JPS6024721B2 - Method for reducing clotupulos in blooming rolling - Google Patents

Method for reducing clotupulos in blooming rolling

Info

Publication number
JPS6024721B2
JPS6024721B2 JP10453678A JP10453678A JPS6024721B2 JP S6024721 B2 JPS6024721 B2 JP S6024721B2 JP 10453678 A JP10453678 A JP 10453678A JP 10453678 A JP10453678 A JP 10453678A JP S6024721 B2 JPS6024721 B2 JP S6024721B2
Authority
JP
Japan
Prior art keywords
rolling
convex portion
steel ingot
present
blooming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10453678A
Other languages
Japanese (ja)
Other versions
JPS5530381A (en
Inventor
実 松崎
次男 村上
英明 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10453678A priority Critical patent/JPS6024721B2/en
Publication of JPS5530381A publication Critical patent/JPS5530381A/en
Publication of JPS6024721B2 publication Critical patent/JPS6024721B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は分塊圧延におけるクロップロスの減少方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing crop loss in blooming.

一般に分塊圧延機により鋼塊からスラブに分塊圧延する
場合に、スラブの長さ方向および幅方向のクロップロス
を減少し、分塊歩留の向上を図るためには、従来より1
パス当りの圧下重を大とする、いわゆる強圧下を実施す
ることが有効であることが公知である。
Generally, when blooming a steel ingot into a slab using a blooming mill, in order to reduce the crop loss in the length direction and width direction of the slab and improve the blooming yield, it is necessary to
It is known that it is effective to carry out so-called strong rolling, in which the rolling weight per pass is increased.

しかしながら鋼塊からスラブに分魂圧延する場合の素材
のメタルフローについて見るに、素材の噛み込み側から
噛み抜け側に向ってメタルが次第に集積する如く流れて
行き、その結果、圧延負荷が次第に増加して行く。
However, when we look at the metal flow of the material when soul-rolling a steel ingot into a slab, the metal gradually accumulates and flows from the biting side of the material to the biting side, and as a result, the rolling load gradually increases. I'll go.

そのため1パス毎の圧下量については圧延機の能力、素
材の変形能等によって異なるが探り得る圧下量には限界
がある。すなわち、素材の表面から中心まで一様に変形
させることができる如き大なる圧下量、圧下率をとるこ
とが理想であるが、実際は圧延素材の表層のメタルフロ
ーが中心部より大であるので、従来は圧延のパス進行に
伴ない、その両端のスラブの厚み方向にはオーバラップ
が、また幅方向にはいわゆるフィッシュテールが形成さ
れ、圧延中次第にその成長が促進されることとなり、圧
延終了時のクロップロスが極めて大となる欠点を有して
いた。本発明の目的は、前記従来技術の欠点を解消して
分魂圧延時のクロップロスを減少する効果的な方法を提
供することにある。本発明の要旨とするところは、可逆
式圧延機による鋼塊の分塊圧延時におけるクロップロス
の減少方法において、前記鋼塊圧延時に該鋼塊の頭部お
よび底部の少くとも一端の相対する少くとも1組の面に
圧延用ロールによって凸部を形成した後、逆方向から圧
下を加える工程を包含することを特徴とする分塊圧延に
おけるクロップロスの減少方法である。
Therefore, although the amount of reduction in each pass varies depending on the capacity of the rolling mill, the deformability of the material, etc., there is a limit to the amount of reduction that can be detected. In other words, it is ideal to have a large rolling reduction amount and reduction rate that can uniformly deform the material from the surface to the center, but in reality, the metal flow in the surface layer of the rolled material is greater than in the center. Conventionally, as the rolling pass progresses, an overlap is formed in the thickness direction of the slab at both ends, and a so-called fishtail is formed in the width direction, and its growth is gradually promoted during rolling, resulting in an overlap at the end of rolling. The disadvantage was that the crop loss was extremely large. SUMMARY OF THE INVENTION An object of the present invention is to provide an effective method for eliminating the drawbacks of the prior art and reducing crop loss during soul rolling. The gist of the present invention is to provide a method for reducing crop loss during blooming of a steel ingot using a reversible rolling mill, in which at least one opposing end of the head and bottom of the steel ingot is removed during the rolling of the steel ingot. This is a method for reducing crop loss in blooming rolling, which includes the step of forming convex portions on one set of surfaces using rolling rolls, and then applying rolling from the opposite direction.

