n. [Refer to Drawings (b) and (c)]. After each coil 1-2-1-n is discharged for a definite time t2-tn respectively, each DC breaker 3-2-3-n is closed again. The value of each control resistance is extremely smaller than the value of each discharge resistance.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁気的にカップリングされた多数の超〔発明の
技術的背景とその問題点〕 近年トーラス型核融合炉を目指した打々の実験装置等が
13F4発され始めている事は周知のとおシである。さ
てこの核融合炉の重要な要素である超電導コイルC以下
単にコイルと称す)はクエンチし。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a large number of magnetically coupled superstructures. It is well known that devices are beginning to emit 13F4. Now, the superconducting coil C, which is an important element of this fusion reactor (hereinafter simply referred to as the coil), is quenched.

た場合直流しゃ断器を切ってそのコイルエネルギーと外
部の放電抵抗へ放電し、コイルの保護を計らねばならな
い事は言うまでもなく、従来その保護方式として上記の
ような放電抵抗を用いた方式が確立されていると考えて
よい。但しこの方式はおくまでもコイル1ケしか存在し
、ない場合についてのみ確立さhているだけで、多数の
コイルからなるコイルシステムのクエンチ保護方式に従
来の方式を直接応用すると次のような問題が発生する。
Needless to say, in such a case, it is necessary to turn off the DC breaker and discharge the coil energy to an external discharge resistor to protect the coil. Conventionally, a method using a discharge resistor as described above has been established as a protection method for this purpose. It can be considered that However, this method has only been established for cases where there is only one coil or no coil, and if the conventional method is directly applied to a quench protection method for a coil system consisting of many coils, the following problems will occur. occurs.

最初に従来のコイル1ケに対するクエンチ保W仝回路の
構成は周知のように第2図に示すごとく、コイル1−1
、放電抵抗2−2、厘流しやIJi器3−1及び励磁電
源4−1から構成されている。コイルシステムにこの保
護回路を直接応用すると第2図に示すように全く同じ構
成から々るA−s〜A−nの回路ユニットを配置するこ
とになる。第2図では核融合炉用のトロイダルコイルシ
ステムを想定しトーラス状にコイルを配置しているが、
これに限ることはなく磁気的にカップリングするような
コイルの配列をこの対象回路とし、ている。
First, the configuration of a conventional quench protection circuit for one coil is as shown in Figure 2, as is well known.
, a discharge resistor 2-2, a sink or IJi device 3-1, and an excitation power source 4-1. If this protection circuit is directly applied to a coil system, as shown in FIG. 2, circuit units A-s to A-n having exactly the same configuration will be arranged. In Figure 2, the coils are arranged in a torus shape, assuming a toroidal coil system for a fusion reactor.
The present invention is not limited to this, and the target circuit is an array of coils that are magnetically coupled.

この場合ある1ケのコイルがクエンチし放電すると、磁
気誘導により他の正常なコイル群の通電電流が噌カロす
る。この増力l]号はコイル群のうちクエンチしたコイ
ルに近いコイル程大きく、特に隣接コイルについては一
般に定格電流の20〜25%に達L5、コイル自身およ
び電源にとっても非常に過大なオーバロードとなシ危険
である。このような問題を解消するだめには従来次の(
1)〜(3)のような方式が考案されているが各々問題
点を有する。
In this case, when one coil quenches and discharges, the current flowing through the other normal coils is exhausted due to magnetic induction. This increase in power L5 is larger in coils closer to the quenched coil in the coil group, and in particular for adjacent coils, it generally reaches 20 to 25% of the rated current L5, causing a very excessive overload for the coil itself and the power supply. It is dangerous. Conventionally, to solve such problems, the following (
Methods 1) to (3) have been devised, but each has its own problems.

(1) コイル及び電源とも120〜125%のオーバ
ロードに耐えるような設計にしておく。しかしそのだめ
のコストアップはど機器の大型化は壕ぬかれえず、不利
になる事は言うまでもない。
(1) Both the coil and power supply should be designed to withstand 120 to 125% overload. However, it goes without saying that increasing costs and increasing the size of the equipment cannot be avoided, which is a disadvantage.

