JPS63236729A - Production of chalcogenide glass fiber having core clad structure - Google Patents

Production of chalcogenide glass fiber having core clad structure

Info

Publication number
JPS63236729A
JPS63236729A JP6810587A JP6810587A JPS63236729A JP S63236729 A JPS63236729 A JP S63236729A JP 6810587 A JP6810587 A JP 6810587A JP 6810587 A JP6810587 A JP 6810587A JP S63236729 A JPS63236729 A JP S63236729A
Authority
JP
Japan
Prior art keywords
glass
crucible
rod
tube
chalcogenide glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6810587A
Other languages
Japanese (ja)
Other versions
JPH0527577B2 (en
Inventor
Junji Nishii
準治 西井
Ikuo Inagawa
郁夫 稲川
Shozo Morimoto
詔三 森本
Takashi Yamagishi
山岸 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Original Assignee
HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISANKABUTSU GLASS KENKYU KAIHATSU KK filed Critical HISANKABUTSU GLASS KENKYU KAIHATSU KK
Priority to JP6810587A priority Critical patent/JPS63236729A/en
Publication of JPS63236729A publication Critical patent/JPS63236729A/en
Publication of JPH0527577B2 publication Critical patent/JPH0527577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/022Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from molten glass in which the resultant product consists of different sorts of glass or is characterised by shape, e.g. hollow fibres, undulated fibres, fibres presenting a rough surface
    • C03B37/023Fibres composed of different sorts of glass, e.g. glass optical fibres, made by the double crucible technique
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/86Chalcogenide glasses, i.e. S, Se or Te glasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent occurrence of oxidation and devitrification of glass in spinning and promote formation of a fiber having a core clad structure and excellent infrared transmitting properties, by adopting a specific constitution in a spinning method in producing a chalcogenide glass fiber by a double crucible method. CONSTITUTION:A chalcogenide glass rod 3 is inserted into the inner crucible 1 of a cylindrical double crucible having a spinning nozzle at the bottom thereof and a chalcogenide glass tube 4 having a higher refractive index than that of the chalcogenide glass rod 3 is inserted into the outer crucible 2. The interior and exterior of the crucibles 1 and 2 are kept in an inert gas atmosphere (a gas is fed from inert gas inlets 7, 8 and 9) to heat only the tube 4 and rod 3 near the spinning nozzle at a higher temperature than glass transition temperature (with a heater 11) to simultaneously take out the glass tube 4 and glass rod 3 from the spinning nozzle of the crucible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は赤外透過性に優れたコア−クラッド構造を有す
るカルコゲナイドガラスファイバーの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a chalcogenide glass fiber having a core-clad structure with excellent infrared transparency.

[従来の技術] カルコゲナイドガラスは赤外透過性及び耐候性に優れた
赤外ファイバー用材料であって、既に数多くのガラス組
成が報告されている(例えばZ、 U。
[Prior Art] Chalcogenide glass is a material for infrared fibers with excellent infrared transparency and weather resistance, and many glass compositions have already been reported (for example, Z, U, etc.).

Borisova、Glassy  Sem1cond
uctor  Plenumpress。
Borisova, Glassy Sem1cond
uctor Plenumpress.

New York、1981 )。これらのカルコゲナ
イドガラス組成の中で、波長10μ−付近、すなわち炭
酸ガスレーザー光線の波長領域の光を低損失で透過し得
るものは、Teの含有量が50モル%以上であるGe−
3e−Te系であって、そのファイバー化が検討されて
いる(例えば、勝山俊夫、松村宏善、電子通信学会全国
大会(昭和60年3月)予稿集p4−256)。
New York, 1981). Among these chalcogenide glass compositions, those that can transmit light in the wavelength range of around 10μ, that is, in the wavelength range of carbon dioxide laser beams, with low loss are Ge-glasses with a Te content of 50 mol% or more.
3e-Te system, and its fiberization is being considered (for example, Toshio Katsuyama, Hiroyoshi Matsumura, Proceedings of the Institute of Electronics and Communication Engineers National Conference (March 1985) p4-256).