本発明の説明に先立ち、本発明と関連のある圧延時のメ
タルの移動状況を第1図によって説明する。
Prior to explaining the present invention, the movement of metal during rolling, which is relevant to the present invention, will be explained with reference to FIG.

可逆式圧延機では交互に噛み込み側、噛み抜け側となる
のであるが、1パス毎の圧下に伴なうメタルの移動は噛
み抜け側ではパスの終了毎に流れ集って来たメタルが端
部に大量に流れてクロップロスを増加させると共に、噛
み込み側もパスの進行に従ってオーバラップやフィッシ
ュテールが次第に成長する。すなわち、第1図Aに示す
如く、スラブ1の長さ方向の両端にフィッシュテール2
が形成されると、最初にエッジャーロール3を噛み込ま
せてェッジグする場合にフィッシュテール2は第1図B
にて示す如く幅方向の内側へ廻り込んで行く。
In a reversible rolling mill, the rolling mill alternates between the biting side and the biting side, but the movement of the metal accompanying the reduction in each pass means that on the biting side, the metal that has been collected flows at the end of each pass. A large amount flows to the ends, increasing crop loss, and on the biting side, overlap and fishtail gradually grow as the pass progresses. That is, as shown in FIG. 1A, there are fishtails 2 at both longitudinal ends of the slab 1.
When the fishtail 2 is formed, when the edger roll 3 is bitten and edged first, the fishtail 2 becomes the shape shown in Fig. 1B.
As shown in , it goes around to the inside in the width direction.

同様にスラブ1の厚み方向においても第2図A,Bに示
す如く、オーバラツプ4が形成され、水平ロール5を噛
み込ませて最初に圧下する場合に、オーバラッブ4は、
厚み方向の内側へ廻り込んで行くこととなる。圧延の進
行によって、かかるメタルの移動が操返えされフツシュ
テール3およびオーバラップ4が次第に成長するので、
これらは鱒断されてクロツプロスとなる訳で、かかるク
ロツプロスの減少は分塊圧歩留を向上せしめるために極
めて重要である。本発明の詳細ならびに実施例を第3図
および第4図によって説明する。
Similarly, an overlap 4 is formed in the thickness direction of the slab 1 as shown in FIGS. 2A and B, and when the horizontal roll 5 is inserted and rolled down first, the overlap 4 is
It will go around to the inside in the thickness direction. As the rolling progresses, the movement of the metal is reversed and the Futstale 3 and overlap 4 gradually grow.
These are cut into trout and become clotupulos, and the reduction of clotupulos is extremely important for improving the blooming pressure yield. Details and embodiments of the invention will be explained with reference to FIGS. 3 and 4. FIG.

すなわち、本発明は第3図Aに示す如く該鋼塊7の圧延
初期に鋼塊7の頭部および底部の少くとも一端の相対す
る少くとも1組の面に圧延用ロール8によって凸部9を
T字型に形成し、次いで、圧延用ロール8によって、第
3図Bに示す如く逆方向から圧下を加え、凸部9を消滅
させる方法である。凸部9形成の具体的方法としては、
第3図Bに示す如く、突出長さ△1は凸部9を形成後、
逆方向から凸部消滅のための圧下を加える際、圧延負荷
が増大して過負荷とならないように200〜30仇吻が
好ましい。
That is, as shown in FIG. 3A, in the present invention, a convex portion 9 is formed by a rolling roll 8 on at least one set of opposing surfaces of at least one end of the head and bottom of the steel ingot 7 during the early stage of rolling of the steel ingot 7. This is a method in which the material is formed into a T-shape, and then rolling is applied from the opposite direction using rolling rolls 8 as shown in FIG. 3B to eliminate the convex portions 9. A specific method for forming the convex portion 9 is as follows.
As shown in FIG. 3B, the protrusion length Δ1 is after forming the convex portion 9,
When rolling is applied from the opposite direction to eliminate the convex portions, the rolling force is preferably 200 to 30 degrees so as not to increase the rolling load and cause an overload.

