JPS60246234A - Manufacture of fluoride optical fiber - Google Patents

Manufacture of fluoride optical fiber

Info

Publication number
JPS60246234A
JPS60246234A JP59098126A JP9812684A JPS60246234A JP S60246234 A JPS60246234 A JP S60246234A JP 59098126 A JP59098126 A JP 59098126A JP 9812684 A JP9812684 A JP 9812684A JP S60246234 A JPS60246234 A JP S60246234A
Authority
JP
Japan
Prior art keywords
glass
core
coating resin
molten
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59098126A
Other languages
Japanese (ja)
Other versions
JPS6348817B2 (en
Inventor
Teruhisa Kanamori
金森 照寿
Shiro Takahashi
志郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59098126A priority Critical patent/JPS60246234A/en
Publication of JPS60246234A publication Critical patent/JPS60246234A/en
Publication of JPS6348817B2 publication Critical patent/JPS6348817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/042Fluoride glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/325Fluoride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the titled optical fiber having uniform quality, long length and low transmission loss, easily, preventing the crystallization, by increasing the viscosity of a molten fluorinated glass by a specific treatment, and spinning the molten glass while applying a coating resin material to the circumference. CONSTITUTION:The molten core glass 1 in the pressurized crucible 3 for core and the molten clad glass 2 in the pressurized crucible 4 for clad are heated in the furnace 13 to keep the core and clad glass in molten state. The molten glass 1, 2 are pressurized with the compressed gas sent through the inlet ports 5, 6 of the compressed gas for core and clad, and are sent to the double nozzle 8 through the double pipe 7 for supplying the molten glass for core and clad. At the same time, the flow rate and the temperature of the refrigerant 19 are controlled by the refrigerant pump 17 and the refrigerant heater 18 to increase the viscosity of the glass by cooling the glass to a temperature near the deformation temperature. Separately, the coating resin material 20 heated by the extruder 14 and the coating resin heating furnace 15 is extruded through the coating resin nozzle 9, and the highly viscous core clad glass extruded through the nozzle 8 is coated with the coating resin material 20 and drawn to obtain the titled fiber 11.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はフッ化物光ファイバの製】hツノ法に関し、さ
らに詳しくは、均質で長尺であり、か・−> It!l
; m失のフン化物光ファイバを製造する方法に関16
ノ)のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to the h-horn method for producing fluoride optical fibers, and more specifically, the present invention relates to the production of fluoride optical fibers using the h-horn method. l
16 concerning a method for producing m-loss fluoride optical fiber;
ノ) is.

〔発明の背景〕[Background of the invention]

従来、フン化物光ファイバの製造では、ファイバの線引
きはガラス母料をゾーン加熱して線引くプリフォーム法
とガラス融液をノズル孔を通しく線引くるつぼ法が用い
られζいる。
Conventionally, in the production of fluoride optical fibers, the preform method in which a glass preform is drawn by zone heating and the crucible method in which a glass melt is drawn through a nozzle hole have been used to draw the fiber.

ところで、フッ化物ガラスはガラス化傾向が小さく、ガ
ラス化時の冷却速度が小さいときに目、結晶化するとい
う傾向があり、またガラスを加熱してガラス転位温度以
上の温度に保持する場合にも結晶化が進行するという性
質がある。このため、大型のガラス母料が製造できず、
ブリフオーム法では長尺化が困難であった。
By the way, fluoride glass has a small tendency to vitrify, and tends to crystallize when the cooling rate during vitrification is slow, and also when the glass is heated and maintained at a temperature above the glass transition temperature. It has the property of progressing crystallization. For this reason, it is not possible to produce large glass matrix materials,
It was difficult to increase the length using the BRIFORM method.

一方るつぼ法にあっては、結晶化の進行を抑制するため
ガラスを融点以1.の温度に保持し、ガラスの変形温度
近傍の温度に保持した線引ノズル部にそのガラス融液を
少量ずつ供給して冷却し、高粘性化して線引くという方
法が取られている。
On the other hand, in the crucible method, the glass is heated to a temperature higher than the melting point in order to suppress the progress of crystallization. The method is to supply the glass melt little by little to a drawing nozzle kept at a temperature close to the deformation temperature of the glass, cool it, increase the viscosity, and then draw the glass.

