JPS6024909B2 - refrigeration cycle - Google Patents

refrigeration cycle

Info

Publication number
JPS6024909B2
JPS6024909B2 JP54104204A JP10420479A JPS6024909B2 JP S6024909 B2 JPS6024909 B2 JP S6024909B2 JP 54104204 A JP54104204 A JP 54104204A JP 10420479 A JP10420479 A JP 10420479A JP S6024909 B2 JPS6024909 B2 JP S6024909B2
Authority
JP
Japan
Prior art keywords
capillary tube
cooler
heater
flow path
path resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104204A
Other languages
Japanese (ja)
Other versions
JPS5627877A (en
Inventor
眞人 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54104204A priority Critical patent/JPS6024909B2/en
Publication of JPS5627877A publication Critical patent/JPS5627877A/en
Publication of JPS6024909B2 publication Critical patent/JPS6024909B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は液冷媒を二個の冷却器に夫々のキャピラリチュ
ーブを介して分配する構成の冷凍サイクルに関するもの
で、その目的は一方の冷却器への液冷媒の供給停止を行
うべく、その冷却器のキャピラリチューブを加熱するヒ
ータの加熱効率を向上できる冷凍サイクルの提供にある
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle configured to distribute liquid refrigerant to two coolers through respective capillary tubes, and its purpose is to stop the supply of liquid refrigerant to one cooler. To achieve this, it is an object of the present invention to provide a refrigeration cycle that can improve the heating efficiency of a heater that heats a capillary tube of the cooler.

以下本発明を冷蔵庫の冷凍サイクルに適用した一実施例
を第1図乃至第4図に基づいて説明する。
An embodiment in which the present invention is applied to a refrigeration cycle of a refrigerator will be described below with reference to FIGS. 1 to 4.

まず第1図に示す冷凍サイクルにおいて、1はコンブレ
ッサーで、これの吐出口2をコンデンサー3を介して主
キャピラリチューブ4に連結している。この主キャピラ
リチューブ4の出口側端部は二分岐され、そのうち一方
の分岐端を第一冷却器用キャピラリチューブ5を介して
冷蔵室冷却用の第一冷却器6の入口に連結し、他方の分
岐端を第二冷却器用キャピラリチューブ7を介して冷凍
室冷却用の第二冷却器8の入口に連結し、そして第一冷
却器6の出口と第二冷却器8の出口との共通連結部をサ
クションパィプ9を介してコンブレッサー1の吸入口1
01こ連結している。さて、前記第一冷却器用キャピラ
リチューブ5について詳説するに、その詳細を示す第2
図及び第3図において、この第一冷却器用キヤピラリチ
ューブ5は、内部に後述するヒータが密鉄される円錐コ
イル状に形成した流入側キャピラリチューブ11と、こ
の流入側キャピラリチュープ11の管径よりも径4・の
流出側キャピラリチューブ12とを直列に連結してなり
、流入側キャピラリチューブ11の入口端を主キヤピラ
リチューブ4の前記一方の分岐端に連結し、流出側キャ
ピラリチューブ12の出口端を第一冷却器6の入口に連
結している。13は円錐状に形成した例えばアルミニュ
ーム材製の芯管で、流入側キャピラリチューフ11はこ
の芯管13の外周に密に巻回してある。14はヒータで
、これは円錐状の耐熱芯材15に例えばニクロム線16
を巻回し、更にこのニクロム線16を耐熱絶縁性材料に
よってモールドして成る。
First, in the refrigeration cycle shown in FIG. 1, numeral 1 is a compressor, and its discharge port 2 is connected to a main capillary tube 4 via a condenser 3. The outlet side end of this main capillary tube 4 is branched into two, one of which is connected to the inlet of a first cooler 6 for cooling the refrigerator compartment via a first cooler capillary tube 5, and the other branch is connected to the inlet of a first cooler 6 for cooling the refrigerator compartment. The end is connected to the inlet of the second cooler 8 for cooling the freezer compartment via the capillary tube 7 for the second cooler, and the common connection between the outlet of the first cooler 6 and the outlet of the second cooler 8 is connected. Inlet 1 of compressor 1 via suction pipe 9
01 is connected. Now, to explain the first condenser capillary tube 5 in detail, the second condenser capillary tube 5 will be described in detail.
In the figures and FIG. 3, the first cooler capillary tube 5 includes an inlet capillary tube 11 formed in the shape of a conical coil in which a heater to be described later is housed inside, and a pipe diameter of the inlet capillary tube 11. The inlet end of the inlet capillary tube 11 is connected to the one branch end of the main capillary tube 4, and the inlet end of the inlet capillary tube 11 is connected to the one branch end of the main capillary tube 4. The outlet end is connected to the inlet of the first cooler 6. Reference numeral 13 denotes a core tube made of, for example, aluminum and formed into a conical shape, and the inflow side capillary tube 11 is tightly wound around the outer periphery of this core tube 13. 14 is a heater, which has a conical heat-resistant core material 15 and a nichrome wire 16, for example.
This nichrome wire 16 is further molded with a heat-resistant insulating material.