△1をこれにより小さくすると凸部形成時に形成ごた凸
部9がクロップェンド10側へ、せり上って来ることが
あり、本発明の効果が減少する。他方、△Lをこれによ
り大きくすると逆方向からの圧下時に凸部の鋼性が大き
くなり圧延抵抗が増加するので、かえってクロップヱン
ド10側へのメタルフローが増加し本発明の効果が減少
するためである。また、凸部9の突出高さ△日は凸部9
を消滅させた時に側面に2枚板状の欠陥が残らない範囲
で大きければ大きい程クロップロスを減少させるために
効果的であるが、本発明者らの実験結果より△Lとの関
係から次の不等式‘11で表わされる範囲が最も好適で
ある。0.25△LS△日<△1 ・・・・・・‘1
}すなわち、△日が△Lより小にして、その1/4と同
一もしくはこれより大であることが最も好ましい。
If Δ1 is thereby reduced, the formed convex portion 9 may rise toward the crop end 10 side when the convex portion is formed, reducing the effect of the present invention. On the other hand, if △L is increased by this, the steel properties of the convex portion will increase during rolling from the opposite direction and the rolling resistance will increase, so the metal flow towards the crop end 10 side will increase and the effect of the present invention will decrease. be. In addition, the protrusion height of the convex portion 9 △ days is the protrusion height of the convex portion 9
The larger the defect is, the more effective it is for reducing crop loss, as long as it does not leave a two-plate-like defect on the side surface when eliminated. However, based on the experimental results of the present inventors, from the relationship with △L, the following The range expressed by inequality '11 is most suitable. 0.25△LS△day<△1 ・・・・・・'1
} That is, it is most preferable that △day be smaller than △L and be equal to or larger than 1/4 of △L.

この理由は、△日が0.25△Lより小さいと逆方向か
らの圧下時に凸部の鋼性が大きくなり、かえってクロツ
プエンド10側へのメタルフローが増加するからであり
、他方△日が△Lより大きいと逆方向からの圧下時に、
圧延ロールのかみ込み限界の存在により、凸部を消滅さ
せるための圧延回数が増加して、かえって圧延回数増加
に伴うクロツプヱンド10側へのメタルフローが増加す
るからである。かくの如き凸部9を素材7の厚み方向に
形成すればオーバラップの減少が可能であり、また鋼塊
素材7の幅方向について行えばフィッシュテールの減少
が可能であるが、その理由は次のとおりである。
The reason for this is that if △day is smaller than 0.25△L, the steel properties of the convex portion will increase during rolling from the opposite direction, and the metal flow toward the crop end 10 will increase.On the other hand, if △day is △ If it is larger than L, when rolling down from the opposite direction,
This is because the presence of the rolling roll biting limit increases the number of times of rolling to eliminate the convex portions, and the metal flow toward the cropped end 10 increases as the number of times of rolling increases. If such a convex part 9 is formed in the thickness direction of the material 7, it is possible to reduce the overlap, and if it is formed in the width direction of the steel ingot material 7, it is possible to reduce the fishtail.The reason for this is as follows. It is as follows.

