JPS60247158A - Hot flaw detection apparatus - Google Patents

Hot flaw detection apparatus

Info

Publication number
JPS60247158A
JPS60247158A JP59103830A JP10383084A JPS60247158A JP S60247158 A JPS60247158 A JP S60247158A JP 59103830 A JP59103830 A JP 59103830A JP 10383084 A JP10383084 A JP 10383084A JP S60247158 A JPS60247158 A JP S60247158A
Authority
JP
Japan
Prior art keywords
flaw detection
steel
steel material
flaw
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59103830A
Other languages
Japanese (ja)
Inventor
Akira Saeki
佐伯 朗
Akio Ueno
上野 明喜夫
Takehiro Iwai
岩井 壮汎
Toshikatsu Hasumi
蓮見 利勝
Katsuya Sato
克也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARA DENSHI SOKKI KK
Eddio Corp
Original Assignee
HARA DENSHI SOKKI KK
Eddio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARA DENSHI SOKKI KK, Eddio Corp filed Critical HARA DENSHI SOKKI KK
Priority to JP59103830A priority Critical patent/JPS60247158A/en
Publication of JPS60247158A publication Critical patent/JPS60247158A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To efficiently perform the flaw detection of an elongated member with high sensitivity, in the electromagnetic induction of a steel round bar or a steel pipe in a hot state, by magnetically saturating a steel material to be inspected and detecting a flaw by a flaw detection coil block. CONSTITUTION:In a process for producing a wire material or a steel bar being a steel material 1 to be inspected under heating, the steel material 1 is allowed to pierce through doughnut shaped magnetization coils 5, 5' and a ring shaped flaw detection coil block 2, and the magnetization coils 5, 5' or the like are supported by a basket shaped support material 6 or a stand 3. The steel material 1 receives DC or AC excitation by the magnetization coils 5, 5' and magnetically saturated. Next, a flaw is detected by a flaw detection coil 2 formed by winding up a plurality of electromagnetic induction type flaw detection windings while the output signal from the flaw detection coil 2 is compensated on the basis of the temp. signal of the steel material 1 to perform flaw detection. Because the steel material to be inspected is magnetically saturated to perform flaw detection, a dummy signal is not picked up even at high temp. such as a Curie point and flaw detection can be performed with good accuracy regardless of the effect of temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、丸棒鋼や鋼管などの細長い強磁性体の熱間探
傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hot flaw detection device for elongated ferromagnetic materials such as round steel bars and steel pipes.

〔従来の技術〕[Conventional technology]

丸棒鋼や鋼管などの強磁性材の温間又は熱間状態に於け
る電磁誘導探傷にあっては、液深傷検査材の温度に依存
する透磁率などの磁気特性の変化が問題である。一般に
透磁率又は磁化率は温度が上昇するにつれて減少し、キ
ューリ一点(Tc)では自発磁化機能が消滅して強磁性
体が常磁体になる。横軸にキューリ一点Tcと鋼材の温
度Tとの比T/Tcで表わした鋼材温度をとり、縦軸に
磁気の強さの比即ち常温での磁化の強さ■0と任意の温
度での磁化の強さとの比I / I oをとった両者の
関係を第8図に示す。また図示しないが導電率は温度の
上昇に伴なって増大する傾向があり、これらの結果電磁
誘導探傷における探傷感度及び探傷出力の位相などが被
探傷材の温度に従って変るという問題がある。
In electromagnetic induction flaw detection in warm or hot conditions of ferromagnetic materials such as round steel bars and steel pipes, changes in magnetic properties such as magnetic permeability that depend on the temperature of the liquid deep flaw inspection material are a problem. Generally, magnetic permeability or magnetic susceptibility decreases as the temperature rises, and at the Curie point (Tc), the spontaneous magnetization function disappears and the ferromagnetic material becomes a paramagnetic material. The horizontal axis shows the steel temperature expressed as the ratio T/Tc between Curie point Tc and the steel temperature T, and the vertical axis shows the ratio of magnetic strength, that is, the magnetization strength at room temperature. The relationship between the two is shown in FIG. 8 by taking the ratio I/Io to the magnetization strength. Further, although not shown, the electrical conductivity tends to increase as the temperature rises, and as a result, there is a problem in that the flaw detection sensitivity and the phase of the flaw detection output in electromagnetic induction flaw detection change depending on the temperature of the material to be flaw tested.

