JPS60246678A - Semiconductor nonvolatile memory - Google Patents

Semiconductor nonvolatile memory

Info

Publication number
JPS60246678A
JPS60246678A JP10282184A JP10282184A JPS60246678A JP S60246678 A JPS60246678 A JP S60246678A JP 10282184 A JP10282184 A JP 10282184A JP 10282184 A JP10282184 A JP 10282184A JP S60246678 A JPS60246678 A JP S60246678A
Authority
JP
Japan
Prior art keywords
gate electrode
region
floating gate
injection
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10282184A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kojima
芳和 小島
Masaaki Kamiya
昌明 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP10282184A priority Critical patent/JPS60246678A/en
Publication of JPS60246678A publication Critical patent/JPS60246678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7884Programmable transistors with only two possible levels of programmation charging by hot carrier injection
    • H01L29/7885Hot carrier injection from the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable programming at low voltage and low currents, and to obtain a nonvolatile semiconductor memory, which has the large efficiency of writing and is fitted to the increase of the degree of integration, by forming P type region in order to make injection-charge acceleration region steep only in the injection-charge acceleration region. CONSTITUTION:A selective gate electrode 15 and a floating gate electrode 14 are shaped in a channel region between a source region 12 and a drain region 13 in the surface of a P type semiconductor substrate 11 through gate insulating films 16, 17, and a control gate electrode 19 controls the potential of the floating gate electrode 14 through an insulating film 20. A high-concentration P type region 18 is formed only to the surface of the semiconductor substrate between the selective gate electrode 15 and the floating gate electrode 14, and an injection-charge acceleration region is shaped extremely steeply because the region 18 and both the electrode 15 and the electrode 14 hardly overlap. Drain voltage is applied effectively into the injection-charge acceleration region, thus enabling programming at low voltage and low currents.

Description

【発明の詳細な説明】 本発明は、高集積化が可能な低プログラム電圧浮遊ゲー
ト型半導体不揮発性メモリに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low programming voltage floating gate type semiconductor nonvolatile memory that can be highly integrated.

我々が発明した従来の低プログラム電圧浮遊ゲート型半
導体不揮発性メモリについて第1図を用いて説明する。
A conventional low program voltage floating gate type semiconductor nonvolatile memory that we have invented will be explained with reference to FIG.

P型半導体基板1の表面部分にN型のソース領域2Iド
レイン領域3が設けらhており、ソース領域2とドレイ
ン領域8との間のチャネル領域には第1のチャネル領域
L1と第2のチャネル領域L2が設けられている。泥1
のチャネル領域L1の表面電位はゲート絶縁膜7を介し
て設けられた選択ゲート電極5の電位により制御される
。また第2のチャネル領域L2の表面電位はゲート絶縁
膜6を介して設けら九た浮遊ゲート電極4の電位によっ
て制御される。また、浮遊ゲート電極4の電位は、絶縁
N ILI Vcよって最も強く容量結合した制御ゲー
ト電極9の電位によって制御される。
An N-type source region 2I and a drain region 3 are provided in the surface portion of the P-type semiconductor substrate 1, and a first channel region L1 and a second channel region L1 are provided in the channel region between the source region 2 and the drain region 8. A channel region L2 is provided. mud 1
The surface potential of the channel region L1 is controlled by the potential of the selection gate electrode 5 provided through the gate insulating film 7. Further, the surface potential of the second channel region L2 is controlled by the potential of the floating gate electrode 4 provided through the gate insulating film 6. Further, the potential of the floating gate electrode 4 is controlled by the potential of the control gate electrode 9 which is capacitively coupled most strongly by the insulating N ILI Vc.