(2)他の正常なコイルも磁気誘導作用によシー斉に放
電を行う。しかしこの場合は放電速度が一般に%程度ま
で低下し、クエンチしまたコイルの安全性がよシそこな
われやすくなること及び全コイルからの液体ヘリウムの
蒸発ば1膨大な消耗であると共に熱的な大変化となるだ
め機器の設計上好ましくない。
(2) Other normal coils also discharge simultaneously due to magnetic induction. However, in this case, the discharge rate generally decreases to about 10%, quenches, and the safety of the coil is likely to be compromised, and the evaporation of liquid helium from all the coils results in enormous consumption and thermal damage. This is a major change and is unfavorable in terms of the design of the equipment.

一方核融合炉用のトロイダルコイルシステムを対象とす
る場合においてプラズマ生成の見地からは、全コイルの
うち1ヶ程度が放電してし1つでも依然としてプラズマ
生成を維持できる可能性U6ると言わhている。よって
このよう1r(他の正常なコイルも一斉にゼロアンペア
まで放電してしまうことは核融合炉としての稼動率を低
下させることにもなる。
On the other hand, in the case of a toroidal coil system for a nuclear fusion reactor, from the perspective of plasma generation, it is said that there is a U6 possibility that plasma generation can still be maintained even if one coil out of all the coils is discharged. ing. Therefore, if the 1r (other normal coils are also discharged to zero ampere) at the same time, the operation rate of the fusion reactor will be reduced.

(3)励磁電源4−1〜4−nに十分なインバータ電圧
を持たせ、電流増加分を系統側へインバート(パワーパ
ック)する事によシ定格電流以下に保つこともできる。
(3) It is also possible to maintain the current below the rated current by providing sufficient inverter voltage to the excitation power supplies 4-1 to 4-n and inverting the increased current to the system side (power pack).

しかし、一般にコイルは静的に運転されることほど超電
導コイルであるということから定常時に必要な電源の出
力電圧はケーブル又はブスドロップを補うだけの10〜
30 Vもbれば十分である。この小実に反して上記の
ようなインバータ電圧を行おうとすれば電圧容・片とし
て故10〜ぞ9100倍よけいに必要になってくる。
However, since the coil is generally a superconducting coil and is not operated statically, the output voltage of the power supply required during steady state is 10~10~10 to compensate for the cable or bus drop.
30 V is also sufficient. Contrary to this small fact, if you try to use the inverter voltage as described above, you will need 10 to 9100 times more voltage capacity.

〔発明の目的〕[Purpose of the invention]

本発明は上述の従来方式の問題点を解消しようとするも
のであシ、簡単な機器構成でもって上述の他の正常コイ
ルの電流増加を抑制し、定格電流以下に保ち、コイル及
び励磁電源のオーバロード〔発明の概要〕 多数の超電導コイルから表る超電等コイルシステムのう
ちある一ケの超電導コイルがクエンチした場合、他の正
常庁コイルには磁気誘導により発生した電流増加を抑制
するために放電抵抗と並列に小容量の制御用抵抗を設は
所定の時間他の正常なコイルもコイル電流を定格値以下
に維持するようにこの制御用抵抗に放電させることを特
徴とする。
The present invention aims to solve the problems of the conventional method described above, and uses a simple equipment configuration to suppress the increase in current in the other normal coils, keep the current below the rated current, and increase the current of the coil and excitation power source. Overload [Summary of the Invention] When one superconducting coil in a superconducting coil system consisting of a large number of superconducting coils is quenched, the other normal coils are overloaded to suppress the increase in current generated due to magnetic induction. A small-capacity control resistor is set in parallel with the discharging resistor, and discharge is caused to the control resistor for a predetermined period of time so that the coil current of other normal coils is maintained below the rated value.