またキューリ一点近傍では鋼材表面に疵が存在しないに
もかかわらず疑似信号が電磁誘導探傷では検出されると
いう問題のあることが判った。被探傷材の温度Tを横軸
、検出される疑似信号の強さEn(相対値)を縦軸にと
ってグラフ化したものを第7図に示す。この疑似信号は
疵を検出する探傷装置にとっては好ましくない妨害要因
となる。
It was also found that there is a problem in that electromagnetic induction flaw detection detects false signals near the Curie point even though there are no flaws on the surface of the steel material. FIG. 7 shows a graph in which the temperature T of the material to be tested is plotted on the horizontal axis and the intensity En (relative value) of the detected pseudo signal is plotted on the vertical axis. This pseudo signal becomes an undesirable interference factor for flaw detection equipment that detects flaws.

強磁性材の温度が上昇しキューリ一点に近づくに従って
自発磁化特性が減少し、この過程において磁区構造が不
規則に破壊されて行くが、疑似信号Enはこのときに生
ずるバルクハウゼン効果によるものと思われる。ミクロ
的にみれば、キューリ一点を越えたのちも該効果は直ち
には消失しない。
As the temperature of the ferromagnetic material rises and approaches the Curie point, the spontaneous magnetization characteristic decreases, and in this process the magnetic domain structure is destroyed irregularly, and the pseudo signal En is thought to be due to the Barkhausen effect that occurs at this time. It will be done. From a microscopic point of view, the effect does not disappear immediately even after exceeding one point.

第9図はこの疑似信号の温度特性の一例を示すが、この
温度特性は各種鋼材の組成に従って変る。なお鋼材の平
均比熱(Kcal/ Kg deg、 )は第10図に
示すように鋼材温度で変り、この鋼材温度対疑似信号特
性と鋼材温度対平均比熱特性は強い相関を有する。この
関係を第11図に示す。
FIG. 9 shows an example of the temperature characteristics of this pseudo signal, which changes depending on the composition of various steel materials. Note that the average specific heat (Kcal/Kg deg, ) of the steel material varies depending on the steel material temperature, as shown in FIG. 10, and the steel material temperature versus pseudo signal characteristic and the steel material temperature versus average specific heat characteristic have a strong correlation. This relationship is shown in FIG.

次に温間又は熱間状態において圧延加工や絞り加工の行
なわれる線材や鋼材の表面は、加工用ロールの過熱防止
や耐久性確保のために強制水冷を行なうことが富である
が、冷却された治工具を用いて圧延、転造加工されると
被探傷材は局部的に冷却される。加工直前に行われる加
熱が鋼材の長さ方向に対して均一にならないことが多い
。一般的には鋼材先端部の全周に亘り且つある長さ方向
の範囲に亘って低温部が存在することがしばしば見うけ
られる。
Next, it is best to perform forced water cooling on the surface of wire rods and steel materials that are subjected to rolling or drawing in warm or hot conditions to prevent overheating of the processing rolls and ensure durability. When the material to be tested is rolled and rolled using jigs and tools, the material to be tested is locally cooled. The heating that is performed immediately before processing is often not uniform along the length of the steel material. Generally, it is often seen that a low-temperature part exists over the entire circumference of the tip of the steel material and over a certain lengthwise range.

低温部分と高温部分とでは透磁率や導電率が異なるから
、同一の疵が存在してもそれを検出したときの相対感度
や相対位相角が異った値を示す。
Since the magnetic permeability and electrical conductivity are different between the low-temperature part and the high-temperature part, even if the same flaw exists, the relative sensitivity and relative phase angle when it is detected will show different values.

これは探傷の信頼性をそこなうのみならず、不均一分布
の温度差に対応した疑似信号を検出してしまうこととな
る。
This not only impairs the reliability of flaw detection, but also results in the detection of false signals corresponding to temperature differences with non-uniform distribution.