従って、ドレイン領域8と制御ゲート電極9に基板1に
対して正の高電圧を印加すると、第2のチャネルL2の
表面電位はドレイン領域8の電位に等しくなる。そこで
第1のチャネル領域Kll流が流れるような電圧を選択
ゲート電極5に印加すると、第1のチャえル領域L1と
第2のチャネル領域L2とが交わる矢印Aの領域にソー
ス電圧とドレイン電圧との差に等しい大きな表面箱1位
差が生ずる。ソース領域2から流出した電子の一部は、
この大きな表面電位差によりホットエレクトロンとなり
浮遊ゲート電極4へ入る。即ち、書込みができる。この
ホットエレクトロンは、ソース・ドレイン領域間の横方
向電界に対して垂直方向の成分を持つ電界により加速さ
れ、効率よく、電送ゲート電極4に注入するために、こ
のような注入方法を’ P A C(Perpetvl
iculary Acceltyating Chtx
nnsl )注入りと呼ぶこと圧する。1だ、このよう
な注入方法を利用した半導体不揮発性メモリを’PAC
M OS (Perpendicularly Acc
elerating Channel 1njecti
回Metal Dxtal○xide 5tnnico
ndvctor )と呼ぶことにする。
Therefore, when a high positive voltage is applied to the drain region 8 and the control gate electrode 9 with respect to the substrate 1, the surface potential of the second channel L2 becomes equal to the potential of the drain region 8. Therefore, when a voltage is applied to the selection gate electrode 5 such that the first channel region Kll flow flows, the source voltage and the drain voltage are applied to the region indicated by the arrow A where the first channel region L1 and the second channel region L2 intersect. A large surface box difference of one place, which is equal to the difference between Some of the electrons flowing out from source region 2 are
This large surface potential difference causes hot electrons to enter the floating gate electrode 4. That is, writing is possible. These hot electrons are accelerated by an electric field having a component perpendicular to the lateral electric field between the source and drain regions, and in order to efficiently inject them into the transmission gate electrode 4, such an injection method is used. C(Perpetvl
icularly Acceltyating Chtx
nnsl) It is called injection. 1. Semiconductor non-volatile memory using this injection method is called 'PAC'.
M OS (Perpendicularly Acc
elerating Channel 1njecti
Metal Dxtal○xide 5tnnico
ndvctor).

PACMO8のメモリの読み出しは、浮遊ゲート電極4
の中の電荷量に依存して、ソース・ドレイン領域間のチ
ャネルコンダクタンスが変化することから行う仁とがで
きる。
To read the memory of PACMO8, floating gate electrode 4
This phenomenon occurs because the channel conductance between the source and drain regions changes depending on the amount of charge in the region.

第1図に示すような従来のPACMO9の場合、電子加
速領域の表面電位差を加速方向に対して急峻にするため
に高濃度のP型の不純物領域8が形成されている。この
P型不純物領域8Vi、第1と第2のチャネル領域の交
わる領域から第1のチャえル領Mの一部にかけて形成さ
れるため、@lチャネルL1の抵抗が大きくなり、梵込
み時に生じる表面電位差が小さくなってしまう。そのた
め、書込み効率は大巾に改善されなかった。
In the case of the conventional PACMO 9 as shown in FIG. 1, a highly concentrated P-type impurity region 8 is formed to make the surface potential difference in the electron acceleration region steep in the acceleration direction. Since this P-type impurity region 8Vi is formed from the region where the first and second channel regions intersect to a part of the first channel region M, the resistance of the @l channel L1 increases, which occurs during drilling. The surface potential difference becomes small. Therefore, writing efficiency was not significantly improved.

本発明は、従来の欠点を克服するためになさhまたもの
であり、書込み効率の大きい高集積化に適した不揮発性
半導体メモリを提供するものである。
The present invention has been made to overcome the conventional drawbacks, and provides a nonvolatile semiconductor memory with high write efficiency and suitable for high integration.