〔発明の実施例〕[Embodiments of the invention]

本発明は従来の放電抵抗と並列に適当に小容量の制御用
抵抗と補助直流しゃ断器からなる直列回路を接続し、そ
しであるコイルのクエンチによる放電時に他の正常コイ
ルはそのコイルエネルギーを主として制御用抵抗の抵抗
値で決まる速度で予じめ計算された時間、減磁し、定格
電流以下に保つものとする。一方自コイルがクエンチを
起した場合は従来方式どおり放電抵抗で放電する。
The present invention connects a series circuit consisting of an appropriately small capacity control resistor and an auxiliary DC breaker in parallel with a conventional discharge resistor, and when a coil is discharged due to quenching, other normal coils mainly use the coil energy. The magnet shall be demagnetized at a speed determined by the resistance value of the control resistor for a pre-calculated period of time to maintain the current below the rated current. On the other hand, if the own coil quenches, discharge is performed by the discharge resistor as in the conventional method.

以下本発明の一実施例を第1図に示す。回路ユニツ)1
3−sを例にとるとコイルl−+、放電抵抗2−1、直
流しゃ断路3−1及び励磁′電源41の第4η成は第2
図で説明し、た従来の保詐回路構成と同一でちる。本発
明はこの構成にさらに補助直流しゃ断器5−Ll及び制
御用抵抗6−1からなる直列回路を放電抵抗2−sと並
列接続するように追加した回路ユニットB−1〜B−n
とこれらの直流しゃ断g=3−t〜3−n及び補助直流
しゃ断器5−1〜5−nの人、切タイミングを予じめ定
めた方法でコントロールする制御盤7とタイミングの指
示を行う信号線8−!〜いて以下説明する。定常運転時
は直流しゃ断器3−1〜3−n及び補助直流しゃ断器5
−+〜5−nは閉状態とする。例えば回路ユニットB−
1においてコイル】−1がクエンチした場合は直流しゃ
断器3−1と補助直流しゃ断器5−1を同時に切って放
電抵抗2−1にコイルエネルギーを放電する(第3図a
参照)。同時に回路ユニットB、2〜B−nにおいては
直流しや% 53−2〜3−nを切るもの(開)とする
An embodiment of the present invention is shown in FIG. 1 below. circuit units) 1
Taking 3-s as an example, the 4th η component of the coil l-+, the discharge resistor 2-1, the DC disconnector 3-1, and the excitation power source 41 is the second
It is the same as the conventional insurance circuit configuration explained in the figure. The present invention further provides circuit units B-1 to B-n in which a series circuit consisting of an auxiliary DC breaker 5-Ll and a control resistor 6-1 is connected in parallel with the discharge resistor 2-s.
and the control panel 7 that controls the cut-off timing in a predetermined manner, and the people of these DC cutoff g = 3-t to 3-n and the auxiliary DC breakers 5-1 to 5-n, and the control panel 7 that instructs the timing. Signal line 8-! This will be explained below. During steady operation, DC breaker 3-1 to 3-n and auxiliary DC breaker 5
−+ to 5-n are in the closed state. For example, circuit unit B-
1, when the coil]-1 is quenched, the DC breaker 3-1 and the auxiliary DC breaker 5-1 are turned off at the same time, and the coil energy is discharged to the discharge resistor 2-1 (Fig. 3a).
reference). At the same time, the circuit units B and 2 to B-n are configured to cut off (open) direct current and %53-2 to 3-n.

この場合正常な各コイル1−2〜1−nのコイルエネル
ギーは各放電抵抗2−2〜2−n及び制御用抵抗6−2
〜6−nで放電される(第3図す、c参照)。
In this case, the normal coil energy of each coil 1-2 to 1-n is
~6-n (see Figure 3, c).

各コイル1−2〜1−nは名々所定の時間t2〜tnの
間放電された後、各々直流しゃ断器3−2〜3−nを再
投入するものとする。
After each coil 1-2 to 1-n is discharged for a predetermined period of time t2 to tn, each DC breaker 3-2 to 3-n is turned on again.