すなわち、凸部9を形成した後、逆方向から圧下を加え
て凸部9を消滅させる際、逆方向からの凸部消滅の庄下
が進行するに従い、凸部9が次第に素材7の本体に吸収
されて行くので、圧延負荷が噛み抜け側に進むに従って
軽減することとなる。この点は、先に説明した従釆の通
常の圧延においては、鋼塊素材7の噛み込み側から噛み
抜け側に向ってメタルが次第に集積する如く流れて、圧
延負荷が次第に増加するのと全く反対の結果となる。従
って本発明による凸部9の形成によって、圧延時のメタ
ルが噛み抜け側へ流れるのを有効に防止することができ
るので、スラブ両端の幅方向にできるフィッシュテール
および厚み方向にできるオーバラップの成長を防止する
ことができ、その結果クロップロスを最少限に抑制する
ことができる。
That is, after forming the convex part 9, when applying pressure from the opposite direction to eliminate the convex part 9, the convex part 9 gradually becomes the main body of the material 7 as the reduction of the convex part disappearing from the opposite direction progresses. Since the rolling load is gradually absorbed, the rolling load is reduced as it progresses toward the bite-through side. This point is completely different from that in the normal rolling of the secondary steel as described above, where the metal flows from the biting side of the steel ingot material 7 to the biting side, as if gradually accumulating, and the rolling load gradually increases. The opposite results. Therefore, by forming the convex portions 9 according to the present invention, it is possible to effectively prevent the metal from flowing toward the side where the metal is cut through during rolling, resulting in the growth of fishtails that occur in the width direction at both ends of the slab and overlap that occurs in the thickness direction. As a result, crop loss can be suppressed to a minimum.

以上の凸部形成による効果のほかに、本発明によれば凸
部9を逆方向から圧下を加えるに際し従釆の圧下量より
も多い圧下量で圧延することができるので、圧延パス回
数のうち、鋼魂素材への噛み込み回数の減少を図ること
ができ、その結果噛み込み側へのメタルの移動を最小に
することが可能となった。
In addition to the above-mentioned effects of forming the convex portions, according to the present invention, when rolling the convex portions 9 from the opposite direction, it is possible to roll the convex portions 9 with a reduction amount that is greater than that of the subordinate. , it is possible to reduce the number of times the steel soul material is bitten, and as a result, it is possible to minimize the movement of metal toward the biting side.

この効果もスラブ両端にできるフィッシュテールおよび
オーバラップの成長を防止し、クロップロスを少くする
に寄与している。次に、本発明による凸部9の形成の態
様ならびにその形成時期について説明する。第4図A,
B,C,D,Eは凸部形成の態様を示す実施例であって
、Aは圧延素材の一端に幅方向に凸部を形成した例を示
す斜視図であり、Bは素材の一端に幅方向および厚み方
向に凸部を形成した例であり、Cは素材の一端の幅方向
および池端の厚み方向に凸部9を形成した例であり、D
図は素材7の一端の厚み方向のみに凸部を形成した例で
あり、E図は素材7の両端の幅方向に凸部を形成した例
であり、この形状は変形能の大なる材料に適用して効果
が大である。これらの凸部形成の態様は、このほかにも
種々の態様があることは勿論である。
This effect also prevents the growth of fishtails and overlaps on both ends of the slab, contributing to reducing crop loss. Next, the manner in which the convex portion 9 is formed according to the present invention and the timing of its formation will be explained. Figure 4A,
B, C, D, and E are examples showing how to form a convex portion, and A is a perspective view showing an example in which a convex portion is formed in the width direction at one end of a rolled material, and B is a perspective view showing an example in which a convex portion is formed at one end of a rolled material. This is an example in which a convex portion is formed in the width direction and the thickness direction, and C is an example in which a convex portion 9 is formed in the width direction at one end of the material and the thickness direction at the end of the material.
The figure shows an example in which a convex portion is formed only in the thickness direction at one end of the material 7, and the E figure shows an example in which a convex portion is formed in the width direction at both ends of the material 7. This shape is suitable for materials with high deformability. It is highly effective when applied. Of course, there are various other ways to form these protrusions.

而して、これらの凸部形成の最も効果のある時期につい
ては鋼魂の種類、形状等によって異なるが、一範にオー
バラップやフィッシュテールの成長開始前の圧延初期に
実施すると効果がある。
The most effective time to form these convex portions varies depending on the type, shape, etc. of the steel core, but it is generally effective to form them at the early stage of rolling, before the overlap or fishtail starts to grow.