本発明を第2図、第8図を用いて簡明する。第2図は、
本発明の半導体不揮発性メモリの断面Mである。P型の
半導体基板11の表面部分に19型のソース領域I2と
ドレイン領域13が形成され、ソース・ドレイン領域間
のチャネル領域にゲート絶縁膜16 、17を介して選
択ゲート電極15.浮遊ゲート電極14が形成され、さ
らに、浮遊ゲート電極14の上に絶縁膜孔を介して制御
ゲート電極I9を形成されでいる。制御ゲート電極19
は、浮遊ゲート電極14と最も強く容茹結合しでおり、
浮遊ゲート電極14の電位を制御する。また、選択ゲー
ト劃15と浮遊ゲート電極14との間の半導体基板表面
に形成される注入電荷加速領域を急峻にするための高欧
度P型領域は、第2図の如く、選択ゲート電極15と浮
遊ゲート電極14との間の半導体基板表面にのみに形成
されている。即ち、注入電荷加速領域付近にのみ高濃度
P型領域が形成されている。
The present invention will be explained briefly using FIGS. 2 and 8. Figure 2 shows
It is a cross section M of the semiconductor nonvolatile memory of the present invention. A 19-type source region I2 and a drain region 13 are formed on the surface of a P-type semiconductor substrate 11, and a selection gate electrode 15. A floating gate electrode 14 is formed, and a control gate electrode I9 is further formed on the floating gate electrode 14 through an insulating film hole. Control gate electrode 19
is the most strongly coupled with the floating gate electrode 14,
The potential of the floating gate electrode 14 is controlled. In addition, as shown in FIG. It is formed only on the surface of the semiconductor substrate between the floating gate electrode 14 and the floating gate electrode 14 . That is, a high concentration P-type region is formed only in the vicinity of the injected charge acceleration region.

記2図の示したような本発明の不揮発性半導体メモリに
おいては、s;;U度1゛型領域18と選択ゲートを極
15及び浮遊ゲート電極14との京なりが非常圧少ない
ために注入電荷加速領域が非常に急峻に形成される。選
択ゲート電極及び浮遊ゲート電極13の下のチャネル抵
抗はきわめて少ないため、注入電荷加速領域に有効にド
レイン電圧が加わぬ。
In the non-volatile semiconductor memory of the present invention as shown in FIG. A charge acceleration region is formed very steeply. Since the channel resistance under the selection gate electrode and the floating gate electrode 13 is extremely small, no drain voltage is effectively applied to the injected charge acceleration region.

従って、低電圧、低電派でプログラムな不揮発半導体メ
モリが実現できる。
Therefore, a programmable nonvolatile semiconductor memory with low voltage and low current consumption can be realized.

第2図の高濃度P型領域;38は、選択ゲート電極】5
と浮遊ゲー)%極14に対し自己整合的に形成される。
Highly doped P-type region in FIG. 2; 38 is the selection gate electrode]5
and floating gate) are formed in a self-aligned manner with respect to the pole 14.

また、選択ゲート絶縁膜I5と浮遊ゲート電極14は同
一工程により形成でれた11.極で、それらの距離Fi
0.5μm以下である。
Further, the selection gate insulating film I5 and the floating gate electrode 14 were formed in the same process. At the poles, their distance Fi
It is 0.5 μm or less.