しかし、Te含有量の高いガラスファイバーは機械的強
度が低いため、樹脂コーティング等による補強をしなけ
れば実用性に乏しい。ところが、波長10μm付近は各
種樹脂材料の指紋領域であるため、その波長領域の赤外
線を吸収する。従って、このような樹脂材料をカルコゲ
ナイドガラスファイバーの外周に直接コーティングする
ことはできない。
However, glass fibers with a high Te content have low mechanical strength, so they are of little practical use unless they are reinforced with a resin coating or the like. However, since the wavelength around 10 μm is the fingerprint region of various resin materials, infrared rays in that wavelength region are absorbed. Therefore, it is not possible to directly coat the outer periphery of chalcogenide glass fibers with such a resin material.

この問題点はカルコゲナイドガラスファイバーをコア−
クラッドの二重構造にした後、その外周を樹脂でコーテ
ィングすることによって解決される。コア−クラッド構
造を有するガラスファイバーの製造法としては、二重ル
ツボ法が知られている(金森照寿等、電気通信研究所、
研究実用化報告、32(1983)、2737 )。こ
の方法はコアとなるガラスを内側のルツボに、クラッド
となるガラスを外側のルツボにそれぞれ挿入して溶融し
、二重ルツボの底部に設けた紡糸ノズルから両ガラスを
同時に押し出してファイバーとするものである。しかし
、上記したようにTe含有量が50モル%と高いカルコ
ゲナイドガラス系は、結晶化に対する熱的安定性が低い
ために、またAs及びse等の蒸気圧が高い成分を含む
カルコゲナイドガラス系は、高温状態でのガラス成分の
蒸発によって組成変動が起るために、上に述べた二重ル
ツボ法では2アークラツド構造のカルコゲナイドガラス
ファイバーを定常的に製造することが困難である。
This problem is solved by using chalcogenide glass fiber as the core.
This problem can be solved by creating a double clad structure and then coating the outer periphery with resin. The double crucible method is known as a method for producing glass fibers with a core-clad structure (Teruhisa Kanamori et al., Telecommunications Research Institute,
Research Practical Report, 32 (1983), 2737). This method involves inserting the core glass into an inner crucible and the cladding glass into an outer crucible, melting them, and simultaneously extruding both glasses from a spinning nozzle installed at the bottom of the double crucible to form fibers. It is. However, as mentioned above, chalcogenide glass systems with a high Te content of 50 mol% have low thermal stability against crystallization, and chalcogenide glass systems that contain components with high vapor pressure such as As and se, Since compositional fluctuations occur due to evaporation of glass components at high temperatures, it is difficult to regularly produce chalcogenide glass fibers with a two-arc clad structure using the double crucible method described above.

このほか、コア−クラッド構造を有するガラスファイバ
ーの製造方法として、クラッドとなるチューブ状のガラ
スの中にコアとなるOラド状のガラスを挿入し、その先
端部を溶融紡糸するロッドインチューブ法が、石英ガラ
スファイバーの製造に従来から利用されている。しかし
、カルコゲナイドガラスは、僅かな温度変化でも粘度が
著しく変動するうえ、その紡糸は非酸化性雰囲気で行な
わなければならないため、ロッドインチューブ法をその
ままカルコゲナイドガラスファイバーの製造に利用する
ことはできない。
In addition, as a manufacturing method for glass fiber with a core-clad structure, there is a rod-in-tube method in which a core O-rad-shaped glass is inserted into a tube-shaped glass cladding, and its tip is melt-spun. , traditionally used in the production of quartz glass fibers. However, the viscosity of chalcogenide glass fluctuates significantly even with slight temperature changes, and its spinning must be carried out in a non-oxidizing atmosphere, so the rod-in-tube method cannot be used as is for producing chalcogenide glass fibers.