キルド鋼塊では頭部形状が凹状になっている例が多く、
圧延の開始に先立ち鋼塊に凸部を形成して本発明を実施
すると有効であるが、キャップド鋼塊のように鋼塊の頭
部形状を呈している場合には、分塊圧延の中期または後
期に、第1図Aに示す如き両端に浅い凹部形状が形成さ
れて来た時点に、本発明を実施すると、すぐれた効果が
得られる。なお、本発明による鋼塊に凸部形成に要する
時間は、1個所についてわずかに3現砂から1分間程度
であるので生産性に及ぼす影響は無視できる程度である
。本発明の実施例を従来法と対比して説明する。
In many cases, the head shape of killed steel ingots is concave.
It is effective to carry out the present invention by forming a convex part on the steel ingot before the start of rolling, but in the case of a capped steel ingot which has a head shape, Alternatively, if the present invention is practiced at a later stage, when shallow concave shapes are formed at both ends as shown in FIG. 1A, excellent effects can be obtained. It should be noted that the time required to form the convex portions on the steel ingot according to the present invention is only about 1 minute from 3 pieces of sand per place, so the effect on productivity is negligible. An embodiment of the present invention will be explained in comparison with a conventional method.

実施例 1本実施例は圧延素材の一端の幅方向のみ凸部
を形成し、該凸部を逆方向から圧下して消滅させた例で
ある。
Example 1 This example is an example in which a convex portion is formed only in the width direction at one end of the rolled material, and the convex portion is rolled down from the opposite direction to disappear.

鋳型断面が頭部で1232肋×555側、底部で116
仇舷×44仇奴の鋳型に溶鋼を鋳造して得た重量7tの
キルド鋼塊から断面145肌×104仇舷のスラブを本
発明法ならびに従来法にて第1表の示す各工程を経て製
造した。第 1 表 単位:のの 第1表において日.R.は水平ロール、V.R.は垂直
ロールである。
The cross section of the mold is 1232 ribs x 555 sides at the head and 116 at the bottom.
From a killed steel ingot weighing 7 tons obtained by casting molten steel in a mold of 44 mounds, a slab with a cross section of 145 m x 104 moulds, was processed through the steps shown in Table 1 using the method of the present invention and the conventional method. Manufactured. Table 1 Unit: Day in Table 1 of. R. is a horizontal roll, V. R. is a vertical roll.

すなわち、従来法においては、スケール落しのため日.
R.によるパス地.1にて110仇肋‘こ圧下した後、
鋼塊を90度回転し、そのまま日.R.にて圧下を続け
、V.R.にて幅殺しのエッジングを行って規定断面の
145肋×1040柵のスラブを得た。本発明法におい
ては、エッジングをわざわざ行わなくてもスケールを脱
落できることが実験で確認されたので、パスNo.4に
おいてV.R.を1100側にセットしたまま凸部を形
成、噛み戻しを行った後、パスNo.6においてV.R
.を1080側にセットしたまま凸部形成パスM.7に
て噛み戻しを行った。更にパス船.8にてV.R.を1
04物舷にセットしたまま凸部形成を完了し、V.R.
を開いて噛みぬけを行った。すなわち、連続して3回に
分けて△Lが約20仇岬、△日が55側の凸部を形成し
た。該凸部をパス地.9、No.11によって逆方向か
ら圧下して消滅させ、その後はV.R.を104仇肌こ
セットしたまま日.R.にて圧下を継続し最終的に14
5肋×1040肋のスラブを製造した。かくの如く、本
実施例では圧延の前期から中期にかけて素材の一端の幅
方向のみに凸部を形成させ、続いて逆方向から圧下を加
え、該凸部を消滅させた。これにより以後の噛み込み回
数が減少し、第2表に示す如く従来法に比較して両端の
クロツプロスが著しく減少した。第2表 実施例 2 本実施例は圧延の初期に鋼塊の一端の幅方向3回に亘り
凸部を形成し、その直後逆方向から圧下を加えて該凸部
を消滅させ、更に圧延の後期に素材の他端の幅方向に凸
部を形成し、逆方向から圧下を加えて該凸部を消滅させ
た例である。
In other words, in the conventional method, the number of days is reduced due to scale reduction.
R. Pass location by. After reducing 110 ribs in step 1,
Rotate the steel ingot 90 degrees and leave it as is. R. Continue to reduce the pressure at V. R. Edging was performed to reduce the width to obtain a slab with a specified cross section of 145 ribs x 1040 fences. In the method of the present invention, it has been confirmed through experiments that the scale can be removed without the need for edging. In 4 V. R. After forming the convex part and biting back while setting the pass No. to the 1100 side, pass No. In 6 V. R
.. While setting M. to the 1080 side, continue the protrusion formation pass M. Bite back was performed at 7. Another pass ship. At 8 V. R. 1
Complete the formation of the convex part with the V.04 set on the port side. R.
I opened it and made a bite. That is, the protrusions were formed three times in succession, with ΔL of about 20 yen and Δday of 55. Pass the convex part. 9, No. 11 from the opposite direction to eliminate it, and then V. R. Leave it on for 104 days. R. Continuing to reduce the pressure at finally 14
A slab of 5 ribs x 1040 ribs was manufactured. As described above, in this example, a convex portion was formed only in the width direction of one end of the material from the early to middle stage of rolling, and then rolling was applied from the opposite direction to eliminate the convex portion. As a result, the number of subsequent bites was reduced, and as shown in Table 2, the clot loss at both ends was significantly reduced compared to the conventional method. Table 2 Example 2 In this example, a convex portion is formed three times in the width direction of one end of the steel ingot at the beginning of rolling, and immediately after that, rolling is applied from the opposite direction to eliminate the convex portion, and further rolling is performed. This is an example in which a convex portion is formed in the width direction of the other end of the material in the later stage, and the convex portion is eliminated by applying pressure from the opposite direction.

