JPS60247971A - Mis type semiconductor device - Google Patents

Mis type semiconductor device

Info

Publication number
JPS60247971A
JPS60247971A JP10249184A JP10249184A JPS60247971A JP S60247971 A JPS60247971 A JP S60247971A JP 10249184 A JP10249184 A JP 10249184A JP 10249184 A JP10249184 A JP 10249184A JP S60247971 A JPS60247971 A JP S60247971A
Authority
JP
Japan
Prior art keywords
region
concentration
drain
ions
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10249184A
Other languages
Japanese (ja)
Inventor
Makoto Yoshimi
信 吉見
Katsuhiro Kawabuchi
川渕 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10249184A priority Critical patent/JPS60247971A/en
Publication of JPS60247971A publication Critical patent/JPS60247971A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To inhibit the generation of hot carriers without lowering channel currents by forming a high electric-field section in a region having impurity concentration lower than other drain sections and inducing channel currents into a high impurity concentration region positioned around said region. CONSTITUTION:A gate 8 is formed, and As ions are implanted to shape high- concentration N type source-drain regions. A side wall 9 consisting of CVD SiO2 is formed, and B<+> ions are implanted in order to lower the concentration of one parts of the high-concentration N type regions. A contact hole 10 is shaped, As ions are implanted in high concentration, and a substrate surface section in a drain is changed into an N<+> region. There are N<-> regions 11 escaping from the implantation of As ions so as to be surrounded by the N<+> region at that time. Desired structure is obtained through annealing and an Al wiring process.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はMIS型集型口積回路けるトランジスタ(Tr
)の改善された構造に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a transistor (Tr) used in an MIS type integrated circuit.
) regarding the improved structure of

〔従来技術とその問題点〕[Prior art and its problems]

集積回路の高密度化がすすむにつれ、いわゆるHot 
Carrier問題による素子の信頼性低下が大きな問
題となっている。
As the density of integrated circuits increases, so-called hot
Deterioration of device reliability due to the Carrier problem has become a major problem.

第1図は従来構造によるNチャネル型Trの断面図を示
す。ソース1から発した電子からなるチャネル電流2は
、ゲート3により制御されながら、ドレイン4に吸収さ
れる。しかし、回路の高密度化により素子が微細化され
てくると、ドレイン部に高い電界を有する部位5(■印
)が発生し、チャネル電流が咳高電界部を通るときいわ
ゆるインパクトイオン化現象が起き、その結果、大量の
電子−正孔対からなるHo t Carrierが発生
する。この電子、正孔対は、ゲート絶縁膜6の中に捕獲
されたり、あるいは、基板中を流れて基板の電位を局所
的に変動させたりして素子の特性を様々に劣下させるた
め、集積回路の高密度化の大きな障害となっていた。
FIG. 1 shows a cross-sectional view of an N-channel type transistor having a conventional structure. A channel current 2 consisting of electrons emitted from the source 1 is absorbed into the drain 4 while being controlled by the gate 3 . However, as elements become finer due to increased circuit density, a region 5 (marked with ■) with a high electric field is generated in the drain region, and when the channel current passes through the high electric field region, a so-called impact ionization phenomenon occurs. As a result, a hot carrier consisting of a large amount of electron-hole pairs is generated. These electron and hole pairs are trapped in the gate insulating film 6, or flow through the substrate and locally fluctuate the potential of the substrate, deteriorating the characteristics of the device in various ways. This was a major obstacle to increasing the density of circuits.