[発明が解決しようとする問題点] 上記したように、従来のロッドインチューブ法や二重ル
ツボ法をそのままカルコゲナイドガラスに適用しても、
紡糸中にガラスの酸化や失透を伴うために、所望の赤外
透過性ガラスファイバーを得ることができない。本発明
はカルコゲナイドガラスを紡糸する際に懸念される酸化
や失透の問題を払拭して、カルコゲナイドガラスから赤
外透過性に優れたコア−クラッド構造のファイバーを製
造可能ならしめる新しいガラスファイバー製造法を提供
する。
[Problems to be solved by the invention] As mentioned above, even if the conventional rod-in-tube method or double crucible method is directly applied to chalcogenide glass,
Since glass oxidation and devitrification occur during spinning, the desired infrared transparent glass fiber cannot be obtained. The present invention is a new glass fiber manufacturing method that eliminates the problems of oxidation and devitrification that are a concern when spinning chalcogenide glass, and makes it possible to manufacture fibers with a core-clad structure with excellent infrared transparency from chalcogenide glass. I will provide a.

[問題点を解決するための手段] 本発明に係るガラスファイバー製造法は、下部に紡糸ノ
ズルを有する円筒形二重ルツボの内側ルツボにカルコゲ
ナイドガラスロッドを、外側ルツボに該ガラスロッドよ
りも屈折率が低いカルコゲナイドガラスチューブをそれ
ぞれ挿入し、ルツボ内部及びルツボ外部を不活性ガス雰
囲気に保持し、紡糸ノズル近傍のチューブ及びロッドの
みをガラス転移温度よりも高い温度に加熱しながらガラ
スチューブとガラスロッドを同時にルツボの紡糸ノズル
から引き出してコア−クラッド構造を有するカルコゲナ
イドガラスファイバーを得ることからなる。
[Means for Solving the Problems] The glass fiber manufacturing method according to the present invention includes a cylindrical double crucible having a spinning nozzle at the bottom, a chalcogenide glass rod in the inner crucible, and a chalcogenide glass rod in the outer crucible having a refractive index higher than that of the glass rod. Insert a chalcogenide glass tube with a low temperature, maintain the inside and outside of the crucible in an inert gas atmosphere, and heat only the tube and rod near the spinning nozzle to a temperature higher than the glass transition temperature. At the same time, a chalcogenide glass fiber having a core-clad structure is obtained by drawing it out from the spinning nozzle of the crucible.

[作  用] 本発明の方法に於いて、紡糸ノズル近傍に位置するガラ
スチューブ及びガラスロッドを加熱するに際しては、予
め二重ルツボ内部及びルツボ外周のノズル近辺を不活性
ガスにて充分置換しておくことが望ましい。この置換が
不充分であると、ガラスチューブ及びガラスロッドが加
熱時に水蒸気や酸素で9蝕されることがあるからである
。加熱は二重ルツボ内部及びルツボの紡糸ノズル近傍を
不活性ガス雰囲気に保持し、紡糸ノズル近傍に位置する
ガラスチューブ及びガラスロッドに対して局部的に行な
われ、これらがガラス転移温度以上に加熱されて流動化
した後は、ルツボ内のガス圧及び/又はガラスチューブ
及びガラスロッドに加えられる荷重によって直ちに紡糸
される。従って、紡糸工程中にガラスが酸素で侵される
ことがなく、また、ファイバーが切断されることもない
。そしてまた、長時間ガラス転移温度以上の温度にさら
されることがないので、ガラスに失透が生ずる心配もな
い。
[Function] In the method of the present invention, when heating the glass tube and glass rod located near the spinning nozzle, the inside of the double crucible and the vicinity of the nozzle on the outer periphery of the crucible are sufficiently replaced with inert gas in advance. It is desirable to leave it there. If this replacement is insufficient, the glass tube and glass rod may be corroded by water vapor and oxygen during heating. Heating is performed by keeping the interior of the double crucible and the vicinity of the spinning nozzle of the crucible in an inert gas atmosphere, and locally heating the glass tube and glass rod located near the spinning nozzle, so that these are heated to a temperature higher than the glass transition temperature. After being fluidized, the material is immediately spun by the gas pressure in the crucible and/or the load applied to the glass tube and glass rod. Therefore, the glass is not attacked by oxygen during the spinning process, and the fibers are not cut. Furthermore, since the glass is not exposed to temperatures above the glass transition temperature for a long period of time, there is no fear that the glass will devitrify.