しかし、従来のるつぼ法ではガラスの結晶化は完全に抑
制することはできず、均質な光ファイバを製造すること
ができなかった。そのため、損失値は数千dB/lua
の値にとどまり、それ以上の低損失化は困難であった。
However, with the conventional crucible method, glass crystallization could not be completely suppressed, and a homogeneous optical fiber could not be manufactured. Therefore, the loss value is several thousand dB/lua.
It was difficult to reduce the loss further.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、均質で長
尺であり、かつ低損失のフッ化物光ファイバを簡便に製
造する方法を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method for easily manufacturing a homogeneous, long, and low-loss fluoride optical fiber.

本発明を概説すれば、本発明によるフッ化物光ファイバ
の製造方法は、融点具−トに保持したフッ化物ガラス融
液を該ガラスの変形温度近傍の温度に保持した線引ノズ
ル部に導入して冷却し、高粘性化したのら、線引いてフ
ァイバ化するフッ化物光ファイバの製造方法において、
該高粘性化したガラス融液に被覆樹脂材を被覆しながら
線引きすることを特徴とするものである。
To summarize the present invention, the method for manufacturing a fluoride optical fiber according to the present invention involves introducing a fluoride glass melt held in a melting point tool into a drawing nozzle portion maintained at a temperature close to the deformation temperature of the glass. In the method for manufacturing fluoride optical fiber, the fiber is cooled to make it highly viscous, and then drawn to form a fiber.
The method is characterized in that the highly viscous glass melt is drawn while being coated with a coating resin material.

本発明によるフン化物光ファイバの製造方法によれば、
線引時のガラスのネックダウンを軟化した被覆樹脂中で
形成するためガラス構成成分のltj発が生じることが
なくなり、表面の結晶化が防止され、このため均質でm
Jぐであり、かつ低損失のフッ化物光ファイバを製造で
きるという利点がある。
According to the method for manufacturing a fluoride optical fiber according to the present invention,
Since the neck down of the glass is formed in the softened coating resin during drawing, no ltj eruption of the glass constituents occurs, and surface crystallization is prevented, resulting in a homogeneous and m
This method has the advantage that it is possible to manufacture a fluoride optical fiber that is J-type and has low loss.

〔発明の具体的説明〕[Specific description of the invention]

本発明をさらに詳しく説明する。 The present invention will be explained in more detail.

本発明によるフン化物光ファイバの製造方法によれば、
融点具」二に保持したフッ化物ガラス融液を該ガラスの
変形温度近傍の温度に保持した線引ノズル部に導入して
冷却し、高粘性化したのら、線引いてファイバ化するに
際し、前記高粘性化したガラス融液に被ri樹脂材を被
覆しながら線引きし、ファイバ化するものであるが、こ
のような被ri樹脂材としては、前記ガラス融液と反応
−t!4″、かつ表面よりガラス構成成分が蒸発しない
ような樹脂であれば基本的にいがなるものでもよい。た
とえば47ノ化エチレン−6フソ化プロピレン共街合体
(テフロンFEP ) 、47フ化エチレン−エチレン
共重合体、4フッ化エチレン−パーフロロアルキルビニ
ルエーテル共重合体などの弗素系樹脂を用いることがで
きる。
According to the method for manufacturing a fluoride optical fiber according to the present invention,
The fluoride glass melt held in the melting point tool 2 is introduced into a wire drawing nozzle kept at a temperature close to the deformation temperature of the glass, cooled and made highly viscous, and then drawn to form a fiber. The highly viscous glass melt is coated with a resin material to be subjected to ri to be drawn and made into a fiber. 4", and any resin that does not evaporate the glass constituents from the surface may be used. For example, 47-fluorinated ethylene-6-fluorinated propylene co-merger (Teflon FEP), 47-fluorinated ethylene - Fluorine resins such as ethylene copolymer and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer can be used.