この様な不具合に対しては直流或いは交流磁場を被検査
鋼材に与え、該鋼材の探傷面部位を磁気飽和させること
が有効であることが判った。即ち各鋼種に固有のA2変
態点及びその周辺の比熱に着目しこれをパラメータとし
て信号や磁化コイルの励磁電流を調整制御すれば問題解
決が可能であることが判った。低炭素鋼々材の温度がキ
ューリ一点及びその前後のときに、電磁誘導探傷法によ
って検知された疑似信号が、磁化電流を増加させること
によって減少せしめ得た実測例を第12図に示す。この
図には鋼材表面温度が約730℃における測定結果を示
し、磁化電流■を横軸に、疑似雑音信号振幅相対値En
を縦軸にとっである。
It has been found that it is effective to deal with such defects by applying a direct current or alternating current magnetic field to the steel material to be inspected to magnetically saturate the flaw detection surface area of the steel material. That is, it has been found that the problem can be solved by focusing on the A2 transformation point and the specific heat around it, which are unique to each steel type, and adjusting and controlling the signal and the excitation current of the magnetizing coil using this as a parameter. Fig. 12 shows an actual measurement example in which a false signal detected by electromagnetic induction flaw detection was reduced by increasing the magnetizing current when the temperature of the low carbon steel material was at or around the Curie point. This figure shows the measurement results at a steel material surface temperature of approximately 730°C, with the magnetization current (■) on the horizontal axis, and the relative pseudo-noise signal amplitude (En).
is taken on the vertical axis.

この図から、被探傷材を磁化することによってキューリ
一点近傍に於ける疑似雑音信号を激減させ得ることが判
る。
From this figure, it can be seen that by magnetizing the material to be tested, the pseudo noise signal in the vicinity of one Curie point can be drastically reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は疑似雑音信号を拾うことなく、棒鋼、鋼管、線
材など比較的小径の細長部材の全面探傷を効率的に、該
細長部材の長さ方向温度変化による探傷感度変化を補償
しながら確実に実施可能にしようとするものである。
The present invention efficiently performs full-surface flaw detection on elongated members with relatively small diameters, such as steel bars, steel pipes, and wire rods, without picking up pseudo-noise signals, and reliably while compensating for changes in flaw detection sensitivity due to temperature changes in the longitudinal direction of the elongated members. The aim is to make it practicable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、細長い高温の強磁性被探傷材を製造工程中に
走間で電磁誘導型の熱間探傷をする装置において、該被
探傷材が貫通、走行し、そして該被探傷材を磁化してこ
れを磁気飽和させる磁化コイルと、該磁化コイルにより
磁気飽和された被探傷材の部分を中心にして環状に配設
された複数個の電磁誘導型探傷用巻線を有する探傷コイ
ルブロックと被探傷材の温度信号を受けて探傷コイルブ
ロックの出力信号及び磁化コイルの励磁電流を調整する
信号処理回路とを備えることを特徴とする 。
The present invention is an apparatus that performs electromagnetic induction hot flaw detection during the manufacturing process of a long, slender, high-temperature ferromagnetic material to be tested. A flaw detection coil block has a magnetization coil that magnetically saturates the flaw detection coil, and a plurality of electromagnetic induction flaw detection windings arranged in a ring around the part of the material to be detected that is magnetically saturated by the magnetization coil. It is characterized by comprising a signal processing circuit that receives a temperature signal of the flaw detection material and adjusts the output signal of the flaw detection coil block and the excitation current of the magnetization coil.

が、次に実施例を参照しながら構成及び作用を詳細に説
明する。
However, the structure and operation will now be explained in detail with reference to embodiments.

〔実施例〕〔Example〕

第1図は本発明の熱間探傷装置の検出部の構造を示し、
ia)は磁化コイルが一体のもの、(blは2分割され
たものの例で冷間探傷に従来用いられているものと同様
類似のものを示す。先ず(alで1は被探傷材で、線材
や棒鋼などの細長部材であり、加熱されて高温の状態に
ある。10は探傷装置で、被探傷材1を磁化する環状ま
たはドーナツ状の磁化コイル5、被探傷材1と共にその
磁気回路を構成する架台6及び支持板3.3’、探傷コ
イルブロック2を備える。架台6は磁化コイル5を囲む
筒状または籠状体とされ、支持板3.3′は平板である
が中央に被探傷材1が貫通する孔を有する。
FIG. 1 shows the structure of the detection part of the hot flaw detection device of the present invention,
ia) shows an example in which the magnetizing coil is integrated, and (bl shows an example in which the magnetization coil is divided into two parts, which is similar to the one conventionally used for cold flaw detection. First, in (al), 1 is the material to be tested, and the wire rod 10 is a flaw detection device, which together with a ring-shaped or donut-shaped magnetizing coil 5 that magnetizes the material to be tested 1 and the material to be tested 1 constitutes a magnetic circuit. The mount 6 is equipped with a support plate 3.3', a flaw detection coil block 2.The mount 6 is a cylindrical or cage-shaped body surrounding the magnetizing coil 5, and the support plate 3.3' is a flat plate with a flaw detection coil block 2 in the center. The material 1 has a hole therethrough.