ここで各制御用抵抗の抵抗値は放電抵抗の抵抗値に比べ
U:るかに小さいものである。上記制御用抵抗の挿入時
間t2〜tnの値は、コイル1−2〜1−nの通電電流
が定格値付近に一定に保たれるよう予じめ計算でめてお
くものとする。っまシコイル1−+でクエンチが発生し
、た場合を想定して、他の(残りの)コイル毎に制iM
I用抵抗の挿入時間を予じめめる。以下同様にコイルJ
、−2でクエンチが発生した場合を仮定して、他の(:
Aシの)コイルについてそれぞれの制御用抵抗の挿入時
間を予じめめる。このようにして全コイルについてクエ
ンチの発生したコイルとの位置(磁気的カップリング状
況)状況により制1i11盤7内に予じめ設定された時
間に応じて制御用抵抗と直列接続された補助直流しゃ断
器の大切が制御される。一方、t2〜tnのタイミング
指令は制御盤7にてノーケンスを組んでおいて図示しな
い公知のクエンチ検出回路からの出力信号に基づいて発
信するものとする。第3図に示すように正常なコイルl
−2,l−3・・は定格電流よシ多少小さくなシはする
が定格電流を越す事がないだめコイル及び励磁電源とも
オー’<0−トlcナラナい。一方、コイルl−2〜コ
イル1−nはほぼ定格電流一定に保たれるため、コイル
1−1の放電時定数は自己インダクタンス/放電抵抗値
の値にほぼ保つことができる。よってクエンチしたコイ
ルl−1の保護上も安全である。
Here, the resistance value of each control resistor is much smaller than the resistance value of the discharge resistor. The values of the control resistor insertion times t2 to tn are calculated in advance so that the current flowing through the coils 1-2 to 1-n is kept constant around the rated value. Assuming that a quench occurs in coil 1-+, control is applied to each other (remaining) coil.
Prepare the insertion time for the I resistor in advance. Similarly, coil J
, -2, and the other (:
For the coils (A), the insertion time of each control resistor is determined in advance. In this way, the auxiliary DC current is connected in series with the control resistor according to the position (magnetic coupling situation) of the coil where quenching has occurred for all the coils, and the time is preset in the control panel 7. The importance of circuit breaker is controlled. On the other hand, the timing commands from t2 to tn are set in the control panel 7 and transmitted based on an output signal from a known quench detection circuit (not shown). Normal coil l as shown in Figure 3
-2, l-3... are somewhat smaller than the rated current, but the rated current must not be exceeded, so both the coil and the excitation power supply should be in an auto-<0-to LC range. On the other hand, since the rated currents of the coils l-2 to 1-n are kept substantially constant, the discharge time constant of the coil 1-1 can be kept substantially equal to the self-inductance/discharge resistance value. Therefore, it is safe to protect the quenched coil l-1.

本発明においては直流しゃ断器3−1〜3−nは本来の
目的であるしゃ断動作以外に投入器としての投入動作を
必要とするが、もし、投入ミスが発生した場合は次のよ
うにフェイルセイフ機能を果すようになっている。すな
わち投入できない場合はコイル1−2〜1−nは各々は
ぼ制御抵抗6−1〜6−nの抵抗値で決まるゆるやかな
放電速度で電流ゼロまで放電し切ってしまうことになり
超電導コイルシステムとしての安全性は保たれることに
なる。但し本発明では、直流しゃ断器3−1〜3−nは
その投入動作として信頼性の大なものらるいはそのよう
に改造したものを使用することを前提とする。
In the present invention, the DC circuit breakers 3-1 to 3-n are required to perform a closing operation as a closing device in addition to their original purpose of breaker operation, but if a closing error occurs, a fail occurs as follows. It is designed to perform a safety function. In other words, if the coils 1-2 to 1-n cannot be turned on, each of the coils 1-2 to 1-n will be discharged to zero current at a slow discharge rate determined by the resistance values of the control resistors 6-1 to 6-n, resulting in a superconducting coil system. safety will be maintained. However, in the present invention, it is assumed that the DC circuit breakers 3-1 to 3-n are highly reliable in their closing operation, or are modified in such a manner.