このように線引き時に被覆樹脂材をガラス融液に被覆す
るものであるが、このようにガラス融液に被覆祠を被覆
することにより、ガラスの不ノクダうンを軟化した被覆
樹脂中で形成することになり、ネックダウン表面からの
ガラス構成成分の揮発が生しず、表面の結晶化が防止で
きる。したがって、ネックダウンをガラス雰囲気中で形
成していた従来の方法に比べると光ファイバの均質性は
格段に向上し、低損失の光ファイバが容易に製造できる
In this way, the coating resin material is coated on the glass melt during wire drawing, and by coating the glass melt with the coating material in this way, the glass pores are formed in the softened coating resin. Therefore, volatilization of glass constituents from the neck-down surface does not occur, and crystallization of the surface can be prevented. Therefore, compared to the conventional method in which the neckdown is formed in a glass atmosphere, the homogeneity of the optical fiber is significantly improved, and a low-loss optical fiber can be easily manufactured.

また、ガラス傾向の小さいガラス組成を有するガラス融
液を用いるときには、大きな冷却速度が必要となる。こ
の場合、冷却され高粘度化したガラス融液への樹脂被覆
材の被覆および線引きファイバ化に先立って、ガラス融
液を1気圧以1−に加圧された密閉された空間に露出さ
・υて、温度勾配を急峻にすることにより、良好なフッ
化物光ファイバを製造することが可能になる。前記空間
はl気圧以」二に保持されでいるので融液表面からのガ
ラス構成成分の揮発は防止できる。このためガラス化傾
向の小さいガラス組成においても均質で低損失の光ファ
イバが容易にえられる。ここでの雰囲気ガラスとしては
乾燥不活性ガスあるいは乾燥HFガス、乾燥F2ガスな
どが適当でめる。
Further, when using a glass melt having a glass composition with a small glass tendency, a high cooling rate is required. In this case, before the glass melt, which has been cooled and has become highly viscous, is coated with a resin coating material and drawn into fibers, the glass melt is exposed to a closed space pressurized to 1 atmosphere or more. By making the temperature gradient steeper, it becomes possible to manufacture a good fluoride optical fiber. Since the space is maintained at less than 1 atm, volatilization of the glass constituents from the surface of the melt can be prevented. Therefore, a homogeneous, low-loss optical fiber can be easily obtained even with a glass composition that has a small tendency to vitrify. As the atmosphere glass here, dry inert gas, dry HF gas, dry F2 gas, etc. can be suitably used.

次ぎに本発明のフッ化物光ファイバの製造方法を実施す
るための装置について説明する。
Next, an apparatus for carrying out the method of manufacturing a fluoride optical fiber of the present invention will be described.

第1図は本発明の方法を実施するための装置の概略図で
あり、図中、1はコア用ガラス融液、2はクラy I□
用ガラス融液、3はコア用加圧るつぼ、4はクラッド用
加圧るつぼ、5はコア用加圧ガス供給口、6はクラッド
用加圧ガス供給「−1,7は:17・クラッドガラス融
液供給二重パイプ、8は一重ノズルロ、9は被覆樹脂用
ノズルl”LIOは断熱壁、11はファイバ、12はフ
ァイバ巻き取り用ボビン、13はコア・タラノドガラス
溶融炉、14は被覆樹脂押出機、15は被覆樹脂加熱炉
、16は冷媒冷却機、17は冷媒輸送ポンプ、18は冷
媒加熱機、19は冷媒、20は被覆樹脂材である。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, in which 1 is a core glass melt, 2 is a cry I□
3 is a pressurized crucible for the core, 4 is a pressurized crucible for the cladding, 5 is a pressurized gas supply port for the core, 6 is a pressurized gas supply for the cladding. Melt supply double pipe, 8 is a single nozzle, 9 is a coating resin nozzle LIO is a heat insulating wall, 11 is a fiber, 12 is a fiber winding bobbin, 13 is a core/taranod glass melting furnace, 14 is a coating resin extrusion 15 is a coated resin heating furnace, 16 is a refrigerant cooler, 17 is a refrigerant transport pump, 18 is a refrigerant heater, 19 is a refrigerant, and 20 is a coated resin material.