磁化コイル5は直流又は交流で励磁され、被探傷材1を
磁気飽和させる。磁気回路は被探傷材1、支持板3′、
架台6、支持板3、被探傷材1の閉ループからなる。(
blでは磁化コイルが5.5′の2個に分割され、これ
らの間に探傷コイルブロック2が配設される。その他は
(alと同様である。
The magnetizing coil 5 is excited with direct current or alternating current to magnetically saturate the material 1 to be tested. The magnetic circuit includes the material to be tested 1, the support plate 3',
It consists of a closed loop of a frame 6, a support plate 3, and a material to be tested 1. (
In bl, the magnetizing coil is divided into two pieces of 5.5', and the flaw detection coil block 2 is arranged between them. Others are the same as (al).

探傷コイルブロック2は第2図に示すように、複数の溝
11.12を有するは!゛円筒形のボビン13の液溝に
巻線14.15を巻装し、これらの巻線を差動するよう
に結線したもの、あるいは第3図に示すように、やはり
複数の溝16,17゜18を有するはy′円筒形のボビ
ン20の液溝17に励磁用巻線19を巻装し、左、右の
溝16,18には多数の検出用巻線21a、21b、・
・・・・・及び22a、22b、・・・・・・を放射状
に取付けたものなどのいずれでもよい。被探傷材が小径
で細長部材であると、これの全面探傷には貫通型が有利
である。即ち磁化コイル5.5′は環状をなし、これを
被探傷材が貫通するので前述の磁気回路ができ、被探傷
材の前面を均一に磁気飽和させることが容易にできる。
As shown in FIG. 2, the flaw detection coil block 2 has a plurality of grooves 11 and 12! ``The windings 14 and 15 are wound around the liquid grooves of the cylindrical bobbin 13, and these windings are connected differentially, or as shown in FIG. An excitation winding 19 is wound around the liquid groove 17 of a y' cylindrical bobbin 20 having an angle of 18 degrees, and a large number of detection windings 21a, 21b, .
. . . and 22a, 22b, . . . may be attached radially. If the material to be tested is a long and narrow member with a small diameter, a penetrating type is advantageous for full-surface flaw detection. That is, the magnetizing coil 5.5' has an annular shape, and since the material to be tested passes through it, the above-mentioned magnetic circuit is formed, and the front surface of the material to be tested can be easily magnetically saturated uniformly.

また検出コイル14.、’ 15は環状であり、21 
a、2 l b、 ・・・・・・、24 a、22b、
・・・・・・も全体として環状に配置され、これを被探
傷材が貫通するのでその全面を容易に探傷できる。検出
コイルは被探傷材の、磁化コイルにより磁化されて磁気
飽和している部分に配設されるので、前述の疑似雑音信
号を拾うことがない。
Also, the detection coil 14. ,' 15 is circular and 21
a, 2 l b, ......, 24 a, 22b,
. . . are arranged in an annular shape as a whole, and since the material to be detected passes through this, the entire surface can be easily detected. Since the detection coil is disposed in a portion of the material to be tested that is magnetized by the magnetization coil and is magnetically saturated, the above-mentioned pseudo noise signal is not picked up.

第4図は第3図を適用する場合のコイル結線例を示し、
図示のように励磁用巻線19は発振器23及び増幅器2
5により交流で励磁され、検出用巻線21a、21b、
・・・・・・は一端が接地さ1れ、他端はマルチプレク
サ24に接続され、図示しない検出回路へ導かれる。探
傷コイルブロック2は第1図(alでは図の左方または
右方から挿入されたのち、固定用フランジ7.7′によ
り固定され、(blでは架台6に取付けられた台座8に
より支持される。ボビン13.20は水冷構造にして、
励磁用及び検出用巻線が被探傷材1により過度に過熱さ
れないようにするとよい。
Figure 4 shows an example of coil connection when applying Figure 3,
As shown in the figure, the excitation winding 19 is connected to an oscillator 23 and an amplifier 2.
5, the detection windings 21a, 21b,
. . . is grounded at one end, connected to the multiplexer 24 at the other end, and guided to a detection circuit (not shown). The flaw detection coil block 2 is inserted from the left or right side of the figure in FIG. .Bobbin 13.20 has a water-cooled structure,
It is preferable to prevent the excitation and detection windings from being excessively heated by the material 1 to be tested.