このようにして円錐状に構成したヒータ14を流入側キ
ャピラリチューブ11の芯管13内に挿入することによ
ってヒータ14を流入側キャピラリチューブ11内に密
接している。次に第4図に示す電気回路図において、1
7,18は例えば100Vの単相交流電源に接続される
電源端子、19は冷蔵室の内部温度に応答してオン・オ
フする冷蔵室用温度制御スイッチ、2川ま冷凍室の内部
温度に応答してオン・オフする冷凍室用温度制御スイッ
チで、冷蔵室用温度制御スイッチ19とヒータ14のニ
クロム線16との直列回路及び冷凍室用温度制御スイッ
チ20とコンブレッサー1との直列回路を両電源端子1
7,18に並列に接続している。次に上記構成の作用を
説明する。
By inserting the conical heater 14 into the core tube 13 of the inflow capillary tube 11, the heater 14 is brought into close contact with the inflow capillary tube 11. Next, in the electrical circuit diagram shown in Figure 4, 1
7 and 18 are power terminals connected to, for example, a 100V single-phase AC power source; 19 is a temperature control switch for the refrigerator compartment that turns on and off in response to the internal temperature of the refrigerator compartment; The temperature control switch for the freezer compartment is turned on and off by switching on and off, and connects both the series circuit between the temperature control switch 19 for the refrigerator compartment and the nichrome wire 16 of the heater 14, and the series circuit between the temperature control switch 20 for the freezer compartment and the compressor 1. Power terminal 1
7 and 18 are connected in parallel. Next, the operation of the above configuration will be explained.

まず、コンブレッサーーの運転時、コンブレッサー1で
圧縮され、コンデンサー3で液化された冷煤は主キヤピ
ラリチューブ4から第一冷却器用キヤピラリチューブ5
及び第二冷却器用キャピラリチューブ7を夫々並列に介
して第一及び第二冷却器6,8に分配され、冷蔵室及び
冷凍室を夫々冷却する。そして冷蔵室が所定の温度以下
になると、冷蔵室用温度制御スイッチ19がオンされ、
これによりヒーター4が発熱して第一冷却用キャピラリ
チューブ5の流入側キャピラリチューブ11を加熱する
。このため流入側キャピラリチューブ11を流れる液冷
煤の蒸気圧が上昇し且つその高圧下で更に液冷煤が気化
すると共に、このようにして流入側キャピラリチューブ
11内で発生した気化冷蝶が高流路抵抗をもつ径小の流
出側キャピラリチューフ12内に流入し、これを流れる
過程でその高流路抵抗を受けて、流出側キャピラリチュ
ーブ12内の圧力は上昇する。従って第一冷却器用キャ
ピラリチューブ11の内圧は更に上昇し、その圧力に基
づく抵抗により、第一冷却器6への液冷煤の供給が停止
する。一方、第二冷却器8への液冷媒の流入はそのまま
継続されるため冷凍室の冷却は続行され、冷凍室が所定
の温度以下に冷却された時点で冷凍室用温度制御スイッ
チ20がオフし、コンブレッサーーの運転が停止する。
ところで第一冷却器用キャピラリチューブの略全体にヒ
ータを添談した場合、この第一冷却器用キャピラリチュ
ーブの流出側部分で加熱生成された気化冷蝶は、第一冷
却器用キャピラリチューフを短い距離流れただけで大き
な抵抗を受けることなく流出してしまうから、第一冷却
器用キヤピラリチューブの内圧上昇にあまり寄与せず、
この分ヒータの発熱を有効に利用し得ず電力を浪費する
結果となる。
First, when the compressor is operating, cold soot is compressed by the compressor 1 and liquefied by the condenser 3 from the main capillary tube 4 to the first cooler capillary tube 5.
It is distributed to the first and second coolers 6 and 8 via capillary tubes 7 for the second cooler in parallel, respectively, and cools the refrigerator compartment and the freezer compartment, respectively. When the temperature of the refrigerator compartment falls below a predetermined temperature, the temperature control switch 19 for the refrigerator compartment is turned on.
This causes the heater 4 to generate heat and heat the inflow side capillary tube 11 of the first cooling capillary tube 5. For this reason, the vapor pressure of the liquid-cooled soot flowing through the inflow-side capillary tube 11 increases, and the liquid-cooled soot further vaporizes under this high pressure, and the vaporized cold soot generated in this way in the inflow-side capillary tube 11 increases. It flows into the small-diameter outflow capillary tube 12 which has flow path resistance, and in the process of flowing through this, it receives the high flow path resistance and the pressure inside the outflow side capillary tube 12 increases. Therefore, the internal pressure of the first cooler capillary tube 11 further increases, and the supply of liquid-cooled soot to the first cooler 6 is stopped due to resistance based on this pressure. On the other hand, since the liquid refrigerant continues to flow into the second cooler 8, cooling of the freezer compartment continues, and when the freezer compartment is cooled to a predetermined temperature or less, the freezer compartment temperature control switch 20 is turned off. , the compressor stops operating.
By the way, if a heater is attached to almost the entire capillary tube for the first cooler, the vaporized cold butterfly generated by heating at the outflow side of the capillary tube for the first cooler will flow a short distance through the capillary tube for the first cooler. Since it flows out without much resistance, it does not contribute much to the increase in the internal pressure of the first cooler capillary tube.
For this reason, the heat generated by the heater cannot be used effectively, resulting in wasted power.