この第1図より明らかなように、本発明の方法を実施す
るための装置は、コア用ガラス融液lおよびクラット用
ガラス融液2を貯蔵しておくためのコア用加圧るつぼ3
およびクラッド用加圧るつぼ4を有し、このコア用加圧
るつぼ3およびクラッド用加圧るつぼ4はそれぞれコア
用加圧ガス供給口、クラッド用加圧ガス供給口6よりの
加圧ガスにより加圧されるようになっている。
As is clear from FIG. 1, the apparatus for carrying out the method of the present invention includes a pressurized core crucible 3 for storing the core glass melt 1 and the crat glass melt 2.
The pressurized crucible 3 for the core and the pressurized crucible 4 for the cladding are pressurized by pressurized gas from the pressurized gas supply port for the core and the pressurized gas supply port 6 for the cladding, respectively. It's starting to come under pressure.

このようなコア用ガラス融液1およびクラット用ガラス
融液2は、前記加圧ガス供給口5.6よりの加圧ガスに
より、二重管構造を有するコア・タラノドガラス融液供
給二重パイプ7を介して二重ノズル口8に達するように
なっている。この二重ノズル口8の下流部には前記ガラ
ス融液を被覆するための被覆樹脂用ノズル口9が設けら
れ、この被覆樹脂用ノズル口9は断熱壁10で画成され
た空間内に開「1している。この被覆樹脂用ノズル口9
より排出されたファイバ11はファイバ巻き取りボビン
12に巻き取られる。
The core glass melt 1 and the crat glass melt 2 are supplied to the core/talanod glass melt supply double pipe 7 having a double pipe structure by the pressurized gas from the pressurized gas supply port 5.6. It reaches the double nozzle opening 8 through the. A coating resin nozzle port 9 for coating the glass melt is provided downstream of this double nozzle port 8, and this coating resin nozzle port 9 opens into a space defined by a heat insulating wall 10. 1.This coating resin nozzle port 9
The discharged fiber 11 is wound onto a fiber winding bobbin 12.

前記コア用ガラス融液lおよびフラノ(用ガラス融液2
はコア・クラットガラス溶融炉13により溶融状態に保
持されるようになっている。
The glass melt 1 for the core and the glass melt 2 for the flano (
is maintained in a molten state by a core/crat glass melting furnace 13.

被覆樹脂押出機14は前記被覆樹脂用ノズル]19と連
通しており、被覆樹脂加熱炉15で加熱され軟化した被
覆樹脂材20を前記被覆樹脂用ノズル口9方向に押し出
し、二重ノズル[18J、り排出される高粘度化ガラス
融液を前記被覆樹脂用ノズル口9において被覆するよう
になっている。
The coating resin extruder 14 is in communication with the coating resin nozzle] 19, and extrudes the coating resin material 20 heated and softened in the coating resin heating furnace 15 in the direction of the coating resin nozzle opening 9, and extrudes the coating resin material 20 into the coating resin nozzle opening [18J]. The high-viscosity glass melt discharged is coated at the coating resin nozzle port 9.

また、前記二重ノズル口8の周囲には、この[−重ノズ
ルロ8を冷却するための冷却装置部が設けられており、
この冷却装置部は冷媒冷却機16、冷媒輸送ポンプ17
および冷媒加熱v&18よりなり、冷媒19を循環させ
て前記ノズルll−18を冷却可能なようになっている
Further, a cooling device section for cooling the double nozzle opening 8 is provided around the double nozzle opening 8,
This cooling device section includes a refrigerant cooler 16 and a refrigerant transport pump 17.
and a refrigerant heating v&18, and the nozzle ll-18 can be cooled by circulating the refrigerant 19.