鋳型断面が頭部にて1222側×810側、底部にて1
258柳×91仇肋の鋳型に鋳造して得た重量1乳のキ
ャッフ。
Mold cross section is 1222 side x 810 side at the head, 1 at the bottom
A caff with a weight of 1 milk obtained by casting in a mold of 258 willows x 91 ribs.

ド鋼鋼塊から断面26仇奴×92仇肋のスラブを製造す
る場合に、本発明法および従来法を適用し、そのクロッ
プ。スを比較した。両者の圧延工程の詳細は第3表のと
おりである。第3表 第3表に示す如く、従来法においては鋼塊を日.R.に
てパスNo.1よりM.3まで圧下した後、90度回転
し、以後通常の方法にてV.Rにてエッジングを行いな
がら圧延を継続して26仇蚊×92伍舷のスラブを製造
した。
When manufacturing a slab with a cross section of 26 x 92 ribs from a steel ingot, the method of the present invention and the conventional method were applied to produce the crop. compared. Details of both rolling processes are shown in Table 3. Table 3 As shown in Table 3, in the conventional method, the steel ingot was R. Pass No. 1 from M. After lowering the pressure to V.3, rotate it 90 degrees, and then lower it in the usual way. Rolling was continued while edging at R to produce a slab of 26 m x 92 m.