棒鋼製造工程では第5図に示すように、粗列圧延機から
搬出された棒鋼30は中間列圧延機31で更に小径化さ
れ、次段の仕上列圧延機例えばブロックミル32で製品
径にされる。前述の探傷装置の検出部10はか−る棒鋼
製造工程では仕上列圧延機32の出側に配設された。仕
上圧延された線材はこ−で探傷されたのちパテフランジ
装置33を通す、更にコイルコンベア46を通って搬出
され、所定量ずつ結束される。中間列圧延機31の出側
には鋼材表面温度計35が設置され、該温度針の出力が
熱間探傷装置の検出部10の出力と共に信号処理装置3
6に入力される。
In the steel bar manufacturing process, as shown in FIG. 5, the steel bar 30 discharged from the roughing row mill is further reduced in diameter in an intermediate row rolling mill 31, and then reduced to a product diameter in the next stage finishing row mill, such as a block mill 32. Ru. The detection section 10 of the above-mentioned flaw detection device was disposed on the exit side of the finishing row rolling mill 32 in the steel bar manufacturing process. The finish-rolled wire rods are inspected for flaws using a saw, and then passed through a putty flange device 33, then conveyed out through a coil conveyor 46, and bundled in predetermined amounts. A steel material surface thermometer 35 is installed on the outlet side of the intermediate row rolling mill 31, and the output of the temperature needle is transmitted to the signal processing device 3 together with the output of the detection section 10 of the hot flaw detection device.
6 is input.

信号処理装置36は第6図に示す構成を有する。The signal processing device 36 has the configuration shown in FIG.

探傷コイルブロック2からの検出出力は信号処理装置3
6の増幅器40で増幅及び検波され、乗算器41の一方
の入力端に加えられる。鋼材表面温度計35の出力は等
化器42に入力され、こ−で入力対出力の関係が非直線
化された(探傷出力の振幅及び位相の温度変化を補償す
るに必要な関数関係に変更された)のち乗算器41の他
方の入力端に加えられる。乗算器41はこれらの両入力
を掛算し、鋼材表面温度による探傷出力の感度変化を補
償する。乗算器41の出力はフィルタ45を通って記録
計46およびプリンタ47へ導かれ、該記録計で探傷出
力の時間的変化が記録され、品質級別論理回路を備える
該プリンタで級別された探傷結果が印字される。これら
の記録及び又は印字結果は図示しないプロセスコンピュ
ータに入力されて最終判定され、あるいは外部表示され
る。
The detection output from the flaw detection coil block 2 is sent to the signal processing device 3.
The signal is amplified and detected by the amplifier 40 of No. 6, and is applied to one input terminal of the multiplier 41. The output of the steel surface thermometer 35 is input to the equalizer 42, which makes the input-to-output relationship non-linear (changes the amplitude and phase of the flaw detection output to a functional relationship necessary to compensate for temperature changes). ) is then applied to the other input terminal of the multiplier 41. The multiplier 41 multiplies these two inputs to compensate for changes in sensitivity of the flaw detection output due to the steel material surface temperature. The output of the multiplier 41 passes through a filter 45 and is led to a recorder 46 and a printer 47, where the recorder records the temporal change in the flaw detection output, and the printer, which is equipped with a quality grading logic circuit, records the graded flaw detection results. It will be printed. These records and/or print results are input into a process computer (not shown) for final judgment or are displayed externally.

温度計35の出力はまた等化器43に入力されて入出力
関係が非直線になるよう変更され、然るのち直流電源4
4に入力して該直流電源の出力電流即ち磁化コイル5の
励磁電流を調整する。等化器43で行なう非直線化は、
磁化コイル5による被探傷材1の磁化が、探傷出力に含
まれる疑似雑音信号が最も小さくなるように行なわれる
よう、直流電源44の出力電流を被探傷材温度に応じて
調整するにある。つまり等化器42.43は、所要の温
度対必要補正量の関係に温度信号を補正して出力するも
のである。
The output of the thermometer 35 is also input to an equalizer 43 to change the input/output relationship to be non-linear, and then to the DC power supply 4.
4 to adjust the output current of the DC power supply, that is, the excitation current of the magnetizing coil 5. The nonlinearization performed by the equalizer 43 is
The output current of the DC power supply 44 is adjusted in accordance with the temperature of the material to be tested so that the magnetization of the material to be tested 1 by the magnetization coil 5 is carried out so that the pseudo noise signal included in the testing output is minimized. In other words, the equalizers 42 and 43 correct the temperature signal to a desired relationship between the temperature and the necessary correction amount and output the corrected signal.