このような装置において、フン化物光ファイバを製造す
るには、冷媒輸送ポンプ17および冷媒加熱機18によ
り冷媒19の流量と温度を調節してコア・クラッド用ガ
ラス融液供給二重パイプ7の先端部をガラスの変形温度
近傍に保持するとともに、押出機14と被覆樹脂加熱炉
15により被覆樹脂材20を加熱させ、前記軟化した被
覆樹脂材20を被覆樹脂用ノズル口9より押し出す。
In such an apparatus, in order to manufacture a fluoride optical fiber, the flow rate and temperature of the refrigerant 19 are adjusted by the refrigerant transport pump 17 and the refrigerant heater 18, and the tip of the core/cladding glass melt supply double pipe 7 is heated. While maintaining the portion near the deformation temperature of the glass, the coating resin material 20 is heated by the extruder 14 and the coating resin heating furnace 15, and the softened coating resin material 20 is extruded from the coating resin nozzle port 9.

一方、コア加圧るつぼ3およびクラッド用加圧るつぼ4
中のコア用ガラス融液1およびタラノドガラス融液4は
コア・タラノドガラス融解炉13により加熱されており
、融液状態を保持するようになっている。コア用加圧ガ
ス供給口5とクラッド用加圧ガス供給口6を通して、前
記コア用ガス融液1およびクラット用ガラス融液2の表
面を加圧し、それらをコア・クラッドガラス融液供給二
重パイプ7を介して二重ノズル8より押し出す。
On the other hand, the core pressure crucible 3 and the cladding pressure crucible 4
The core glass melt 1 and the Taranod glass melt 4 inside are heated by the core/Taranodo glass melting furnace 13 so as to maintain their molten state. Through the pressurized gas supply port 5 for the core and the pressurized gas supply port 6 for the cladding, the surfaces of the core gas melt 1 and the cladding glass melt 2 are pressurized, and they are fed into the core/cladding glass melt supply system. It is extruded from a double nozzle 8 through a pipe 7.

このとき、コア・クラットガラス供給二重パイプ7の先
端部において、コア・タラノドガラス融液はガラス変形
温度近傍まで冷却され高粘度化する。
At this time, at the tip of the core/crat glass supply double pipe 7, the core/crat glass melt is cooled to near the glass deformation temperature and becomes highly viscous.

この高粘度化したコア・タラノドガラスを軟化した前記
被覆材20とともに二重ノズル口8と被覆樹脂用ノズル
口9より下流方向に引っ張って軟化した被覆樹脂中で不
、クダウンを形成し、線引いてファイバ化する。
This highly viscous core taranod glass is pulled downstream from the double nozzle port 8 and the coating resin nozzle port 9 together with the softened coating material 20 to form a kudown in the softened coating resin, and a line is drawn. Make it into fiber.

第2図は本発明の方法を実施するための他の装置の概略
図であり、図中、第1図と同一の符合は同様の部材を示
す。また、21はガス密閉容器、22はコック、23は
二重ノズルを示す。
FIG. 2 is a schematic diagram of another apparatus for carrying out the method of the invention, in which the same reference numerals as in FIG. 1 indicate similar parts. Further, 21 is a gas-tight container, 22 is a cock, and 23 is a double nozzle.

この装置においては、二重バイシフと一市ノスル23の
間にガス密閉容器21が設けられており、コア・タラソ
トガス融液はこの密閉容器21で形成される空間に露出
するようになっている。ごの密閉容器21は1気圧以上
に保持されており、この圧力は前記1気圧より、前記コ
ア用加圧ガス供給口5およびクラット用加圧ガス供給「
16に印加する圧力の間に設定する。
In this device, a gas-tight container 21 is provided between the double bisif and the one-ichi nostle 23, and the core thalassoto gas melt is exposed to the space formed by the sealed container 21. The hermetic container 21 is maintained at a pressure of 1 atm or more, and this pressure is higher than the 1 atm.
Set between the pressures applied to 16.

