JPS60245257A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60245257A
JPS60245257A JP59100586A JP10058684A JPS60245257A JP S60245257 A JPS60245257 A JP S60245257A JP 59100586 A JP59100586 A JP 59100586A JP 10058684 A JP10058684 A JP 10058684A JP S60245257 A JPS60245257 A JP S60245257A
Authority
JP
Japan
Prior art keywords
heat treatment
semiconductor substrate
cracks
layer
passivation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59100586A
Other languages
Japanese (ja)
Other versions
JPH0224021B2 (en
Inventor
Norio Totsuka
戸塚 憲男
Yasumitsu Sugawara
菅原 安光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59100586A priority Critical patent/JPS60245257A/en
Publication of JPS60245257A publication Critical patent/JPS60245257A/en
Publication of JPH0224021B2 publication Critical patent/JPH0224021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable the improvement in yield of appearance screening by preventing cracks from generating in a passivation film, by a method wherein heat treatment is carried out in a state that a metal is adhered over the whole surface of a semiconductor substrate. CONSTITUTION:A through-hole is bored in a field oxide film 2 located on a semiconductor substrate at point to form a bump electrode, i.e. above an A electrode pad 3. After Al 5 is evaporated over the whole surface of the substrate 1, Ti 6 and Pt 7 are evaporated. The Ti 6 and Pt 7 as the intermediate matallic layer is patterned by fusing resist and heat-treated. At this time, a one-layer electrode wiring 10 and a passivation film 4 do not come into bi-metal structure because of metal adhesion over the whole surface of the substrate 1; therefore, cracks do not generate. Since cracks in the passivation film can be thus prevented, the yield of appearance screening can be improved, and the surface of the substrate can be protected from moisture and the like. Consequently, the titled device of high reliability can be obtained.

Description

【発明の詳細な説明】 (技術分野) この発明はバンプ電極を有する半導体装置の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method of manufacturing a semiconductor device having bump electrodes.

(従来技術) バンプ電極を有する半導体装置は一般にフィルム・キャ
リヤを利用したTAB (TAPE AUTO−MAT
ED BONDING)方式や、ハンダを利用したフリ
ップ・チップポンディング用に使われる。
(Prior art) Semiconductor devices having bump electrodes are generally TAB (TAPE AUTO-MAT) using a film carrier.
It is used for the ED BONDING method and flip chip bonding using solder.

バンプ電極を有する半導体装置の製造方法の一例ThT
AB用バンゾ電極を例にとってこの発明の製造方法の工
程を示す第1図を援用して述べることにする。
An example of a method for manufacturing a semiconductor device having bump electrodes ThT
Taking an AB banzo electrode as an example, the steps of the manufacturing method of the present invention will be described with reference to FIG. 1.

第1図(a)に示すように半導体基板1上に形成された
フィルド酸化膜2の上のバンプ電極を形成すべき個所に
At電極・9ツド3を形成し、さらにCVD法にてパシ
ベーション膜4を成長させた後、At電極パッド3上に
スルーホールを開孔する。
As shown in FIG. 1(a), an At electrode 9 electrode 3 is formed on a filled oxide film 2 formed on a semiconductor substrate 1 at a location where a bump electrode is to be formed, and a passivation film is further formed by CVD. After growing the At electrode pad 4, a through hole is formed on the At electrode pad 3.

一般には、・やシペーション膜4には、燐をドープした
ガラス膜(PEG膜)が使われる。
Generally, a phosphorus-doped glass film (PEG film) is used for the cipation film 4.

次に、第1図(b)に示すように、半導体基板10表面
全面にその後の工程で使われる電界メッキの電流導通層
として)、t5’を蒸着した後、バンプ電極が形成され
る個所以外を通常のホトリソ工程にて、レジストでパタ
ーニングを行ってからTi6、Pt 7の蒸着を行ない
、その後アセトンのような溶剤でレジストヲ浴解婆せて
、バンプを極が形成される個QrKTi 6、Pt 7
のノやターニングを行う。
Next, as shown in FIG. 1(b), after t5' is deposited on the entire surface of the semiconductor substrate 10 (as a current conducting layer for electroplating used in subsequent steps), except for the areas where bump electrodes will be formed. After patterning with a resist in a normal photolithography process, Ti6, Pt7 is vapor-deposited, and then the resist is bath-dissolved with a solvent such as acetone to form bumps with QrKTi6, Pt. 7
Do nono and turning.