加熱温度はガラスチューブ及びガラスロッドを103〜
108ポイズの範囲の粘度に保持できる温度域であるこ
とが好ましい。ガラスの粘度が103ボイスより低くな
ると、両ガラスの失透傾向が増大したり、得られるファ
イバーの真円度が低下することがある。また、ガラスの
粘度が108ポイズより高い場合は、ガラスが粘性流動
しにくくなるため、紡糸に要するルツボ内圧及び/又は
荷重を増大しなければならず、このためにファイバー径
の制御が困難になるうえ、紡糸に際しての線引き速度が
遅くなり、生産性が低下する。
The heating temperature is 103~ for glass tubes and glass rods.
It is preferable that the temperature range is such that the viscosity can be maintained within the range of 108 poise. When the viscosity of the glass is lower than 103 voices, the tendency of both glasses to devitrify increases, and the circularity of the resulting fiber may decrease. Furthermore, if the viscosity of the glass is higher than 108 poise, the glass becomes difficult to viscous flow, so the crucible internal pressure and/or load required for spinning must be increased, which makes it difficult to control the fiber diameter. Moreover, the drawing speed during spinning becomes slow, resulting in a decrease in productivity.

紡糸ノズルの近傍に位置するガラスチューブとガラスロ
ッドは上記の温度域に加熱され、紡糸ノズルから同時に
紡糸される。この場合、ガラスチューブ及びガラスロッ
ドに格別荷重をかけなくても、それぞれの自重のみで紡
糸することができるが、加熱温度に於けるガラスチュー
ブ及びガラス0ツドの粘度が異なる場合は、その粘度差
に応じて内側ルツボの内圧と外側ルツボの内圧をそれぞ
れ不活性ガスにて加圧することにより、また粘度差がな
い場合は、内側ルツボの内圧と外側ルツボの内圧を同じ
圧力に不活性ガスで加圧することにより、紡糸温度を下
げ、紡糸に際してのガラスの失透を抑制することができ
る。しかし、その場合でも不活性ガス圧力は5k(J/
i以下、好ましくは0.1〜3kMcdの範囲とすべき
であって、5 ka/dを越える過剰加圧はファイバー
径の制御を困難にし、ファイバーの真円度を低下させる
The glass tube and glass rod located near the spinning nozzle are heated to the above temperature range, and are simultaneously spun from the spinning nozzle. In this case, the glass tube and the glass rod can be spun using their own weight alone without applying any special load, but if the viscosity of the glass tube and the glass rod at the heating temperature is different, the viscosity difference By pressurizing the internal pressure of the inner crucible and the internal pressure of the outer crucible with inert gas, depending on the By applying pressure, the spinning temperature can be lowered and devitrification of the glass can be suppressed during spinning. However, even in that case, the inert gas pressure is 5k (J/
i, preferably in the range of 0.1 to 3 kMcd; excessive pressure exceeding 5 ka/d makes it difficult to control the fiber diameter and reduces the circularity of the fiber.

また、加熱温度に於けるガラスチューブ及びガラスロッ
ドの粘度が著しく異なる場合及び得られるファイバーの
コア径とクラツド径の比率を厳密に制御したい場合には
、ガラスチューブ及びガラスロッドの上端にそれぞれ独
立の荷重を加えることが有効である。しかし、余り荷重
をかけ過ぎるとガラスチューブやガラスロッドが破壊さ
れる虞れがあり、ファイバー径の制御も困難になるので
、荷重の上限は10k(+/li程度とすることが適当
である。
In addition, if the viscosity of the glass tube and glass rod at the heating temperature is significantly different, or if you want to strictly control the ratio of the core diameter to the cladding diameter of the resulting fiber, it is possible to separate It is effective to apply a load. However, if too much load is applied, there is a risk that the glass tube or glass rod may be destroyed, and control of the fiber diameter becomes difficult, so it is appropriate that the upper limit of the load be about 10 k(+/li).