このような構造を採ることにより、温度勾配をより急峻
とすることができるとともに、l気IF F)上に加圧
した密閉容器21内に露出させるので、融液表面からガ
ス構成成分が揮発する心配がないという利点を有する。
By adopting such a structure, the temperature gradient can be made steeper, and since the melt is exposed in the closed container 21 which is pressurized above the lukewarm air, the gas constituents can volatilize from the surface of the melt. It has the advantage of being worry-free.

このためガラス化傾向の小さいガラス組成においても均
質で低損失の光ファイバが容易にえられる。
Therefore, a homogeneous, low-loss optical fiber can be easily obtained even with a glass composition that has a small tendency to vitrify.

次に実施例に付いて説明する。Next, examples will be explained.

実施例1 第1図に示した本発明の方法を実施するための装置を用
いて、コア用ガラスが60ZrF a −32BaF党
−5Gd F 33 AIF 3(モル%)ガラス、ク
ラッド用ガラスが60ZrF 430BaF 2 4G
d F 3 −6AIF3(モル%)、被覆樹脂材がテ
フロンFEPよりなるフン化物光ファイバ(コア径50
μm、外径300.c+m 、 ’41!a樹脂厚50
μm、長さ5に+++、損失20dB /km (波長
 2.4μ蒙〕)を下記の条件により製造した。
Example 1 Using the apparatus for carrying out the method of the present invention shown in FIG. 2 4G
dF3-6AIF3 (mol%), fluoride optical fiber whose coating resin material is Teflon FEP (core diameter 50
μm, outer diameter 300. c+m, '41! aResin thickness 50
It was manufactured under the following conditions with a length of 5 μm, a length of 5 +++, and a loss of 20 dB/km (wavelength: 2.4 μm).

コア・タラノドガラス融液炉温度 900°Cコアガラ
ス融液加圧ガス圧 1 、02a tmクラッドガラス
融液加圧ガス圧 1.02atm111) 二重ノズル口rz 1.2〜3鳳Iφ 被覆樹脂用ノズルロ径 5 amφ 被覆樹脂加熱炉温度 360°C 被覆樹脂押出速度 ice/min 冷媒温度 320℃ 冷媒流1 1.512/ll1in 線引速度 20m /win 実施例2 第2図に示した本発明の方法を実施するための装置を用
い、コア用ガラスが50ZrF 4−20BaF 2−
4GdF3−3AIF3 (モル%)ガラス、クラッド
用ガラスが50ZrF 4−20BaF e −4Gd
 P 3 6AIF 3−201.iF (モル%)、
被覆樹脂材がテフI:1ンFEPよりなるフッ化物光フ
ァイバ(二17径5011m、外f! 300μm 、
被V32樹脂厚50 /71+1 、Ji;さ5km、
損失30dB /km (波長 2.4μ蒙〕)をF記
の条件により製造した。
Core glass melt furnace temperature 900°C Core glass melt pressurized gas pressure 1, 02a tm Clad glass melt pressurized gas pressure 1.02 atm111) Dual nozzle opening rz 1.2 to 3 Nozzle nozzle for coating resin Diameter 5 amφ Coated resin heating furnace temperature 360°C Coated resin extrusion speed ice/min Refrigerant temperature 320°C Refrigerant flow 1 1.512/ll1in Drawing speed 20 m/win Example 2 The method of the present invention shown in FIG. Using the equipment for the implementation, the glass for the core was 50ZrF 4-20BaF 2-
4GdF3-3AIF3 (mol%) glass, cladding glass is 50ZrF 4-20BaFe -4Gd
P 3 6AIF 3-201. iF (mol%),
Fluoride optical fiber whose coating resin material is Teflon FEP (217 diameter 5011 m, outer f! 300 μm,
Covered V32 resin thickness 50/71+1, Ji; length 5km,
A loss of 30 dB/km (wavelength: 2.4 μm) was produced under the conditions described in F.