一方、本発明においては、日.R.を1170柳、11
0仇舷、1030脚に順次セットしてパスNo.1、3
、5にて鋼魂の一端の幅方向に3回に分けて凸部を形成
、該凸部をパス船.8にて日.R.を1135肋にセッ
ト、パスM.10にて日.R.を1025柵にセットし
て完全に消滅し、その後エッジングを行うことなく日.
R.による圧下を続け、パスM.16にてV.R.を1
040帆、パス地.18にて1000肋にセットしてエ
ッジングを行い、パスM.19にてV.R.を班仇舷、
パスM.21にてJ.R.を93仇枕にセットして素材
の他端の幅方向に凸部を形成、該凸部をV.R.にて消
去しながらエッジングを施し26仇舷×92仇吻のスラ
ブを製造した。両方法による歩蟹を比較すると第4表の
とおりである。第4表 第4表より明らかなとおり、本発明によれば従来法によ
るよりもトップクロツプロスが2.9%、ボトムクロッ
プロスが2.3%にて鯛断時歩蟹が実に4.6%の大な
る向上を達成することができた。
On the other hand, in the present invention, Japanese. R. 1170 willow, 11
Pass No. 0 and 1030 are set in sequence. 1, 3
, 5, a convex portion is formed three times in the width direction of one end of the steel soul, and the convex portion is formed into a pass ship. Sun at 8. R. Set on the 1135th rib, pass M. Sun at 10. R. I set it on the 1025 fence and it completely disappeared, and after that it disappeared for days without edging.
R. Continue rolling down by pass M. At 16 V. R. 1
040 sail, pass place. Set to 1000 ribs at 18 and perform edging, pass M. At 19 V. R. The ship's side,
Pass M. At 21 J. R. was set on a 93-meter pillow to form a convex part in the width direction of the other end of the material, and the convex part was set in a V. R. Edging was carried out while erasing at the same time, and a slab measuring 26 m x 92 m was manufactured. Table 4 shows a comparison of the crabs produced by both methods. Table 4 As is clear from Table 4, according to the present invention, the top crop loss is 2.9%, the bottom crop loss is 2.3%, and the sea bream cut is 4.6% higher than the conventional method. % improvement was achieved.

本発明は、鋼塊の分塊圧延時に該鋼塊の頭部および底部
の少くとも1端の相対する少くとも1組の面に圧延用ロ
ールにより凸部を形成した後、逆方向から圧下を加えて
該凸部を消滅させる工程を含ませることによって、圧延
素材両端の厚み方向および幅方向へのメタルフローを防
止し、かつ、その後の凸部消滅圧延においては従来法よ
りも大なる圧下量で圧延することができるので、圧延パ
ス回数のうち素材への噛み込み回数を減少することがで
き、それだけ噛み込み側へのメタルの移動を最小にする
ことが可能となったので、分塊圧延時の厚み方向のオー
バーラップおよび幅方向のフィッシュテールの減少を図
ることが可能となり、その結果、製造スラブの雛断時歩
留を従来法に比し大幅に向上することができた。なお、
本発明法による凸部形成ならびに消滅は極めて短時間に
施行できるので分塊圧延の生産性の低下はほとんどない
ことも本発明の副次的効果である。
The present invention involves forming convex portions on at least one pair of opposing surfaces of at least one end of the head and bottom of the steel ingot during blooming rolling of the steel ingot, and then rolling the steel ingot from the opposite direction. In addition, by including the step of eliminating the protrusions, metal flow in the thickness direction and width direction at both ends of the rolled material is prevented, and the subsequent rolling to eliminate the protrusions allows for a larger rolling reduction than in the conventional method. Since it can be rolled at 300 degrees, the number of times the material gets caught in the material during the number of rolling passes can be reduced, and the movement of metal toward the biting side can be minimized. It became possible to reduce the overlap in the thickness direction and the fishtail in the width direction, and as a result, the yield when cutting the manufactured slabs was significantly improved compared to the conventional method. In addition,
A secondary effect of the present invention is that the formation and disappearance of convex portions by the method of the present invention can be carried out in an extremely short time, so that there is almost no decrease in the productivity of blooming.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,.Bは分魂圧延における従来法による場合の
フィッシュテールの成長を示す説明図、第2図A,Bは
、従釆法によるオーバーラップの形成を示す説明図、第
3図A,Bは本発明による分塊圧延におけるクロップロ
スの減少方法を示す平面図であって、Aは凸部形成工程
を示し、Bは凸部消滅工程を示す。 第4図は本発明による圧延素材に形成する凸部の態様例
を示す斜視図である。7…・・・圧延素材、8・…・・
圧延用ロール、9・・・・・・凸部、10・・・・・・
圧延素材端部。 第1図 第2図 第3図 第4図
Figure 1A, . B is an explanatory diagram showing the growth of a fishtail in the case of the conventional method of split-roll rolling, FIGS. 2A and B are explanatory diagrams showing the formation of an overlap by the secondary method, and FIGS. 3A and B are diagrams showing the formation of an overlap according to the present invention. FIG. 2 is a plan view showing a method for reducing crop loss in blooming rolling according to the present invention, in which A shows a convex part forming process and B shows a convex part disappearing process. FIG. 4 is a perspective view showing an example of an embodiment of a convex portion formed on a rolled material according to the present invention. 7...Rolled material, 8...
Roll for rolling, 9...Protrusion, 10...
Rolled material end. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 可逆式圧延機による鋼塊の分塊圧延時におけるクロ
ツプロスの減少方法において、前記鋼塊圧延時に該鋼塊
の頭部および底部の少くとも一端の相対する少くとも1
組の面に圧延用ロールによつて、突出長さΔLを 20
0mm≦ΔL≦300mm 及び突出高さΔHを 0.25ΔL≦ΔH<ΔL とする凸部を形成した後、逆方向から圧下を加えて工程
を包含することを特徴とする分塊圧延におけるクロツプ
ロスの減少方法。
[Scope of Claims] 1. A method for reducing clotupulos during blooming of a steel ingot using a reversible rolling mill, wherein at least one opposing end of at least one head and bottom of the steel ingot during rolling of the steel ingot is provided.
The protrusion length ΔL is set to 20 by using a rolling roll on the surface of the set.
After forming a convex portion with 0 mm≦ΔL≦300 mm and a protrusion height ΔH of 0.25ΔL≦ΔH<ΔL, reduction of clotsupuros in blooming rolling is characterized by including a step of applying rolling from the opposite direction. Method.
JP10453678A 1978-08-28 1978-08-28 Method for reducing clotupulos in blooming rolling Expired JPS6024721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10453678A JPS6024721B2 (en) 1978-08-28 1978-08-28 Method for reducing clotupulos in blooming rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10453678A JPS6024721B2 (en) 1978-08-28 1978-08-28 Method for reducing clotupulos in blooming rolling