本発明は第4図に示すようにコイルl−1に放電抵抗2
−1は並列接続し、一方直流しゃ断器3−+は直列接続
するような従来の保護回路に対しても適用できる。すな
わち制御用抵抗6−1と補助直流しや断器5−1の直列
回路を放電抵抗2−1に並列に接続すれば上記と全く同
様な作用及び効果を奏することができる。
In the present invention, as shown in FIG.
It can also be applied to a conventional protection circuit in which DC breaker 3-1 is connected in parallel, while DC breaker 3-+ is connected in series. That is, by connecting a series circuit of the control resistor 6-1 and the auxiliary direct current or disconnector 5-1 in parallel to the discharge resistor 2-1, the same operation and effect as described above can be achieved.

上述の本発明実施例では1ケのコイルに1台の励磁電源
を対応させるコイル/ステムについて説明したが、本発
明は第5図に示すようにいくつかのコイル群を直列接続
したものに対して1台の励磁電源を対応させるようなコ
イル/ステムに対しても全く同様な作用と効果を奏する
ことができる。
In the above-described embodiment of the present invention, a coil/stem in which one excitation power source is connected to one coil was explained, but the present invention is applicable to a coil/stem in which several coil groups are connected in series as shown in FIG. Exactly the same action and effect can be obtained for a coil/stem that is associated with one excitation power source.

ここでmは1台の励磁電源Vこ直列接続するコイル数を
意味しnはmの整数倍とする。寸だこの1ηケのコイル
の構造的位置関係はとな9同志であっても−装置きであ
ろうと全く任意でろる。なお、n′、?ユである。
Here, m means the number of coils connected in series with one excitation power supply V, and n is an integral multiple of m. The structural positional relationship of the 1η coils can be completely arbitrary, regardless of whether the coils are 9 comrades or different devices. Furthermore, n′,? It's Yu.

〔発明の効果〕〔Effect of the invention〕

以上述べたようをて本発明によれば、従来のコイル保護
回路を基本として簡単な回路を追加1″るだけで超電導
コイル7ステムの運転中にある一つのコイツノがクエン
チし放電する場合、他の正常なコイル群は定格電流以下
に保つことができ、コイルあるいは励磁電源の過大なオ
ーバロード状態をさ大 げる事ができると度に依然として継続して簀定にプラズ
マ生成を維持できるといった効果を有する。
As described above, according to the present invention, by adding a simple circuit based on the conventional coil protection circuit by just 1", if one of the superconducting coils 7 stems quenches and discharges while the superconducting coil 7 stem is in operation, the other The normal coil group can be kept below the rated current, and if the excessive overload condition of the coil or excitation power source can be amplified, plasma generation can still be maintained at a constant level. has.

〔図面の説明〕[Description of drawings]

ルクエンテ保護回路を示すブロック図、第3図は本発明
によるコイル1−1に発生したクエンチにもとづく保護
動作時の各コイルの通電電流の時間変化を示すグラフ、
第4図および第5図は本発明の他の実施例の回路ユニッ
トについての回路構成をそれぞれ示すブロック図である
A block diagram showing the Lucuente protection circuit, and FIG. 3 is a graph showing time changes in the current flowing through each coil during a protection operation based on the quench generated in the coil 1-1 according to the present invention.
FIGS. 4 and 5 are block diagrams showing circuit configurations of circuit units according to other embodiments of the present invention.