ここで、中間金属層としてのTi 6は、フィールド酸
化膜2および電、流導通層としてのA/= 5への密着
金属で、中間金楓層としてのPt7けAt電極パッド3
、A45と、その後に形成されるAuバンプあるいはハ
ンダバンプとの相互拡散を防止する拡散バリヤ層の役割
をする。
Here, the Ti 6 as the intermediate metal layer is a metal in close contact with the field oxide film 2 and the A/=5 as the current conducting layer, and the Pt 7 At electrode pad 3 as the intermediate gold maple layer.
, A45 and the subsequently formed Au bumps or solder bumps.

次に、第1図(c)に示すように、通常のホトリン工程
によシ、しシスト8にてバンプ電極が形成される個所以
外を扮った後、At層5を電流の導通層として、亀、気
メッキ法にてパンf il、接金9を形成する。
Next, as shown in FIG. 1(c), a normal photolithography process is performed to cover the areas other than the areas where bump electrodes will be formed using the cyst 8, and then the At layer 5 is used as a current conductive layer. Then, a pan film and a weld 9 are formed by a plating method.

次に、第1図(d)に示すように、メッキのマスク用レ
ジスト8を通常の溶剤にて除去した後、At Sを半導
体工業で使われるAtのエッチャントにて除去する。
Next, as shown in FIG. 1(d), after the plating mask resist 8 is removed using a normal solvent, the AtS is removed using an At etchant used in the semiconductor industry.

その後、今風界面、すなわちAt電極A’ツド3とAt
5の界面、At5とTi6との界面、Ti6とPt7の
界面、Pt7とバンプ電接金9との界面の接触抵抗を低
減させるためと、界面の密着強度を向上させるためおよ
び、半導体装置に内蔵されてイルバイポーラ・トランジ
スタ、MOS)ランシ′スタの電気的特性を回復させる
ために、通常350〜450℃の温度で熱処理を行う。
After that, the modern interface, that is, the At electrode A' end 3 and the At
5, the interface between At5 and Ti6, the interface between Ti6 and Pt7, and the interface between Pt7 and bump electrowelding metal 9, and to improve the adhesion strength of the interface. In order to restore the electrical characteristics of bipolar transistors (MOS) transistors, heat treatment is usually performed at a temperature of 350 to 450°C.

この熱処理を行ってから、電気的特性の良否をチェック
した後、半導体基板1をそれぞれのチップに分割する。
After performing this heat treatment and checking the quality of the electrical characteristics, the semiconductor substrate 1 is divided into individual chips.

以上、第1図にパンf電接全盲する半導体装置の製造方
法の一例を示したが、その他の例としてAt5およびT
i 6として、Ti、Cr−tど拡散バリヤ用の中間金
和層としてのPt7として、Cu、Niなどの構成を有
する半導体装置の製造方法がある。
In the above, an example of a method for manufacturing a semiconductor device in which the pan f electric contact is completely blind is shown in FIG. 1, but other examples include At5 and T
There is a method of manufacturing a semiconductor device having a structure in which Ti, Cr-t, etc. are used as i6, Cu, Ni, etc. are used as Pt7 as an intermediate gold layer for diffusion barrier.

しかし、いずれの製造方法でも、最終的に金属界面の接
触抵抗を低減させるため、およびトラフシ9スタ特性を
回復させるために熱処理を必要とする。
However, either manufacturing method ultimately requires heat treatment to reduce the contact resistance at the metal interface and restore the trough transistor characteristics.

しかし、この熱処理を行うことによって、以下述べるよ
うな欠点を生じる。すなわち、熱処理を実施することに
よって、・ぞシペーション膜4内にクラックが非常に発
生しやすくなり、表面安定化膜としての機能を十分果た
さなくなる。このクラックが発生することによって、チ
ップ上の外観選別歩留シの低下をきたす。
However, performing this heat treatment causes the following drawbacks. That is, by carrying out the heat treatment, cracks are very likely to occur in the sorption film 4, and it no longer functions as a surface stabilizing film. The occurrence of these cracks reduces the yield of appearance screening on chips.

さらには、このクラックの発生した半導体装置全パッケ
ージに実装した場合、水分あるいはノやツケーシ1中に
含まれる不純物イオンなどの汚れがこ、のクラック部に
到達すると、各素子を相互に配線している電極配#を腐
食させる。
Furthermore, when all the packages of semiconductor devices with cracks are mounted, if moisture or contaminants such as impurity ions contained in the package 1 reach the cracks, each element may be interconnected. It corrodes the electrode wiring.