しかるに、本実施例によれば第一冷却器用キャピラリチ
ューブ5のうち流入側キャピラリチューブ11のみにヒ
ータ14を添設する構成としたので、ヒータ14により
加熱生成された気化冷蝶は全て流路抵抗が大なる流出側
キャピラリチューフ12を通過して第一冷却器用キャピ
ラリチューフ5の内圧上昇に有効に寄与する。
However, according to this embodiment, since the heater 14 is attached only to the inflow side capillary tube 11 of the first cooler capillary tube 5, all of the vaporized cold butter heated and generated by the heater 14 has a flow path resistance. passes through the large outflow side capillary tube 12 and effectively contributes to increasing the internal pressure of the first cooler capillary tube 5.

従って、ヒータ14の発熱を有効に利用できて、ヒータ
14の消費電力を低く抑えることができる。そして、更
にヒータの消費電力を低減させるためには第一冷却器用
キャピラリチューブ全体の管径を小さく設定してその流
路抵抗を増大させることが考えられるが、このようにす
ると、第一冷却器用キャピラリチュープの流路抵抗の増
大により第一冷却器に液冷媒を供V給すべきときにも液
冷媒が第一冷却器に流入いこくくなり、第一冷却器が正
常に冷却されない不具合があり、またこの不具合に対処
するために第二冷却器用キャピラリチューブの管径をも
小さくすると、主キャピラリチューブの分岐端の圧力が
上昇するために、第一冷却器用キャピラリチューブの加
熱温度を高く(蒸気圧を高く)しないと第一冷却器への
液冷煤供給を停止させることができなくなり、この結果
高発熱量のヒータを用いざるを得ないといった問題があ
る。
Therefore, the heat generated by the heater 14 can be used effectively, and the power consumption of the heater 14 can be kept low. In order to further reduce the power consumption of the heater, it is possible to reduce the diameter of the entire capillary tube for the first cooler to increase its flow resistance. Due to the increase in flow path resistance of the capillary tube, even when liquid refrigerant should be supplied to the first cooler, it becomes difficult for the liquid refrigerant to flow into the first cooler, resulting in the problem that the first cooler is not cooled properly. In order to deal with this problem, the diameter of the capillary tube for the second condenser is also made smaller. This increases the pressure at the branch end of the main capillary tube, which increases the heating temperature of the capillary tube for the first condenser (steam If the pressure is not increased (increased pressure), the supply of liquid-cooled soot to the first cooler cannot be stopped, and as a result, a heater with a high calorific value must be used.