[実施例1 次に本発明の方法を実施例に基づいてさらに詳細に説明
する。
[Example 1] Next, the method of the present invention will be explained in more detail based on an example.

実施例1 第1図に示した構成の装置を使用して、本発明の方法に
従いコア−クラッド構造を有するカルコゲナイドガラス
ファイバーを製造した。
Example 1 A chalcogenide glass fiber having a core-clad structure was manufactured according to the method of the present invention using an apparatus having the configuration shown in FIG.

まず、フランジ18の部分で装置の上部を下部から取り
はずし、Ge:25モル%、 Se:13モル%、 T
e:60モル%、 Tl:2モル%の組成で、直径9.
5#、長さ 120I1m++のコア用ガラスロッド3
と、Ge:24モル%、 Se:16モル%、 Te:
60モル%の組成で、内径13I1m1外径17.5I
1m、長さ 120amのクラッド用ガラスチューブ4
を、第1図に示すように、底部に紡糸ノズルを備えた二
重ルツボの内側ルツボ1及び外側ルツボ2の中にそれぞ
れ垂直に収容した。
First, the upper part of the device was removed from the lower part at the flange 18, and Ge: 25 mol%, Se: 13 mol%, T
Composition: e: 60 mol%, Tl: 2 mol%, diameter: 9.
5#, length 120I1m++ core glass rod 3
, Ge: 24 mol%, Se: 16 mol%, Te:
Composition of 60 mol%, inner diameter 13I1m1 outer diameter 17.5I
1m, length 120am glass tube for cladding 4
were vertically housed in an inner crucible 1 and an outer crucible 2 of a double crucible equipped with a spinning nozzle at the bottom, as shown in FIG.

ガラスロッド3には5kg/cdの荷1m−Aを、ガラ
スチューブ4には20kg/ ciの荷重−Bを加えた
後、耐圧ゴムチューブ16及びゴムパツキン11を介し
てフランジ18を閉じ、二重ルツボの内部及びその外周
をアルゴンガスで充分置換した。
After applying a load of 1 m-A of 5 kg/cd to the glass rod 3 and a load of 20 kg/ci to the glass tube 4, the flange 18 was closed via the pressure-resistant rubber tube 16 and the rubber packing 11, and the double crucible was closed. The inside and the outer periphery of the tank were sufficiently replaced with argon gas.

その後、二重ルツボ内への不活性ガス人ロア及び8を閉
じ、二重ルツボの紡糸ノズル近傍のみを局部的に加熱で
きるヒーター11を徐々に285℃まで昇温する。この
昇温によってルツボ内のガラスチューブとガラスロッド
の先端は流動化するので、不活性ガスにて内側ルツボ1
内を0.5kMcdに、また外側ルツボ2内を0.8に
!II/ cIiに加圧し、流動化したガラスチューブ
とガラスロッドをルツボ底部の紡糸ノズルから同時に引
き出した。こうして得られたファイバーを直ちにコータ
ー12に導いて紫外線硬化型樹脂13をファイバーにコ
ーティングした後、紫外線ランプ14にて樹脂を硬化さ
せることにより、コア径420μ―、クラツド径550
μm。
Thereafter, the inert gas lower door 8 into the double crucible is closed, and the temperature of the heater 11, which can locally heat only the vicinity of the spinning nozzle of the double crucible, is gradually raised to 285°C. This temperature rise fluidizes the tips of the glass tube and glass rod inside the crucible, so the inside crucible 1 is heated with inert gas.
Inside crucible 2 to 0.5kMcd and outside crucible 2 to 0.8! Pressure was applied to II/cIi, and the fluidized glass tube and glass rod were simultaneously pulled out from the spinning nozzle at the bottom of the crucible. The fiber thus obtained is immediately introduced into the coater 12 to coat the fiber with an ultraviolet curing resin 13, and then the resin is cured with an ultraviolet lamp 14 to form a core with a diameter of 420μ and a cladding with a diameter of 550μ.
μm.