また、水分、汚れの浸入によって半導体素子の電気的特
性(リーク電流、耐圧など)に悪影響を及はす。いずれ
にしろ、パシベーション膜4にクラックが発生すること
は、佃頼性上好ましくない。
Furthermore, the ingress of moisture and dirt adversely affects the electrical characteristics (leakage current, breakdown voltage, etc.) of the semiconductor element. In any case, the occurrence of cracks in the passivation film 4 is undesirable from the viewpoint of reliability.

このクラックの発生は熱処理を低温で行うことによって
防止できるが、逆に半導体素子の特性回復あるいは接触
抵抗の低減、密着強度の増加が充分行えない。
Although the occurrence of cracks can be prevented by performing heat treatment at a low temperature, it is not possible to sufficiently recover the characteristics of the semiconductor element, reduce the contact resistance, or increase the adhesion strength.

特に、このクラックは各素子を相互に配線している電極
配線上(1層配線)のノぞシペーション膜4に発生し易
く、第2図の丸印Aの部分に、クラックの発生した断面
を示す。この発生メカニズムは1層電極配線10とノ4
シペーション膜4との熱膨張係数の差によって説明でき
る。
In particular, this crack is likely to occur in the groove 4 on the electrode wiring (1-layer wiring) that interconnects each element, and the cross section where the crack has occurred is shown in the circle A in Figure 2. show. The mechanism of this occurrence is the one-layer electrode wiring 10 and No. 4.
This can be explained by the difference in thermal expansion coefficient with the cipation film 4.

すなわち、一般に使われているノ4シペーション膜4I
riPSG膜(燐シリカ・カラス)で、PSG膜の熱膨
張係数は8.7 X 10 ’dgg−”、また、1層
電極配m10に使われているAtO熱膨張係数は29 
X 110−5de ”でほぼ2桁異なる。
In other words, the commonly used 4cipation film 4I
The thermal expansion coefficient of the riPSG film (phosphorus silica glass) is 8.7 x 10 'dgg-'', and the thermal expansion coefficient of AtO used in the single-layer electrode arrangement m10 is 29.
X 110-5de'', which is a difference of approximately two orders of magnitude.

したがって、熱処理工程において、温度が昇温状態にあ
るときは1層電極配線10は熱膨張係数が大であるため
に、パシベーション膜4は引張シ応力を受けて、パシベ
ーション膜40表面を凹にして反る。
Therefore, in the heat treatment process, when the temperature is elevated, the single-layer electrode wiring 10 has a large coefficient of thermal expansion, so the passivation film 4 receives tensile stress, causing the surface of the passivation film 40 to become concave. Warp.

また、熱処理工程において、温度が降温状態にあるとき
け、ノやシペーション膜4は圧縮応力を受けてノfシベ
ーション膜4の表面を凸にして反る。
Further, in the heat treatment step, when the temperature is lowered, the oscivation film 4 is subjected to compressive stress and the surface of the oscivation film 4 is warped to make it convex.

このように、熱処理工程を施すことによシ、パシベーシ
ョン膜4は熱ストレスがかがシ、ある臨界値以上になる
とパシベーション膜4にはクラックが発生してしまう。
As described above, by performing the heat treatment process, the passivation film 4 is subjected to high thermal stress, and when the thermal stress exceeds a certain critical value, cracks occur in the passivation film 4.

これは、−熱膨張係数の異なる二つの材料がバイメタル
構造になるため起こるのであって、バイメタル構造にな
っていない状態で熱処理を行えばよい。
This occurs because the two materials with different coefficients of thermal expansion form a bimetallic structure, and the heat treatment can be performed without forming a bimetallic structure.

(発明の目的) どの発明の目的は、パシベーション膜にクラックが発生
するの全防止でき、外観選別歩留pの向上を水分などに
対して半導体基板の表面の完全保穫ができ、高信頼性の
半導体装置が得られる半導体装置の製造方法を得ること
にある。
(Objective of the invention) The object of the invention is to completely prevent the occurrence of cracks in the passivation film, improve the appearance screening yield p, completely protect the surface of the semiconductor substrate from moisture, etc., and achieve high reliability. An object of the present invention is to obtain a method for manufacturing a semiconductor device that allows a semiconductor device to be obtained.

(発明の概要) この発明の要斉は、半導体基板の表面全面に金属全被着
させた状態で熱処理(シンク)を行うことにある。
(Summary of the Invention) The key point of the present invention is to perform heat treatment (sink) on the entire surface of a semiconductor substrate with metal completely deposited thereon.