かかる問題点に対し、従来提案されている改善方法は第
2図に示すLDD (Lightiy Doped D
rain )構造に代表されており、チャネルに面する
ドレインの一部7を低濃度のN型拡散層にし、従来構造
では高い電界が発生していた部位5での電界を低くして
インパクトイオン化率を低下させようとするものである
。このLDD構造を用いれば確かにHot Carri
erの発生は低下するが、その低下の度合は典型的には
1桁程度である。もし更に効果を上げようとして前記部
位7の不純物濃度を更に下げると、その低濃度不純物領
域7の高い抵抗成分により大きな電位降下がおき、充分
なチャネル電流が得られないという欠点をもっていた。
A conventionally proposed improvement method for this problem is the LDD (Lighty Doped D) shown in Figure 2.
(rain) structure, the part 7 of the drain facing the channel is made into a low-concentration N-type diffusion layer, and the electric field in the region 5, where a high electric field was generated in the conventional structure, is lowered to improve the impact ionization rate. The aim is to reduce the If you use this LDD structure, you will definitely get a Hot Carri
The occurrence of er is reduced, but the reduction is typically by an order of magnitude. If the impurity concentration in the region 7 were further lowered in an attempt to further improve the effect, a large potential drop would occur due to the high resistance component of the low concentration impurity region 7, resulting in the disadvantage that a sufficient channel current could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記LDD構造に代表される従来の改
善案の欠点をなくし、チャネル電流を低下させることな
しにHot Carrier発生を抑えるTr槽構造提
供することにある。
An object of the present invention is to provide a Tr tank structure that eliminates the drawbacks of conventional improvement proposals represented by the LDD structure and suppresses the occurrence of hot carriers without reducing the channel current.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、前記ドレイン内部の高電界部をチャネ
ル電流が通らないよう(二する構造を実現することにあ
る。即ち、LDD構造においては、確かにドレイン内部
の電界を弱めることはできるが、依然としてチャネル電
流がドレイン内高電界部を通っているため、がなりのH
o t Carrierが発生している。更に、該構造
において、高抵抗成分が素子の性能を低下させることは
前述の通りである。従って、チャネル電流が前記高電界
部を避けて通ればHot Carrierの発生は激減
するはずである。本発明では、チャネル電流の通路を高
電界部からそらせる方法として第3図に示す如く、高電
界部を他のドレイン部より低不純物濃度領域にし、チャ
ネル電流を前記低不純物濃度領域の周りに位置する高不
純物濃度領域、即ち低抵抗領域に誘導する方法を用いて
いる。
The gist of the present invention is to realize a structure that prevents channel current from passing through the high electric field area inside the drain. That is, in the LDD structure, although it is possible to weaken the electric field inside the drain, , the channel current still passes through the high electric field part in the drain, so the H
o t Carrier has occurred. Furthermore, as described above, in this structure, the high resistance component deteriorates the performance of the element. Therefore, if the channel current avoids the high electric field portion, the occurrence of hot carriers should be drastically reduced. In the present invention, as a method of diverting the path of the channel current from the high electric field region, as shown in FIG. A method is used to induce the impurity into a high impurity concentration region, that is, a low resistance region.

〔発明の効果〕〔Effect of the invention〕

本発明の効果は、従来の大きな問題であったHot E
lectronの発生を抑制するのみならず、電流は低
抵抗領域を通るので素子性能を低下させるようなドレイ
ン内部での電圧降下が殆んどないことにある。また、ド
レイン内部の高電界部を低濃度拡散層で囲むことは、チ
ャネル電流の通路を変えるのみならず、該高電界部の電
界そのものも緩和する効果があるため、インパクトイオ
ン化が更に低下する利点もある。次に実施例にて本発明
を詳述する。
The effect of the present invention is that the Hot E
This not only suppresses the generation of electrons, but also has the advantage that since the current passes through a low resistance region, there is almost no voltage drop inside the drain that would degrade device performance. In addition, surrounding the high electric field area inside the drain with a low concentration diffusion layer not only changes the channel current path, but also has the effect of relaxing the electric field itself in the high electric field area, which has the advantage of further reducing impact ionization. There is also. Next, the present invention will be explained in detail with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

第4図において周知の技術でgate8を形成したのち
、Asをイオン注入してソースφFレインの高濃度N型
領域を形成する。次に周知のりアクティブイオンエツチ
ング(RIB)技術により、CVD810゜からなる側
壁9を形成し、次1;前記高濃度N型領域の一部を低濃
度化するためにB”&イオン注入する。このとき、第4
図すの1+領域の不純物濃度はlXl0”c+a−’ 
、 n−領域はI XIQ1’1m−”であった。次に
、周知の方法でコンタクトホール10を形成し、更にA
sを高濃度イオン注入し、ドレインの基板表面部をY領
域にする。
In FIG. 4, after gate 8 is formed using a well-known technique, As is ion-implanted to form a heavily doped N-type region of the source φF rain. Next, a side wall 9 made of CVD 810° is formed using the well-known active ion etching (RIB) technique. time, 4th
The impurity concentration of the 1+ region in the figure is lXl0"c+a-'
, the n-region was I
High-concentration ions of s are implanted to make the drain substrate surface part a Y region.