1、−1〜1−n・・コイル 2−1〜2−n・・放電
抵抗3−1〜3−n ・・直流しやlDI詣 4−1〜
4.−n・・・励磁成源A−1〜A−n ・回路ユニツ
l−5−1〜5−n ・・補助直流しゃ断器6〜1〜6
−n・・制御用抵抗 7・・制御盤8−1〜8−n ・
・信号線 13−、+〜B−n・・・回路ユニット代理
人 弁理士 則 近 惠 佑 (ほか1名)第2図
1, -1~1-n...Coil 2-1~2-n...Discharge resistance 3-1~3-n...DC or IDI visit 4-1~
4. -n... Excitation source A-1 to A-n ・Circuit unit l-5-1 to 5-n ・・Auxiliary DC breaker 6 to 1 to 6
-n... Control resistor 7... Control panel 8-1 to 8-n ・
・Signal line 13-, +~B-n...Circuit unit agent Patent attorney Noriyuki Chika (and 1 other person) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)磁気的に相互にカップリングされた複数の超電導
コイルと各コイル毎に独立に設けられた励磁電源、放電
抵抗及び直流しや1Ifl器からなる保護回路が設けら
hだ超電導マグネットシステムにおいて、放電抵抗と並
列に適描に小容量の制御用抵抗と補助直流しゃ断器から
なる直列回路を接続し、ある1ケのコイルがクエンチし
、放電抵抗にょシ放電する際、他の正常な残シのコイル
も各々予じめ定められた時間の間、上記補助直流しゃ断
器を操
(1) In a superconducting magnet system that includes multiple superconducting coils that are magnetically coupled to each other and a protection circuit consisting of an excitation power source, a discharge resistor, and a DC or 1Ifl device provided independently for each coil. A series circuit consisting of a small-capacity control resistor and an auxiliary DC breaker is connected in parallel with the discharge resistor, and when one coil quenches and discharges to the discharge resistor, other normal residuals are connected. Each of the above coils operates the auxiliary DC breaker for a predetermined period of time.
JP59104686A 1984-05-25 1984-05-25 Quenching protection circuit of superconductive coil system Pending JPS60249307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104686A JPS60249307A (en) 1984-05-25 1984-05-25 Quenching protection circuit of superconductive coil system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104686A JPS60249307A (en) 1984-05-25 1984-05-25 Quenching protection circuit of superconductive coil system

Publications (1)

Publication Number Publication Date
JPS60249307A true JPS60249307A (en) 1985-12-10

Family

ID=14387349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104686A Pending JPS60249307A (en) 1984-05-25 1984-05-25 Quenching protection circuit of superconductive coil system

Country Status (1)

Country Link
JP (1) JPS60249307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800002817A1 (en) * 2018-02-19 2019-08-19 Energy Tech S R L HIGH CURRENT ELECTRIC PULSE GENERATOR FOR INDUCTIVE LOADS TRAVELED BY HIGH CURRENTS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800002817A1 (en) * 2018-02-19 2019-08-19 Energy Tech S R L HIGH CURRENT ELECTRIC PULSE GENERATOR FOR INDUCTIVE LOADS TRAVELED BY HIGH CURRENTS.

Similar Documents

Publication Publication Date Title
JP3863123B2 (en) 3-phase circuit load unbalance elimination control system
US4700257A (en) Superconductive AC current limiter
EP1929602B1 (en) Method and system for fault detection in electrical power devices
JPH0458725A (en) Superconducting current limiter
CA2188522C (en) Method and apparatus for transferring between electrical power sources which adaptively blocks transfer until load voltage decays to safe value
US5414586A (en) Superconducting current limiting device
JP2831516B2 (en) Superconducting energy storage device
JPH0340409A (en) Superconducting coil system
JPS6115565B2 (en)
JPS60249307A (en) Quenching protection circuit of superconductive coil system
JPH01500783A (en) Short-circuit protection devices for alternating current circuit networks and current-limiting circuit breakers suitable for such devices
US4876625A (en) Composite circuit breaker system
JP2000354326A (en) Current-limiting device utilizing superconducting transformer
JPH01126133A (en) Short-circuit controlling superconductng apparatus
Mumford Superconducting fault current limiters
JPH11146555A (en) Superconducting current limiter
US2515784A (en) Bus bar protection system with current polarized directional current relay
JPH01248931A (en) Current limiting device
JPH0241626A (en) Storage device for superconductive energy
JP2724321B2 (en) Superconducting coil system and operating method thereof
JPH0513222A (en) Superconducting coil device
JPH0993800A (en) Superconducting coil electric power unit
JPH03243118A (en) Overcurrent limiter
Rummel et al. Acceptance test of the first power supply and protection system module for W7-X
JPH06294878A (en) Toroidal magnetic field coil unit