樹脂コーティング厚30μm、長さ20mのカルコゲナ
イドガラスファイバーを得た。このファイバーの透過損
失値の波長依存性を第2図に示す。また、ファイバーの
ガラス組成、紡糸条件及び最低透過損失値をまとめて第
1表に示す。
A chalcogenide glass fiber with a resin coating thickness of 30 μm and a length of 20 m was obtained. FIG. 2 shows the wavelength dependence of the transmission loss value of this fiber. Further, the glass composition of the fiber, spinning conditions, and minimum transmission loss value are summarized in Table 1.

実施例2〜4 ガラス組成及び紡糸条件を第1表に示すごとく変更した
以外は実施例1と同様な方法でコア−クラッド型カルコ
ゲナイドガラスファイバーをm賀した。各ファイバー径
、紡糸条件、最低透過損値及びその波長を第1表に示す
Examples 2 to 4 Core-clad chalcogenide glass fibers were prepared in the same manner as in Example 1, except that the glass composition and spinning conditions were changed as shown in Table 1. Table 1 shows each fiber diameter, spinning conditions, minimum transmission loss value, and its wavelength.

比較例1.2 実施例1及び4でコアに用いたガラスロッドのみを第1
図に示す装置の内側ルツボ1に入れ、ガラスチューブを
使用しなかった以外は実施例1と同様な方法で樹脂クラ
ッドファイバーを製造した。
Comparative Example 1.2 Only the glass rod used for the core in Examples 1 and 4 was used as the first
A resin clad fiber was produced in the same manner as in Example 1 except that the fiber was placed in the inner crucible 1 of the apparatus shown in the figure and the glass tube was not used.

この場合の紡糸条件及びファイバー径も第1表に示す。The spinning conditions and fiber diameter in this case are also shown in Table 1.

また、比較例1で得られた樹脂クラッドファイバーの透
過損失値の波長依存性を第2図に示す。第2図から明ら
かな通り、樹脂クラッドファイバーは、波長5〜11μ
Iの領域で樹脂による吸収が生じているため、透過損失
値は5 dB/a+程度増加した。
Further, the wavelength dependence of the transmission loss value of the resin clad fiber obtained in Comparative Example 1 is shown in FIG. As is clear from Figure 2, the resin clad fiber has a wavelength of 5 to 11μ.
Since absorption by the resin occurred in the region I, the transmission loss value increased by about 5 dB/a+.

[効  果] 本発明の方法によれば、結晶化に対して安定でないため
に、従来のロッドインチューブ法や二重ルツボ法では製
造が不可能であったコア−クラッド型カルコゲナイドガ
ラスファイバーを、ガラスの酸化や失透を伴わずに製造
することができる。
[Effects] According to the method of the present invention, core-clad chalcogenide glass fibers, which could not be produced by conventional rod-in-tube methods or double crucible methods, because they are not stable against crystallization, can be produced by It can be manufactured without oxidation or devitrification of glass.