等化器42.43の必要な入出力特性は鋼種によって異
なるので、複数種用意してその1つを鋼種に従って選択
可能にするとよい。また等化器及び乗算器などは計算機
に置き換えてもよい。
Since the required input/output characteristics of the equalizers 42 and 43 differ depending on the steel type, it is preferable to prepare a plurality of types and make one of them selectable according to the steel type. Further, the equalizer, multiplier, etc. may be replaced with a computer.

この探傷装置で線材の熱間探傷をした結果を第7図に示
す。線材の外径は5.5謳、圧延速度は75m/sec
、鋼材表面温度は約840℃であった。
Figure 7 shows the results of hot flaw detection of wire rods using this flaw detection device. The outer diameter of the wire is 5.5cm, and the rolling speed is 75m/sec.
, the steel material surface temperature was approximately 840°C.

(al〜(C1は本発明装置の探傷出力、(d)〜(f
)は従来装置の探傷出力を示し、これらを見れば明らか
なように本発明装置では疑似雑音信号を大幅に低減する
ことができる。
(al~(C1 is the flaw detection output of the device of the present invention, (d)~(f
) shows the flaw detection output of the conventional device, and as is clear from these, the device of the present invention can significantly reduce pseudo noise signals.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、被探傷材を磁気飽
和させて探傷するので疑似雑音信号を拾うことがない、
磁化電流及び探傷出力を鋼材温度に依存して自動的に補
正するので被探傷材の温度変化の影響を無視できる、磁
化コイル及び検出コイルを環状にし被探傷材がこれを貫
通する形をとるので細長部材の探傷を効率的に行なえる
などの利点が得られる。特に前者は省エネルギーの観点
から今後ますます低温圧延作業の風潮傾向に対して従来
不可能であった高精度の熱間探傷を可能とする。
As explained above, according to the present invention, since the material to be tested is magnetically saturated for flaw detection, pseudo noise signals are not picked up.
The magnetizing current and flaw detection output are automatically corrected depending on the temperature of the steel material, so the influence of temperature changes on the material to be tested can be ignored.The magnetizing coil and detection coil are shaped like a ring, and the material to be tested passes through this. Advantages such as efficient flaw detection of elongated members can be obtained. In particular, the former enables high-precision hot flaw detection, which was previously impossible, in response to the trend toward low-temperature rolling operations, which will become increasingly popular in the future from the perspective of energy conservation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明探傷装置の実施例を示す説明図
、第4図はコイルの結線を示す回路図、第5図は探傷装
置の設置例を示すブロック図、第6図は信号処理回路の
構成を示すブロック図、第7図〜第12図は各種の特性
を示すグラフである。 図面で1は被探傷材、5,5′ は磁化コイル、2は探
傷コイルブロック、35は温度針、36は信号処理回路
である。 出 願 人 原電子測器株式会社 代理人弁理士 青 柳 稔 第1図 第2図 (a) 第3図 第4図 第5図 第6図 第7図 第7WJ 第8図 T/Tc 第9図 第10図 T ’C 第11図 第12図 Oj O,20,30,40,50,6I (A)
1 to 3 are explanatory diagrams showing an embodiment of the flaw detection device of the present invention, FIG. 4 is a circuit diagram showing the coil connection, FIG. 5 is a block diagram showing an example of installation of the flaw detection device, and FIG. 6 is a A block diagram showing the configuration of the signal processing circuit, and FIGS. 7 to 12 are graphs showing various characteristics. In the drawing, 1 is a material to be tested, 5 and 5' are magnetizing coils, 2 is a testing coil block, 35 is a temperature needle, and 36 is a signal processing circuit. Applicant: Minoru Aoyagi, Patent Attorney, Hara Denshi Sokki Co., Ltd. Figure 1 Figure 2 (a) Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 7 WJ Figure 8 T/Tc Figure 9 Figure 10 T 'C Figure 11 Figure 12 Oj O, 20, 30, 40, 50, 6I (A)

Claims (1)