しかるに本実施例によれ‘よ、第一冷却器用キャピラリ
チューブ5のうち流出側キャピラリチュープ12の流路
抵抗を流入側キャピラリチュープ11の流路抵抗よりも
大きくする構成であるから、第一冷却器用キャピラリチ
ューブ5の内圧上昇に最も寄与する部分(流出側キャピ
ラリチューブ12)の流路抵抗の大きさを十分に確保し
つつ第一冷却器用キャピラリチューブ5全体としての流
路抵抗を低く抑えることができる。
However, according to this embodiment, since the flow path resistance of the outflow side capillary tube 12 of the first cooler capillary tube 5 is made larger than the flow path resistance of the inflow side capillary tube 11, The flow path resistance of the first cooler capillary tube 5 as a whole can be kept low while ensuring a sufficient flow path resistance in the portion that contributes most to the increase in internal pressure of the capillary tube 5 (the outflow side capillary tube 12). .

このため、ヒータ14の断電時には第一冷却器用キャピ
ラリチューブ5内の液冷煤の流通性を良好に維持できて
、液冷媒を第一冷冷器6に必要量供給できる。しかも、
第一冷却器用キャピラリチューブ5の流路抵抗を低く抑
えることにより第二冷却器用キャピラリチューブ7の流
路抵抗も低く抑えることができるから、主キャピラリチ
ューブ4の分岐端の圧力上昇を抑えることができる。こ
のため、ヒータ14の通電時に第一冷却器用キャピラリ
チュープ5内の圧力を過剰に高めずとも済み、その分ヒ
ータ14の発熱量ひいては消費電力量の低減化を図り得
る。また、冷却運転の途中で前述の如く第一冷却器用キ
ヤピラリチューブ5内を流れる冷嬢がヒーター4に加熱
されて気化する場合において、本実施例によれば、円錐
コイル状に形成した流入側キャピラリチューブ11内に
円錐状のヒータ14を密隊しているので、流入側キャピ
ラリチューフ11に対するヒータ14の密着性が向上す
ると共に、特に本実施例のようにヒ−夕16を流入側キ
ャピラリチューブ11の内方に配設すればヒーター4の
熱が外部に散逸し‘こく〈、この結果ヒータ14の流入
側キャピラリチューブ11に対する伝熱性ひいては加熱
効率を向上できるものである。本発明は以上説明したよ
うに第一冷却器用キャピラリチューブのうちヒータによ
る加熱部分側より第一冷却器側寄りの部分の流路抵抗を
ヒータによる加熱部分のそれよりも大きくしたことを主
たる特徴とするもので、この結果低発熱量のヒータであ
ってもその通電によって第一冷却器への袷媒供孫合・停
止を確実に行なうことができて、消費電力量の低減化を
図ることができると共に、ヒータの断電時においては必
要量の液冷煤を第一冷却器に流入させることができる冷
凍サイクルを提供し得るものである。
Therefore, when the heater 14 is cut off, the flowability of the liquid cooled soot in the first cooler capillary tube 5 can be maintained well, and the required amount of liquid refrigerant can be supplied to the first cooler 6. Moreover,
By keeping the flow path resistance of the first cooler capillary tube 5 low, the flow path resistance of the second cooler capillary tube 7 can also be kept low, so it is possible to suppress the pressure rise at the branch end of the main capillary tube 4. . Therefore, it is not necessary to excessively increase the pressure inside the first cooler capillary tube 5 when the heater 14 is energized, and the amount of heat generated by the heater 14 and hence the power consumption can be reduced accordingly. Furthermore, in the case where the cooling fluid flowing through the first cooler capillary tube 5 is heated by the heater 4 and vaporized during the cooling operation as described above, according to this embodiment, the inflow side formed in a conical coil shape is used. Since the conical heaters 14 are closely arranged inside the capillary tube 11, the adhesion of the heaters 14 to the inflow capillary tube 11 is improved, and in particular, as in this embodiment, the heater 16 is closely arranged in the inflow capillary tube. If the heater 4 is disposed inside the tube 11, the heat of the heater 4 is dissipated to the outside, and as a result, the heat conductivity of the heater 14 to the inflow side capillary tube 11, and hence the heating efficiency can be improved. As explained above, the main feature of the present invention is that the flow path resistance of the part of the capillary tube for the first cooler that is closer to the first cooler than the part heated by the heater is made larger than that of the part heated by the heater. As a result, even if the heater generates a low amount of heat, it is possible to reliably supply and stop the medium to the first cooler by energizing the heater, thereby reducing power consumption. In addition, it is possible to provide a refrigeration cycle in which a required amount of liquid-cooled soot can flow into the first cooler when the heater is turned off.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は冷凍サイクル
構成図、第2図は要部の分解縦断面図、第3図は要部の
縦断面図、第4図は電気回路図である。 図面中、5は第一冷却器用キャピラリチュープ、6は第
一冷却器、7は第二冷却器用キャピラリチュープ、8は
第二冷却器、14はヒータである。 第1図 第2図 第3図 第4図
The drawings show one embodiment of the present invention, and FIG. 1 is a refrigeration cycle configuration diagram, FIG. 2 is an exploded longitudinal sectional view of the main parts, FIG. 3 is a longitudinal sectional view of the main parts, and FIG. 4 is an electric circuit diagram. It is. In the drawing, 5 is a capillary tube for a first cooler, 6 is a first cooler, 7 is a capillary tube for a second cooler, 8 is a second cooler, and 14 is a heater. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 冷媒を一冷却器用キヤピラリチユーブ及び第二冷却
器用キヤピラリチユーブを夫々介して第一冷却器及び第
二冷却器に分配し、第一冷却器への冷媒の供給を第一冷
却器用キヤピラリチユーブを加熱するヒータを通断電す
ることによつて制御するようにしたものにおいて、前記
第一冷却器用キヤピラリチユーブのうち前記ヒータによ
る加熱部分側より第一冷却器側の部分の流路抵抗を前記
ヒータによる加熱部分の流路抵抗よりも大きくしたこと
を特徴とする冷凍サイクル。
1. The refrigerant is distributed to the first cooler and the second cooler through the first cooler capillary tube and the second cooler capillary tube, respectively, and the refrigerant is supplied to the first cooler through the first cooler capillary tube. In a tube that is controlled by turning on and off a heater that heats the tube, the flow path resistance of a portion of the first cooler capillary tube that is closer to the first cooler than the part heated by the heater. A refrigeration cycle characterized in that the flow path resistance is greater than the flow path resistance of the portion heated by the heater.
JP54104204A 1979-08-16 1979-08-16 refrigeration cycle Expired JPS6024909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54104204A JPS6024909B2 (en) 1979-08-16 1979-08-16 refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54104204A JPS6024909B2 (en) 1979-08-16 1979-08-16 refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS5627877A JPS5627877A (en) 1981-03-18
JPS6024909B2 true JPS6024909B2 (en) 1985-06-15