そして、コア−クラッド型カルコゲナイドガラスファイ
バーは、これに樹脂をコーティングしても赤外透過性が
損われることがないので、本発明の方法はカルコゲナイ
ドガラスファイバーの実用性を高めるうえで極めて有益
である。
Furthermore, since the core-clad type chalcogenide glass fiber does not lose its infrared transmittance even if it is coated with resin, the method of the present invention is extremely useful in increasing the practicality of chalcogenide glass fiber. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用したファイバー製造装置
の概略断面図である。第2図は実施例1及び比較例1で
得たガラスファイバーの透過損失値の波長依存性を示す
グラフである。 1:内側ルツボ     2:外側ルツボ3:コア用ガ
ラスロッド 4:クラッド用ガラスチューブ 5:荷重−A       6:荷弔−B7:内側ルツ
ボ加圧用不活性ガス入口 8:外側ルツボ加圧用不活性ガス入口 9ニルツボ外周雰囲気制御用不活性ガス人ロ10ニルツ
ボ外周雰囲気制御用不活性ガス出口11:局部加熱用ヒ
ーター 12:コーター13:紫外線硬化型樹脂  1
4:紫外線ランプ15ニブリントローラー  16:耐
圧ゴムチューブ17:ゴムパツキン    18:フラ
ンジ非酸化物ガラス研究開発株式会社 代  理  人   朝  倉  正  幸第2図 波長(μm)
FIG. 1 is a schematic cross-sectional view of a fiber manufacturing apparatus used in an example of the present invention. FIG. 2 is a graph showing the wavelength dependence of the transmission loss values of the glass fibers obtained in Example 1 and Comparative Example 1. 1: Inner crucible 2: Outer crucible 3: Glass rod for core 4: Glass tube for cladding 5: Load-A 6: Load-B7: Inert gas inlet for pressurizing inner crucible 8: Inert gas inlet for pressurizing outer crucible 9 Inert gas for controlling the atmosphere around the nil acupoint 10 Inert gas outlet for controlling the atmosphere around the nil acupoint 11: Heater for local heating 12: Coater 13: Ultraviolet curing resin 1
4: Ultraviolet lamp 15 Niblin troller 16: Pressure-resistant rubber tube 17: Rubber gasket 18: Flange Non-oxide Glass Research and Development Co., Ltd. Agent Masayuki Asakura Figure 2 Wavelength (μm)

Claims (1)

【特許請求の範囲】 1 下部に紡糸ノズルを有する円筒形二重ルツボの内側
ルツボにカルコゲナイドガラスロッドを、外側ルツボに
該ガラスロッドよりも屈折率が低いカルコゲナイドガラ
スチューブをそれぞれ挿入し、ルツボ内部及びルツボ外
部を不活性ガス雰囲気に保持し、紡糸ノズル近傍のチュ
ーブ及びロッドのみをガラス転移温度よりも高い温度に
加熱しながらガラスチューブとガラスロッドを同時にル
ツボの紡糸ノズルから引き出すことを特徴とするコア−
クラッド構造を有するカルコゲナイドガラスファイバー
の製造方法。 2 チューブ及びロッドの加熱温度がこれらを10^3
〜10^8ポイズの粘度に保持できる温度であることを
特徴とする特許請求の範囲第1項記載の方法。 3 ルツボ内のチューブ及びロッドを加熱するに際して
、内側ルツボ内及び外側ルツボ内をそれぞれ独立に不活
性ガスにて加圧することを特徴とする特許請求の範囲第
1項記載の方法。 4 ルツボ内の不活性ガスの圧力が5kg/cm^2以
下であることを特徴とする特許請求の範囲第3項記載の
方法。 5 ルツボ内のチューブ及びロッドを加熱するに際して
、チューブ及びロッドの上端にそれぞれ荷重をかけるこ
とを特徴とする特許請求の範囲第1項又は第3項記載の
方法。 6 チューブ及びロッドの上端にかける荷重が10kg
/cm^2以下であることを特徴とする特許請求の範囲
第5項記載の方法。
[Scope of Claims] 1 A chalcogenide glass rod is inserted into the inner crucible of a cylindrical double crucible having a spinning nozzle at the bottom, and a chalcogenide glass tube having a lower refractive index than the glass rod is inserted into the outer crucible, and the inside of the crucible and A core characterized in that the outside of the crucible is maintained in an inert gas atmosphere, and the glass tube and glass rod are simultaneously pulled out from the spinning nozzle of the crucible while heating only the tube and rod near the spinning nozzle to a temperature higher than the glass transition temperature. −
A method for producing a chalcogenide glass fiber having a cladding structure. 2 The heating temperature of the tube and rod is 10^3
The method according to claim 1, characterized in that the temperature is such that the viscosity can be maintained at a viscosity of ~10^8 poise. 3. The method according to claim 1, wherein when heating the tube and rod in the crucible, the inside of the inner crucible and the inside of the outer crucible are independently pressurized with an inert gas. 4. The method according to claim 3, wherein the pressure of the inert gas in the crucible is 5 kg/cm^2 or less. 5. The method according to claim 1 or 3, characterized in that when heating the tube and rod in the crucible, a load is applied to the upper ends of the tube and rod, respectively. 6 The load applied to the upper end of the tube and rod is 10 kg.
6. The method according to claim 5, characterized in that it is less than /cm^2.
JP6810587A 1987-03-24 1987-03-24 Production of chalcogenide glass fiber having core clad structure Granted JPS63236729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6810587A JPS63236729A (en) 1987-03-24 1987-03-24 Production of chalcogenide glass fiber having core clad structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6810587A JPS63236729A (en) 1987-03-24 1987-03-24 Production of chalcogenide glass fiber having core clad structure