Publications (2)

Publication Number Publication Date
JPS5530381A JPS5530381A (en) 1980-03-04
JPS6024721B2 true JPS6024721B2 (en) 1985-06-14

Family

ID=14383205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10453678A Expired JPS6024721B2 (en) 1978-08-28 1978-08-28 Method for reducing clotupulos in blooming rolling

Country Status (1)

Country Link
JP (1) JPS6024721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317020U (en) * 1986-07-17 1988-02-04

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225001U (en) * 1985-07-31 1987-02-16
US6453712B1 (en) * 2000-06-07 2002-09-24 Alcoa Inc. Method for reducing crop losses during ingot rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317020U (en) * 1986-07-17 1988-02-04

Also Published As

Publication number Publication date
JPS5530381A (en) 1980-03-04

Similar Documents

Publication Publication Date Title
US8381384B2 (en) Shaped direct chill aluminum ingot
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
EP1066897B1 (en) Continuous casting method
US4344309A (en) Process for preventing growth of fishtails during slabbing
JPS6024721B2 (en) Method for reducing clotupulos in blooming rolling
JP3463550B2 (en) Method of preventing surface cracks in continuous cast slab
JPH0245534B2 (en)
JPS59281B2 (en) Method for reducing clotupulos in blooming rolling
US8381385B2 (en) Shaped direct chill aluminum ingot
JPH0628790B2 (en) Continuous casting method
JPH02160151A (en) Method for forming shape of cast billet in continuous casting machine
JPH078421B2 (en) Continuous casting method
GB1596395A (en) Method of continuous casting of steels or metal alloys with segregation tendancy and apparatus for carrying out the method
JPS6216722B2 (en)
JPS6161881B2 (en)
JP3589014B2 (en) Continuous casting method of steel slab
JP4164925B2 (en) Manufacturing method of continuous cast slab
JP2987009B2 (en) Large reduction method of slab strand in continuous casting.
JPS6315061B2 (en)
JPS5942561B2 (en) Hot rolling method
JPS6150045B2 (en)
JPS5837043B2 (en) Rolling method of section steel
JPS596721B2 (en) Blooming method for directly rolled material
JPS5854882B2 (en) Method for reducing clotupulos in blooming rolling
SU1194567A1 (en) Billet of killed steel