第2図に示したような本発明の不揮発性半導体メモリの
高濃度P型領域、選択ゲー)?1極、浮遊ゲート電極は
、第3図(a)〜(ト)の工程により形成できる。P型
基板21にゲートI!!2i*膜n、さらに、選択ゲー
ト電極、浮遊ゲート[極となる多結晶シリコン膜おを形
成する。多結晶シリコン上に絶縁膜ムを形成し、その上
にレジスト25ヲバターニンクする。レジストδのパタ
ー7に従って絶tJ膜飼をエツチングすると第3図(6
)のようになる。次に、アルミシリコン膜26をウェハ
に形成すると第3し1(c)のような断面図になる。絶
H,膝24は、エツチング時にサイドエツチングされて
いるために、第8F (c)のようになる。次に、レジ
スト5をリムーブすると第3図(尚のようになる。即ち
、絶縁に?24のサイドエツチング量に対応する巾の多
結晶シリコン623が表に出る。次に、反応性イオンエ
ツチングによル多結晶シリコン族23をエツチングする
と、第8図(g)のようになる。即ち、第3図(b)の
工程において形成する絶ト、Rj−r冴のサイドエツチ
ング−1′に対応する多結晶シリコン絞の穴を形成でき
て、従って、その多結晶シリコン脛の大の巾は数100
0オングストロ一ム以内に加工できる。最後に、第3図
(イ)の如く、多結晶シリコンH23を介してイオン注
入すれば、選択ゲート電極、浮遊ゲート電極となる多結
晶シリコン脱に対して自己整合的に高濃度P型頭域27
を形成できる。
High concentration P type region of the nonvolatile semiconductor memory of the present invention as shown in FIG. A single pole floating gate electrode can be formed by the steps shown in FIGS. 3(a) to 3(g). Gate I on the P type substrate 21! ! 2i* film n, and a polycrystalline silicon film which will serve as a select gate electrode and a floating gate [pole] are further formed. An insulating film is formed on the polycrystalline silicon, and a resist 25 is applied thereon. When etching the absolute tJ film according to pattern 7 of resist δ, it is shown in Fig. 3 (6
)become that way. Next, when an aluminum silicon film 26 is formed on the wafer, a cross-sectional view as shown in the third section 1(c) is obtained. The knee 24 is side-etched during etching, so it looks like No. 8F (c). Next, when the resist 5 is removed, it becomes as shown in FIG. When the polycrystalline silicon group 23 is etched, it becomes as shown in FIG. 8(g). That is, it corresponds to the side etching 1' of the edge formed in the step of FIG. 3(b). Therefore, the width of the polycrystalline silicon shank is several 100 mm.
Can be processed within 0 angstroms. Finally, as shown in FIG. 3(A), if ions are implanted through the polycrystalline silicon H23, a highly doped P-type head region is formed in a self-aligned manner with respect to the polycrystalline silicon that becomes the selection gate electrode and the floating gate electrode. 27
can be formed.

以上説明したように、本発明の不揮発性半導体メモリに
よれば、注入電荷加速領域を急峻にするためのP型頭域
を注入電荷加速領域にのみ形成することにより、低電圧
、低電流でプログラムが可能になり、従って、高集積な
不揮発性半導体メモリが実現できる。
As explained above, according to the nonvolatile semiconductor memory of the present invention, by forming a P-type head region to make the injection charge acceleration region steep only in the injection charge acceleration region, programming can be performed with low voltage and low current. Therefore, a highly integrated nonvolatile semiconductor memory can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のPA(:MO8型半導体不挿発」 性メモリの断面図でhD、第2図は、本発明のPACM
O8型半導体不揮発性メモリの断面図である。第3図(
α)〜(イ)は、第2区1の本発明の半導体不揮発性メ
モリの製造工程を示す断面図である。 1 、11 、21・・・P型基板 2.12−−φ−・ソース領域 3.13・拳・・・ドレイン領域 4.14・・・・・浮遊ゲート’ifi極5.15・―
中・・選択ゲート?ij @L9.19・・・・・制御
ゲート電極 具 上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上 務 第1図
Figure 1 is a cross-sectional view of a conventional PA (MO8 type semiconductor non-insertion memory), and Figure 2 is a cross-sectional view of a PACM of the present invention.
FIG. 2 is a cross-sectional view of an O8 type semiconductor nonvolatile memory. Figure 3 (
α) to (A) are cross-sectional views showing the manufacturing process of the semiconductor nonvolatile memory of the present invention in Section 2. 1, 11, 21...P-type substrate 2.12--φ--Source region 3.13-Fist...Drain region 4.14...Floating gate 'ifi pole 5.15--
Medium... selection gate? ij @L9.19... Control gate electrode device Upper applicant: Seiko Electronic Industries Co., Ltd. Agent Patent attorney: Mogami Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板表面部分に互いに間隔を置いて
設けられた第1導電型と異なる第2導電型のソース・ド
レイン領域と、前記ソース・ドレイン領域間の半導体基
板表面部分にゲート絶縁膜を介して設けられた選択ゲー
ト一杯と浮遊ゲート電極とから形成されておp、前記選
択ゲート電極と前記浮遊ゲート電極との間の前記半導体
基板表面部分付近に電荷加速領域が形成される半導体不
揮発性メモリにおりて、前記選択ゲート電極と前記浮遊
ゲート電極との間の前記半導体基板表面部分に第2導電
型の不純物領域金膜けたこと7に特徴とする半導体不揮
発性メモリ。
Source/drain regions of a second conductivity type different from the first conductivity type provided at intervals on a surface portion of a semiconductor substrate of a first conductivity type; and a gate insulating film on a surface portion of the semiconductor substrate between the source/drain regions. A semiconductor non-volatile device is formed of a selection gate provided via a floating gate electrode and a floating gate electrode, and a charge acceleration region is formed near a surface portion of the semiconductor substrate between the selection gate electrode and the floating gate electrode. 1. A semiconductor nonvolatile memory characterized in that a second conductivity type impurity region gold film trench is formed on a surface portion of the semiconductor substrate between the selection gate electrode and the floating gate electrode.
JP10282184A 1984-05-22 1984-05-22 Semiconductor nonvolatile memory Pending JPS60246678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10282184A JPS60246678A (en) 1984-05-22 1984-05-22 Semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10282184A JPS60246678A (en) 1984-05-22 1984-05-22 Semiconductor nonvolatile memory