(実施例) 以下、この発明の半導体装置の製造方法の実施例につい
て、再度第1図(aJ〜第1図(dlを参照して説明す
る。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device of the present invention will be described again with reference to FIG. 1 (aJ to FIG. 1 (dl).

まず、第1図(a)に示すように、半導体基板1上に形
成されたフィールド酸化膜2の上のバンプ電極全形成す
べき個所、すなわちAt箪罹パッド3上にスルーホール
を開孔する。
First, as shown in FIG. 1(a), a through hole is formed on the field oxide film 2 formed on the semiconductor substrate 1 where all the bump electrodes are to be formed, that is, on the At pad 3. .

引き続き、第1図(b)に示すように、半導体基板1の
表面全面にその後の工程で使われる電界メッキの電流導
通層としてAtSを蒸着した後、バンプ電極が形成きれ
る個所以外を通常のホトリン工程にて、レジストでパタ
ーニングを行ってからTi6おjびPt7の蒸着を行な
い、その後ア七トンのような溶剤でしシスト全溶解させ
て、バンプ電極が形成される個所に中間金属層としての
Ti6.Pt7のノやターニングヲ行なう。
Subsequently, as shown in FIG. 1(b), after AtS is deposited on the entire surface of the semiconductor substrate 1 as a current conducting layer for electroplating to be used in subsequent steps, ordinary photorin is applied to areas other than those where bump electrodes can be formed. In the process, after patterning with a resist, Ti6 and Pt7 are vapor-deposited, and then all the cysts are dissolved with a solvent such as A7T, and an intermediate metal layer is formed at the location where the bump electrode is to be formed. Ti6. Perform Pt7 no and turning.

Ti6、Pt 7のパターニングを行った後、At電極
パッド3と電流導通層としてのAt5の界面、At 5
とTi 6との界面、Ti 6とPt7との界面の接触
抵抗の低減、密着強度の向上およびAt5、Ti 6.
 Pt7のNMダメーソの回復のために、熱処理を行う
1、 この熱処理全第1熱処理と呼ぶ。この実施例では半導体
基板1の表面にはAt5とPt 7が露出しているため
に、通常の窒素雰囲気で熱処理を行うことができた。
After patterning Ti6 and Pt7, the interface between At electrode pad 3 and At5 as a current conducting layer, At5
Reduction of contact resistance and improvement of adhesion strength at the interface between At5 and Ti6, and the interface between Ti6 and Pt7, and At5, Ti6.
In order to recover the NM damage of Pt7, heat treatment is performed 1. This heat treatment is called the first heat treatment. In this example, since At5 and Pt7 were exposed on the surface of the semiconductor substrate 1, the heat treatment could be performed in a normal nitrogen atmosphere.

半導体基板1の表面全面に金属が被層をれているため、
1層電極配IwJOとパシベーション膜4はバイメタル
構造とならないので、クラックの発生は起こらない。
Since the entire surface of the semiconductor substrate 1 is coated with metal,
Since the single-layer electrode arrangement IwJO and the passivation film 4 do not have a bimetal structure, cracks do not occur.

厳密には、半導体基板1およびフィールド酸化膜2の熱
膨張係数も関係するため、1層電極配線10が存在しな
い領域でもクラックの発生は起こらない。したがって、
熱処理温度も約450℃と高温で行うことができる。
Strictly speaking, since the thermal expansion coefficients of the semiconductor substrate 1 and the field oxide film 2 are also involved, cracks do not occur even in areas where the single-layer electrode wiring 10 is not present. therefore,
The heat treatment temperature can also be as high as about 450°C.

次に、第1図(c)に示すように、通常のホトリソ工程
によシ、レジスト8にてバンプ電極が形成される個所以
外奮彷った後、At層5を電流の導通層として電気メツ
キ法によシバンプ電接金9を形成する。
Next, as shown in FIG. 1(c), after using a normal photolithography process, the resist 8 is used to remove the areas where bump electrodes are to be formed, and then the At layer 5 is used as a current conductive layer to conduct electricity. The bump electric weld 9 is formed by a plating method.