コア・タラノドガラス融液炉温度 900 ’cココア
ラス融液加圧ガス圧 1 、04a tmクラッドガラ
ス融液加圧ガス圧 1.04atm二重ノズルロ径 1
.2〜3m11φ ガス密閉容器圧力 ]、02atm 被覆樹脂用ノズルロ径 5 msφ 被覆樹脂加熱炉温度 300℃ 被覆樹脂押出速度 lee/min 冷媒温度 260℃ 冷媒流量 1.54!/min 線引速度 20m /min 〔発明の効果〕 以上説明したように本発明によるフン化物光ファイバの
製造方法によれば、長尺で低損失のフン化物光ファイバ
が容易に製造できる。しらがって1〜3μmの波長の赤
外光を用いる光通信が可能になるという利点がある。
Core Taranod glass melt furnace temperature 900'c Coco glass melt pressurized gas pressure 1, 04a tm Clad glass melt pressurized gas pressure 1.04 atm Double nozzle diameter 1
.. 2~3m11φ Gas sealed container pressure ], 02 atm Coating resin nozzle diameter 5 msφ Coating resin heating furnace temperature 300℃ Coating resin extrusion speed lee/min Refrigerant temperature 260℃ Refrigerant flow rate 1.54! /min Drawing speed: 20 m/min [Effects of the Invention] As explained above, according to the method for manufacturing a fluoride optical fiber according to the present invention, a long, low-loss fluoride optical fiber can be easily manufactured. This has the advantage that optical communication using infrared light with a wavelength of 1 to 3 μm becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるフン化物光ファイバの製(13) (12) 漬方法を実施するための装置の概略図、第2図(J本発
明によるフン化物光ファイバの製造方法を実施するため
の他の装置の概略図である。 1 ・・・コア用が融液、2 ・・・クラット用ガス融
液、3 ・・・コア用加圧るつぼ、4 ・・・クラッド
用加圧るつぼ、5 ・・・コア用加圧ガス供給口、6 
・・・クラッド用加圧ガス供給[1,7・・・コア・タ
ラノドガス融液供給二重パイプ、8 ・・・二重ノズル
口、9 ・・・被覆樹脂用ノズル口、10・・・断熱壁
、11・・・ファイバ、12・・・ファイバ巻き取りボ
ビン、13・・・コア・クラッドガス溶融炉、14・・
・被覆樹脂押出機、15・・・被覆樹脂加熱炉、16・
・・冷媒冷却機、17・・・冷媒輸送ポンプ、18・・
・冷媒加熱機、19・・・冷媒、20・・・被覆樹脂材
、21・・・密閉容器。 出願人代理人 雨 宮 正 季 (14)
Fig. 1 is a schematic diagram of an apparatus for carrying out the dipping method for manufacturing a fluoride optical fiber according to the present invention (13) (12); 1 is a schematic diagram of another apparatus. 1... Melt for core, 2... Gas melt for cladding, 3... Pressurized crucible for core, 4... Pressurized crucible for cladding, 5 ... Pressurized gas supply port for core, 6
... Pressurized gas supply for cladding [1, 7 ... Core / taranod gas melt supply double pipe, 8 ... Double nozzle port, 9 ... Nozzle port for coating resin, 10 ... Heat insulation Wall, 11... Fiber, 12... Fiber winding bobbin, 13... Core/cladding gas melting furnace, 14...
・Coated resin extruder, 15...Coated resin heating furnace, 16.
... Refrigerant cooler, 17... Refrigerant transport pump, 18...
- Refrigerant heating machine, 19... Refrigerant, 20... Covering resin material, 21... Airtight container. Applicant's agent Masaki Amemiya (14)

Claims (1)