このとき、Asのイオン注入から免れたn−領域11は
、n+領領域囲まれるように存在する。このとき、素子
分離領域12に接する部分にもn−領域がとり残される
がこの領域は素子特性の低下とは無関係である。次に、
然るべきアニールと周知のA/配線工程を経れば、第4
図、dの如き、所望の構造が得られる。
At this time, the n- region 11 that was spared from the As ion implantation exists so as to be surrounded by the n+ region. At this time, an n- region is also left in the portion in contact with the element isolation region 12, but this region has nothing to do with the deterioration of the element characteristics. next,
After proper annealing and the well-known A/wiring process, the fourth
The desired structure as shown in Fig. d is obtained.

〔発明の他の実施例〕[Other embodiments of the invention]

以上、実施例ではNチャネル型Trで説明したが、Pチ
ャネル型Trにおいても同様の効果があることはいうま
でもない。その際は、第4図におけるa)のイオン注入
はB” 、b)のイオン注入はrまたはAs”。
Although the embodiment has been described above using an N-channel type Tr, it goes without saying that a P-channel type Tr has similar effects. In this case, the ion implantation of a) in FIG. 4 is B'', and the ion implantation of b) is r or As''.

C)のイオン注入はB+である。The ion implantation in C) is B+.

一方、上記例においては高抵抗領域および低抵抗領域を
不純物の低濃度領域および高度領域によって実現したが
、本発明はこれに限定されず、高抵抗領域は極端な例で
は絶縁体でもよく、低抵抗領域はドレインの機能を果す
金属、例えばpt、wなどのシリサイド物などでもよい
On the other hand, in the above example, the high resistance region and the low resistance region are realized by the low concentration region and the high concentration region of impurities, but the present invention is not limited to this, and the high resistance region may be an insulator in an extreme example, and the high resistance region The resistance region may be a metal that functions as a drain, such as a silicide such as PT or W.

更に、上記例では、高抵抗領域は低抵抗頭載および絶縁
膜で囲まれているが、$5図の如く、高抵抗領域14に
完全に囲まれる構造でも全く同様の効果が期待できる。
Further, in the above example, the high resistance region is surrounded by a low resistance overlay and an insulating film, but even if the structure is completely surrounded by the high resistance region 14 as shown in figure $5, exactly the same effect can be expected.

更に、第4図の構造では、RIBを用いた側壁残し技術
、コンタクトホールからのイオン注入などを用いたが、
不純物分布が第4図の如くあればよいのであって他の方
法によっても全く構わない。
Furthermore, in the structure shown in Figure 4, sidewall leaving technology using RIB and ion implantation through contact holes were used;
It is sufficient that the impurity distribution is as shown in FIG. 4, and other methods are also acceptable.