次に、第1図(dlに示すように、メッキのマスク用レ
ジスト8を通常の溶剤にて除去した後、At5を半導体
工業で使われるAtのエラチャン)Kて除去した後、P
t7とバンプ電接金9の界面の接触抵抗の低減および密
着強度の向上のために第2熱処理を行う1、 通常、第2熱処理では、蒸着によるダメージは既に第1
熱処理によって回復されているので、低In(300℃
以下)の熱処理で十分である。
Next, as shown in FIG. 1 (dl), after removing the plating mask resist 8 with an ordinary solvent, and removing At5 with an At elastomer used in the semiconductor industry, P
A second heat treatment is performed to reduce the contact resistance and improve the adhesion strength at the interface between t7 and the bump electroweld metal 91. Usually, in the second heat treatment, the damage caused by vapor deposition has already been removed from the first one.
Since it is recovered by heat treatment, it has low In (300℃
The following heat treatment is sufficient.

また、低熱の熱処理なためにパシベーション膜4のクラ
ックの発生にまでには至らない。さらに、この第2の熱
処理は、その後のボンティング工程にて熱が加わるため
省略してもよい。
Further, since the heat treatment is performed at a low temperature, cracks do not occur in the passivation film 4. Furthermore, this second heat treatment may be omitted since heat is added in the subsequent bonding process.

以上、この発明の一実施例を説明したように、半導体基
板1の表面全面に金属が被着されている状態で熱処理ケ
行うことを特徴とする。
As described above, one embodiment of the present invention is characterized in that the heat treatment is performed while the entire surface of the semiconductor substrate 1 is coated with metal.

この発明の実施例で汀、1層電祿配線1oとIPシヘー
ション膜4のAt10とがパシベーション膜4t−中間
にして、サンドインチ構造になっているため、応力のバ
ランスが保たれる。したがって、約450℃と高温での
熱処理を行っても、パシベーション膜4にはクラックの
発生は見られない。
In the embodiment of the present invention, the first-layer electrical wiring 1o and the At10 of the IP shielding film 4 are placed in the middle of the passivation film 4t to form a sandwich structure, so that stress balance is maintained. Therefore, even if heat treatment is performed at a high temperature of about 450° C., no cracks are observed in the passivation film 4.

また、他の実施例として、At5にTiやCrが使われ
た場合でも、半導体基板1の表面全面にTiやOrの金
属が被着された状態で熱処理を行うことによって、パシ
ベーション膜4のクラックの発生は防止できる。
As another example, even if Ti or Cr is used for At5, the passivation film 4 can be cracked by performing heat treatment with Ti or Or metal deposited on the entire surface of the semiconductor substrate 1. can be prevented from occurring.

(発明の効果) この発明は以上説明したように、半導体基板の表面全面
に金属が被着された状態で熱処理を行うようにしたので
、パシベーション膜のクラックの発生を防止することが
できる。その結果、外観選別歩留シの向上さらには水分
などから、半導体基板の表面全完全に保護でき、高信頼
性の半導体装置を提供することができる。
(Effects of the Invention) As described above, in the present invention, since the heat treatment is performed with the metal coated on the entire surface of the semiconductor substrate, it is possible to prevent the occurrence of cracks in the passivation film. As a result, the appearance selection yield is improved, and the entire surface of the semiconductor substrate can be completely protected from moisture, making it possible to provide a highly reliable semiconductor device.