【特許請求の範囲】[Claims] 細長い高温の強磁性被探傷材を製造工程中に走間で電磁
誘導型の熱間探傷をする装置において、該被探傷材が貫
通、走行し、そして該被探傷材を磁化してこれを磁気飽
和させる磁化コイルと、該磁化コイルにより磁気飽和さ
れた被探傷材の部分を中心にして環状に配設された複数
個の電磁誘導型探傷用巻線を有する探傷コイルブロック
と、被探傷材の温度信号を受けて探傷コイルブロックの
出力信号及び磁化コイルの励磁電流を調整する信号処理
回路とを備えることを特徴とする熱間探傷装置。
In an equipment that performs electromagnetic induction hot flaw detection during the manufacturing process of a slender, high-temperature ferromagnetic flaw detection material, the flaw penetrates and travels through the flaw detection material, and then magnetizes the flaw detection material. A flaw detection coil block includes a magnetization coil to be saturated, and a plurality of electromagnetic induction flaw detection windings arranged in a ring around the part of the flaw detection material that is magnetically saturated by the magnetization coil; A hot flaw detection apparatus comprising: a signal processing circuit that receives a temperature signal and adjusts an output signal of a flaw detection coil block and an excitation current of a magnetizing coil.
JP59103830A 1984-05-23 1984-05-23 Hot flaw detection apparatus Pending JPS60247158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59103830A JPS60247158A (en) 1984-05-23 1984-05-23 Hot flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59103830A JPS60247158A (en) 1984-05-23 1984-05-23 Hot flaw detection apparatus

Publications (1)

Publication Number Publication Date
JPS60247158A true JPS60247158A (en) 1985-12-06

Family

ID=14364337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59103830A Pending JPS60247158A (en) 1984-05-23 1984-05-23 Hot flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPS60247158A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234149A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
JPS63234152A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
JPS63298052A (en) * 1987-02-19 1988-12-05 アトミック エナジー オブ カナダ リミテツド Eddy current probe
JPS6421349A (en) * 1987-05-06 1989-01-24 Ca Atomic Energy Ltd Overcurrent probe and defect detection overcurrent method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298052A (en) * 1987-02-19 1988-12-05 アトミック エナジー オブ カナダ リミテツド Eddy current probe
JPS63234149A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
JPS63234152A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
JPS6421349A (en) * 1987-05-06 1989-01-24 Ca Atomic Energy Ltd Overcurrent probe and defect detection overcurrent method

Similar Documents

Publication Publication Date Title
US6455825B1 (en) Use of miniature magnetic sensors for real-time control of the induction heating process
DE3854028T2 (en) Apparatus and method for the detection of embrittlement of a measurement object.
CN103635798B (en) Electromagnetic sensor and calibration therefor
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
CN110187000B (en) Method for electromagnetic nondestructive testing of microstructure of dual-phase steel
JPS60247158A (en) Hot flaw detection apparatus
US4675057A (en) Method of heat treating using eddy current temperature determination
US3872379A (en) Eddy current testing apparatus using slotted monoturn conductive members
EP1216946A2 (en) System and method for detecting debonding rubber coated rolls
JP4813562B2 (en) Online measuring device for the transformation amount of metal materials
JP2008255422A (en) Method and facility for continuous annealing of steel strip having curie point
US6686735B2 (en) Method and device for the in situ detection of the degree of conversion of a non-magnetic phase in a ferromagnetic phase of a metallic work piece
Shen et al. Study on the characteristics of magneto acoustic emission for mild steel fatigue
Papaelias et al. Measurement and modeling of the electromagnetic response to phase transformation in steels
US4683430A (en) Eddy current flaw detector method and apparatus having a rotatable high permeability flux concentrator encircling a workpiece
JP2938950B2 (en) Deterioration damage detection device for metal materials
GB1591814A (en) Method and apparatus for continuous manufacture and non-destruction testing of tubes
Peyton et al. The application of electromagnetic measurements for the assessment of skin passed steel samples
JP2940463B2 (en) Transformation point detection device and quenching device for member to be heated by high frequency induction heating
JPH11352109A (en) Device and method for inspecting eddy current
Jiles et al. Evaluation of Surface Modifications in High Strength Steel
JP2501869B2 (en) Steel material defect detection method
JPS626163A (en) Rotary magnetic field type eddy current examination method
JPH10318987A (en) Eddy current flaw detector
JPH03183940A (en) Infrared flaw detecting device