本発明を用いることにより、Hot Electron
 を最小限に抑え、かつ素子性能を低下させないTr槽
構造実現することができ、今後の集積回路における高密
度化を更に促進することができる。
By using the present invention, Hot Electron
It is possible to realize a Tr tank structure that minimizes the noise and does not reduce device performance, and further promotes higher density in future integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMIS型Trの断面図、第2図はLDD
Trの断面図、第3図は本発明によるTrの断面図、第
4図は実施例の断面図、第5図は他の実施例の断面図で
ある。図において、 1・・・ソース、 2・・・チャネル電流。 3・・・ゲート、 4・・・ドレイン。 5・・・高電界部、 6・・・ゲート絶縁膜。 7・・・低濃度拡散領域、8・・・ゲート。 9・・・RIBによるCVD5 ioz側壁残し。 10・・・コンタクトホール。 11・・・N−領域、]2・・・素子分離領域。 13・・・N−領域、14・・・高抵抗領域。 15・・・低抵抗領域。 代理人 弁理士 則 近 慝 佑(他1名)第1図 第
4図 請
Figure 1 is a cross-sectional view of a conventional MIS type transistor, Figure 2 is an LDD
3 is a sectional view of a Tr according to the present invention, FIG. 4 is a sectional view of an embodiment, and FIG. 5 is a sectional view of another embodiment. In the figure, 1...source, 2...channel current. 3...Gate, 4...Drain. 5...High electric field part, 6...Gate insulating film. 7...Low concentration diffusion region, 8...Gate. 9...CVD5 ioz side wall left by RIB. 10...Contact hole. 11...N- region, ]2... Element isolation region. 13... N- region, 14... High resistance region. 15...Low resistance region. Agent Patent Attorney Nori Keisuke Chika (and 1 other person) Figure 1 Figure 4 Request

Claims (1)

【特許請求の範囲】[Claims] ドレインが高抵抗の第1の領域と低抵抗の第2の領域か
らなり、第1の領域はドレイン内部の高電界部に位置し
て、第2の領域により完全に囲まれるか、或いは第2の
領域と絶縁膜によって囲まれるかのいずれかであること
を特徴とするMIS型半導体装置。
The drain consists of a first region with high resistance and a second region with low resistance, and the first region is located in a high electric field inside the drain and is completely surrounded by the second region, or A MIS type semiconductor device characterized in that the MIS type semiconductor device is surrounded by a region and an insulating film.
JP10249184A 1984-05-23 1984-05-23 Mis type semiconductor device Pending JPS60247971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10249184A JPS60247971A (en) 1984-05-23 1984-05-23 Mis type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10249184A JPS60247971A (en) 1984-05-23 1984-05-23 Mis type semiconductor device

Publications (1)

Publication Number Publication Date
JPS60247971A true JPS60247971A (en) 1985-12-07

Family

ID=14328891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10249184A Pending JPS60247971A (en) 1984-05-23 1984-05-23 Mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPS60247971A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493520A1 (en) * 1989-09-22 1992-07-08 Univ Texas Hot-carrier suppressed sub-micron misfet device.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493520A1 (en) * 1989-09-22 1992-07-08 Univ Texas Hot-carrier suppressed sub-micron misfet device.

Similar Documents

Publication Publication Date Title
JP2507567B2 (en) MOS field effect transistor formed in semiconductor layer on insulator substrate
US5362982A (en) Insulated gate FET with a particular LDD structure
US6770517B2 (en) Semiconductor device and method for fabricating the same
JPH10150195A (en) Mosfet and its manufacture
US5060033A (en) Semiconductor device and method of producing semiconductor device
US8269274B2 (en) Semiconductor device and method for fabricating the same
US20100078720A1 (en) Semiconductor device and method for manufacturing the same
US7544549B2 (en) Method for manufacturing semiconductor device and MOS field effect transistor
US5504024A (en) Method for fabricating MOS transistors
US6476430B1 (en) Integrated circuit
JP3417092B2 (en) Method for manufacturing semiconductor device
US6350641B1 (en) Method of increasing the depth of lightly doping in a high voltage device
JPH01120067A (en) Semiconductor device and its manufacture
US4506279A (en) Metal-oxide-semiconductor device with bilayered source and drain
US6597038B1 (en) MOS transistor with double drain structure for suppressing short channel effect
JPH04260335A (en) Manufacture of field-effect transistor
JPH06350042A (en) Manufacture of transistor
JPS60247971A (en) Mis type semiconductor device
JPH0922947A (en) Manufacture of semiconductor integrated circuit device
KR100549941B1 (en) gate electrode structure for semiconductor device
KR100574357B1 (en) MOS transistor for suppressing bulk punchthrough
JPH08186252A (en) Semiconductor device
JPH07263691A (en) Carrier injection transistor
JPH03296275A (en) Mis type semiconductor device
KR100271801B1 (en) Manufacturing Method of Semiconductor Device