また、熱処理温度を充分高温で行えるので、蒸着による
ダメージ9、特にバイポーラ・トランジスタの電流増幅
率あるいはMOS)ランジスタのスレッショルド電圧の
特性劣化を完全に回復することができ、電気的特性歩留
りも著しく向上させることができる。
In addition, since the heat treatment can be carried out at a sufficiently high temperature, it is possible to completely recover from the damage caused by vapor deposition9, especially the current amplification factor of bipolar transistors or the deterioration of the threshold voltage characteristics of MOS transistors, and the yield of electrical characteristics is also significantly improved. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alないし第1図(d)はそれぞれ従来および
この発明の半導体装置の製造方法の実施例の工程説明図
、第2図は従来の半導体装置の製造方法における/4’
シベーションクラックを示す図である。 1・・・半導体基板、2・・・フィールド酸化膜、3・
・・Alt! パッド、4・・りやシベーション膜、5
・・・M。 6・・・Ti、7・・・Pt、8・・・レジスト、9・
・・バンゾ電棒、10・・・1層電極配線。 特許出願人 沖電気工業株式会社 第1図(a) 第1図(b) 第1図(c) 第1vyJ(d) 第2図
FIGS. 1(al) to 1(d) are process explanatory diagrams of the conventional method and the embodiment of the semiconductor device manufacturing method of the present invention, respectively, and FIG. 2 is a /4' in the conventional semiconductor device manufacturing method.
FIG. 3 is a diagram showing a sivation crack. 1... Semiconductor substrate, 2... Field oxide film, 3...
...Alt! Pad, 4... Riyascivation film, 5
...M. 6...Ti, 7...Pt, 8...Resist, 9...
...Banzo electric rod, 10...1 layer electrode wiring. Patent applicant Oki Electric Industry Co., Ltd. Figure 1 (a) Figure 1 (b) Figure 1 (c) Figure 1vyJ (d) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上のフィールド敵化膜の上にノくング電極を
形成する個所に一:極パッドを形成してスルーホール全
開孔する工程と、半導体基板の表面全面に電界メッキの
電流導通層を形成してノくンゾ電極が形成はれる個所に
中間金塊層のノ!ターニングを行って第1熱処理する工
程と、この第1熱処理後上記電流導通層に通電して上記
中間金属層上にバンゾ電極金形成した後この電流導通層
を除去して第2熱処理金行う工程とを含むことを特徴と
する半導体装置の製造方法。
A step is to form a polar pad at the location where the contact electrode is to be formed on the field barrier film on the semiconductor substrate and to fully open the through hole, and to form a current conductive layer by electroplating on the entire surface of the semiconductor substrate. There is an intermediate gold nugget layer where the electrode is formed and swells! a step of turning and performing a first heat treatment, and a step of applying electricity to the current conductive layer after the first heat treatment to form a vanzo electrode on the intermediate metal layer, and then removing the current conductive layer and performing a second heat treatment. A method for manufacturing a semiconductor device, comprising:
JP59100586A 1984-05-21 1984-05-21 Manufacture of semiconductor device Granted JPS60245257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100586A JPS60245257A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100586A JPS60245257A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60245257A true JPS60245257A (en) 1985-12-05
JPH0224021B2 JPH0224021B2 (en) 1990-05-28

Family

ID=14277984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100586A Granted JPS60245257A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60245257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121456A (en) * 1984-11-19 1986-06-09 Nippon Denso Co Ltd Forming process of bump electrode of semiconductor element
US5393696A (en) * 1990-12-03 1995-02-28 Grumman Aerosace Corp. Method for forming multilayer indium bump contacts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133562A (en) * 1974-09-17 1976-03-22 Tokyo Shibaura Electric Co Handotaisochi no seizohoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133562A (en) * 1974-09-17 1976-03-22 Tokyo Shibaura Electric Co Handotaisochi no seizohoho

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121456A (en) * 1984-11-19 1986-06-09 Nippon Denso Co Ltd Forming process of bump electrode of semiconductor element
US5393696A (en) * 1990-12-03 1995-02-28 Grumman Aerosace Corp. Method for forming multilayer indium bump contacts

Also Published As

Publication number Publication date
JPH0224021B2 (en) 1990-05-28

Similar Documents

Publication Publication Date Title
US4514751A (en) Compressively stresses titanium metallurgy for contacting passivated semiconductor devices
EP0690504B1 (en) Solder terminal and method of fabricating it
US6847117B2 (en) Semiconductor device including a passivation film to cover directly an interface of a bump and an intermediated layer
JPH1084003A (en) Method and structure for formation of semiconductor metallization system
US7327031B2 (en) Semiconductor device and method of manufacturing the same
JPS60245257A (en) Manufacture of semiconductor device
JPS6112047A (en) Manufacture of semiconductor device
JPH07335648A (en) Bump electrode of semiconductor device
JPH06196526A (en) Manufacture of semiconductor device
JP2725611B2 (en) Semiconductor device
JPH09148331A (en) Semiconductor integrated circuit device and method for manufacturing the same
JP2002334897A (en) Bump structure of semiconductor device and forming method therefor
JP3116534B2 (en) Method for manufacturing flip chip of integrated circuit device
JP2974840B2 (en) Semiconductor element mounting method
JP3230909B2 (en) Semiconductor device and method of manufacturing the same
JP2007180293A (en) Solder bump electrode structure, and electronic component
JP2002237500A (en) Manufacturing method of semiconductor device
JPH0513584A (en) Semiconductor device and manufacture of the same
JP2000040715A (en) Flip-chip packaged semiconductor device and manufacture thereof
JPH05259169A (en) Method of manufacturing bump electrode for integrated circuit device
JP2000357702A (en) Semiconductor device and manufacture thereof
JPS5929430A (en) Semiconductor device
JPS62235775A (en) Semiconductor device and manufacture theeof
JPH11307577A (en) Semiconductor device
JPH04196323A (en) Structure of bump electrode part and formation thereof