Publications (2)

Publication Number Publication Date
JPS63236729A true JPS63236729A (en) 1988-10-03
JPH0527577B2 JPH0527577B2 (en) 1993-04-21

Family

ID=13364126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6810587A Granted JPS63236729A (en) 1987-03-24 1987-03-24 Production of chalcogenide glass fiber having core clad structure

Country Status (1)

Country Link
JP (1) JPS63236729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842907A1 (en) * 1996-11-19 1998-05-20 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Active single mode optical fibres and method for their fabrication
EP0975553A4 (en) * 1996-08-12 2000-02-02 Us Navy Process for making optical fibers from core and cladding glass rods
US6802189B2 (en) 1999-12-30 2004-10-12 Schott Glas Device and process for the remelting of glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0975553A4 (en) * 1996-08-12 2000-02-02 Us Navy Process for making optical fibers from core and cladding glass rods
EP0975553A1 (en) * 1996-08-12 2000-02-02 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF THE NAVY Process for making optical fibers from core and cladding glass rods
EP0842907A1 (en) * 1996-11-19 1998-05-20 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Active single mode optical fibres and method for their fabrication
US5991486A (en) * 1996-11-19 1999-11-23 Cselt- Centro Studi E Laboratori Telecomunicazioni S.P.A. Active single mode optical fibres and method for their fabrication
US6802189B2 (en) 1999-12-30 2004-10-12 Schott Glas Device and process for the remelting of glass

Also Published As

Publication number Publication date
JPH0527577B2 (en) 1993-04-21

Similar Documents

Publication Publication Date Title
CA1135571A (en) Method of forming a substantially continuous optical waveguide and article
US4251251A (en) Method of making optical devices
KR830002158B1 (en) Method for forming optical waveguide preform having continuously removable starting member
US3938974A (en) Method of producing optical wave guide fibers
CA1126066A (en) Method of drawing glass optical waveguides
JPS6086049A (en) Manufacture of glass products
EP0043712B1 (en) A method of making a high purity glass article such as a soot preform, a soot preform and an optical waveguide fibre formed therefrom
US4286978A (en) Method for substantially continuously drying, consolidating and drawing an optical waveguide preform
JPS61219729A (en) Manufacture of optical waveguide tube
US4351658A (en) Manufacture of optical fibers
US4908053A (en) Process for producing chalcogenide glass fiber
CA1187291A (en) Method of making glass optical fiber
US4410345A (en) Method of producing optical waveguide
CA1106710A (en) Method of making optical devices
GB2043623A (en) Process for the production of glass fibres
JPS63236729A (en) Production of chalcogenide glass fiber having core clad structure
US4116653A (en) Optical fiber manufacture
USH1754H (en) Optical glass fibers, apparatus and preparation using reactive vapor transport and deposition
JPS63236728A (en) Production of chalcogenide glass fiber having core clad structure
JPH01215738A (en) Production of optical glass fiber having core-clad structure
JPH0555456B2 (en)
JPH0660028B2 (en) Method for manufacturing preform for optical fiber
JPH0813692B2 (en) Chalcogenide glass fiber with core-clad structure
JPH0791087B2 (en) Ge-As-S glass fiber having core-clad structure
KR830002374B1 (en) Manufacturing Method of Glass Products