【特許請求の範囲】 (1,1融点以上に保持したフン化物ガラス融液を該ガ
ラスの変形温度近傍の温度に保持したノズル部に導入し
て冷却し、高粘性化したのち、線引いてファイバ化する
フン化物光ファイバの製造方法において、該冷却し高粘
性化したガラス融液に被覆樹脂材を被覆しながら線引き
することを特徴とするフッ化物光ファイバの製造方法。 (2)前記冷却は、前記ガラス融液を1気圧以上の圧に
保持した密閉空間に露出させた後、前記ノズル部に導く
ことにより行われることを特徴とする特許請求の範囲第
1項記載のフッ化物光ファイバの製造方法。
[Claims] (A fluoride glass melt maintained at a melting point of 1.1 or higher is introduced into a nozzle section maintained at a temperature near the deformation temperature of the glass, cooled, and made highly viscous, and then drawn into a line. A method for manufacturing a fluoride optical fiber to be made into a fiber, which comprises drawing the glass melt that has been cooled and made highly viscous while covering it with a coating resin material. (2) The cooling. The fluoride optical fiber according to claim 1, wherein the glass melt is exposed to a closed space maintained at a pressure of 1 atmosphere or more and then guided to the nozzle portion. manufacturing method.
JP59098126A 1984-05-16 1984-05-16 Manufacture of fluoride optical fiber Granted JPS60246234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098126A JPS60246234A (en) 1984-05-16 1984-05-16 Manufacture of fluoride optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098126A JPS60246234A (en) 1984-05-16 1984-05-16 Manufacture of fluoride optical fiber

Publications (2)

Publication Number Publication Date
JPS60246234A true JPS60246234A (en) 1985-12-05
JPS6348817B2 JPS6348817B2 (en) 1988-09-30

Family

ID=14211580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098126A Granted JPS60246234A (en) 1984-05-16 1984-05-16 Manufacture of fluoride optical fiber

Country Status (1)

Country Link
JP (1) JPS60246234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191036A (en) * 1984-10-09 1986-05-09 Tanaka Kikinzoku Kogyo Kk Method and apparatus for producing composite glass fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191036A (en) * 1984-10-09 1986-05-09 Tanaka Kikinzoku Kogyo Kk Method and apparatus for producing composite glass fiber
JPH0454627B2 (en) * 1984-10-09 1992-08-31 Tanaka Precious Metal Ind

Also Published As

Publication number Publication date
JPS6348817B2 (en) 1988-09-30

Similar Documents

Publication Publication Date Title
US4230472A (en) Method of forming a substantially continuous optical waveguide
US4897100A (en) Apparatus and process for fiberizing fluoride glasses using a double crucible and the compositions produced thereby
CN103193398A (en) Preparation method of high-temperature-resistant optical fiber by carrying out high-speed drawing forming once
US4510884A (en) Device for providing a dual coating on an optical fiber
US5560759A (en) Core insertion method for making optical fiber preforms and optical fibers fabricated therefrom
US4908053A (en) Process for producing chalcogenide glass fiber
CA1171659A (en) Method for preparing optical fibers
JPS60246234A (en) Manufacture of fluoride optical fiber
JPH064491B2 (en) Method for producing high-purity glass article
US5055120A (en) Fluoride glass fibers with reduced defects
US4898603A (en) Method for manufacturing halide glass optical fiber
JPH08239234A (en) Method and apparatus for producing optical fiber preform andoptical fiber
CA1316027C (en) Method for fabricating devices including multicomponent metal halide glasses and the resulting devices
JPS60195029A (en) Preparation of optical fiber for transmitting infrared ray
JPS63206323A (en) Production of preform for optical fiber of fluoride glass
JPS6374939A (en) Production of fluoride fiber with coated layer and device therefor
JPS6321232A (en) Production of perform for optical fiber
JPS596265B2 (en) Optical fiber manufacturing method
JPS6350346A (en) Method and device for coating optical fiber
US6295844B1 (en) Apparatus and method for drawing glass fibers
JPS63236729A (en) Production of chalcogenide glass fiber having core clad structure
Andrews et al. Fabrication of single mode ZBLAN optical fibres
JPS63190741A (en) Production of fluoride optical fiber base material
JPH03215332A (en) Production of metal-coated fluoride glass optical fiber
JPH07234322A (en) Method for drawing plastic optical fiber