Publications (1)

Publication Number Publication Date
JPS60246678A true JPS60246678A (en) 1985-12-06

Family

ID=14337685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10282184A Pending JPS60246678A (en) 1984-05-22 1984-05-22 Semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JPS60246678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049133A3 (en) * 1996-06-18 1998-05-22 Rockwell Science Ct Inc Integrated circuit device with embedded flash memory and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049133A3 (en) * 1996-06-18 1998-05-22 Rockwell Science Ct Inc Integrated circuit device with embedded flash memory and method for manufacturing same
US6121087A (en) * 1996-06-18 2000-09-19 Conexant Systems, Inc. Integrated circuit device with embedded flash memory and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR100680291B1 (en) Non-volatile memory having H-channel double-gate and method of manufacturing thereof and method of operating for multi-bits cell operation
US4881108A (en) Semiconductor device
US6747310B2 (en) Flash memory cells with separated self-aligned select and erase gates, and process of fabrication
JPH09120998A (en) Flash eeprom cell, its preparation, program method and read method
JPH07221209A (en) Flash eeprom cell that has gap between floating gate and drain for high hot electron injection efficiency for program
JPS638631B2 (en)
JP2006148125A (en) Multi-bit nonvolatile memory device, operating method and manufacturing method of the same
US6646301B2 (en) Floating gate semiconductor device
US5216268A (en) Full-featured EEPROM
JP2964969B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
EP0700097B1 (en) A self-aligned buried channel/junction stacked gate flash memory cell
JP2842169B2 (en) Nonvolatile semiconductor memory device
JPH04209573A (en) Semiconductor device, semiconductor memory and manufacture thereof
US20020011625A1 (en) Scalable tunnel oxide window with no isolation edges
JP2717543B2 (en) Manufacturing method of semiconductor nonvolatile memory
US6657251B1 (en) Semiconductor memory device having memory transistors with gate electrodes of a double-layer stacked structure and method of fabricating the same
JPS60246678A (en) Semiconductor nonvolatile memory
JPS59144175A (en) Manufacture of field effect transistor
JPH06104451A (en) Nonvolatile semiconductor storage device
US20020031649A1 (en) Quantum dot of single electron memory device and method for fabricationg thereof
US6262452B1 (en) Nonvolatile semiconductor memory device and manufacturing method therefor
JP2001024077A (en) Manufacture of flash memory cell
JPH06177146A (en) Manufacture of mosfet
JP3054530B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH10256403A (en) Semiconductor device and manufacture thereof