Family

ID=14374434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54104204A Expired JPS6024909B2 (en) 1979-08-16 1979-08-16 refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS6024909B2 (en)

Also Published As

Publication number Publication date
JPS5627877A (en) 1981-03-18

Similar Documents

Publication Publication Date Title
US2241086A (en) Refrigerating apparatus
US4646539A (en) Transport refrigeration system with thermal storage sink
KR100431348B1 (en) refrigerator
JPH1123135A (en) Refrigerator having defrosting device
WO2021129654A1 (en) Refrigerator
JP2000094929A (en) Heating and air conditioning unit for automobile
JPS6024909B2 (en) refrigeration cycle
JPH11325634A (en) Four-way valve cooler of air conditioner
JPS61235215A (en) Immediately effectual heating apparatus for vehicles
JP2000220912A (en) Refrigerant heater
JP4016546B2 (en) Fluid heating device
JP3606883B2 (en) Rotary compressor cooling system
GB2102551A (en) Refrigerant circuit for a domestic appliance
CN208296127U (en) The radiator and air conditioner of air conditioner frequency-variable module
JP2001091111A (en) Refrigerant heating device
JP2002277138A (en) Temperature adjusting device for thermal medium fluid
JPH1038409A (en) Heat pump type air conditioner
KR970016427A (en) Defrosting System of Evaporator Using Refrigeration Cycle
JPH02154711A (en) Cooling and heating system
JPH025334Y2 (en)
KR20100085259A (en) Kimchi-refrigerator
JPS5919266Y2 (en) Cold and hot equipment
JP2010153202A (en) Electromagnetic induction heating unit and air conditioner
KR950006023Y1 (en) Defrost apparatus in refregerator
KR970006045B1 (en) Apparatus for controlling cold-material of airconditioner