JPS60245179A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device

Info

Publication number
JPS60245179A
JPS60245179A JP10099884A JP10099884A JPS60245179A JP S60245179 A JPS60245179 A JP S60245179A JP 10099884 A JP10099884 A JP 10099884A JP 10099884 A JP10099884 A JP 10099884A JP S60245179 A JPS60245179 A JP S60245179A
Authority
JP
Japan
Prior art keywords
film
gate insulating
semiconductor memory
nonvolatile semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10099884A
Other languages
Japanese (ja)
Inventor
Shohei Shinohara
篠原 昭平
Takashi Osone
隆志 大曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10099884A priority Critical patent/JPS60245179A/en
Publication of JPS60245179A publication Critical patent/JPS60245179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a nonvolatile memory device having a tunnel SiO2 film of high quality by oxidizing a boundary between an Si substrate and a Ta2O5 film in oxidative atmosphere to form an SiO2 thin film. CONSTITUTION:After a Ta2O5 film 6 formed on an Si substrate 1, the surface of the substrate 1 is oxidized through the film 6 in O2 of 800-1,000 deg.C to form a tunnel SiO2 film 2' of approx. 20Angstrom thick. A gate electrode 4 of polysilicon or metal or metal silicide is provided as a mask, the films 6, 2' are reactively etched by sputtering with C3F8 gas, ion implanted to form source and drain 5, and a nonvolatile semiconductor memory is completed thereafter by a normal method. According to this configuration, writing and erasing voltages can be considerably reduced, the dielectric constant of the gate insulating film becomes high, mutual conductance increased, and the reading velocity is accelerated. SiO2 film 2' of high quality can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体集積回路、特に不揮発性半導体メモリ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor integrated circuits, and in particular to nonvolatile semiconductor memory devices.

21\−7 従来例の構成とその問題点 不揮発性半導体メモリ装置は、電源が切られても書き込
まれた情報を記憶している装置であり、構造としては、
絶縁膜中のトラ、ノブを利用するMNOS型と絶縁膜中
にゲートを設けたフローティングゲート型に代表される
。本発明は、前記MNOS型と類似した構造および情報
記憶機構をもつので、以下にNMO8構造不揮発性半導
体メモリ装置の構造とその問題点について述べる。
21\-7 Configuration of conventional example and its problems A nonvolatile semiconductor memory device is a device that stores written information even when the power is turned off, and its structure is as follows:
Typical examples include the MNOS type, which uses tabs and knobs in the insulating film, and the floating gate type, which has a gate in the insulating film. Since the present invention has a structure and information storage mechanism similar to the MNOS type, the structure of the NMO8 structure nonvolatile semiconductor memory device and its problems will be described below.

第1図に従来のMNO8構造不揮発半導体メモリ装置の
基本構造を示した。これはソース・ドレイン5の形成工
程捷での断面図を表わしている。
FIG. 1 shows the basic structure of a conventional MNO8 structure nonvolatile semiconductor memory device. This shows a cross-sectional view of the source/drain 5 during the formation process.

ゲート絶縁膜は、20人程度の薄いSio2からなる第
1層ゲート絶縁膜2(以下ではトンネルS102膜とい
う)と、2oo入程度のS i a、 N4からなる第
2層ゲート絶縁膜3によって構成されており、その上に
多結晶Si あるいは金属によるゲート電極4が形成さ
れている。記憶情報の書き込みは、ゲート電極4へ通常
動作電圧より高い電圧を印加することにより、Si基板
1からトンネルSiO22全通して電子をトンネル5i
O−2と513N4膜3の界面に注入し、ここにある界
面トラップに電子をトラップすることによって行なわれ
る。この書込み電圧はトンネルS 102膜に印加され
る電界によって規定される。最近の高集積化された半導
体装置においては、ホットエレクトロン等の問題に起因
して動作電圧を低くするという必要性に迫られているが
、不揮発半導体メモリ装置の書き込みあるいは消去の電
圧も、上記の必要性に伴なって低電圧化が望まれている
。書き込みあるいは消去の低電圧化を図るためには、先
に述べたようにトンネルS iO22に印加される電界
が低い外部電圧でも書き込みあるいけ消去に必要な電界
となるようにしなければならない。したがって第2層ゲ
ート絶縁膜を薄くするかあるいは第2層ゲート絶縁膜と
して高誘電率材料を用いることが必要となる。第2層ゲ
ート絶縁膜としてのSi3N4膜3は190人程変効限
界といわれているので、Si3N4膜に代わる高誘電率
材料の採用が望捷れる。
The gate insulating film is composed of a first layer gate insulating film 2 (hereinafter referred to as tunnel S102 film) made of about 20 thin Sio2 and a second layer gate insulating film 3 made of Si a, N4 of about 2000 ml. A gate electrode 4 made of polycrystalline Si or metal is formed thereon. Writing of memory information is performed by applying a voltage higher than the normal operating voltage to the gate electrode 4 to send electrons from the Si substrate 1 through the entire tunnel SiO22 to the tunnel 5i.
This is done by injecting into the interface between O-2 and 513N4 film 3 and trapping electrons in the interface traps there. This write voltage is defined by the electric field applied to the tunnel S102 film. In recent highly integrated semiconductor devices, there is a need to lower the operating voltage due to problems such as hot electrons, but the write or erase voltage of nonvolatile semiconductor memory devices is also As the need arises, lower voltage is desired. In order to reduce the voltage for writing or erasing, it is necessary to ensure that the electric field applied to the tunnel SiO 22 is sufficient for writing or erasing even at a low external voltage, as described above. Therefore, it is necessary to make the second layer gate insulating film thinner or to use a high dielectric constant material as the second layer gate insulating film. Since the Si3N4 film 3 as the second layer gate insulating film is said to have an effective limit of about 190, it is desirable to use a high dielectric constant material in place of the Si3N4 film.

また、第1層ゲート絶縁膜として用いるトンネルSiO
2膜は非常に薄い(約20人)ことが必要であるが、こ
のような膜を良質でかつ均一性よく形成することはプロ
セス的に難しく、問題であった。
In addition, tunnel SiO used as the first layer gate insulating film
The two films need to be very thin (approximately 20 people), but it is difficult to form such a film with good quality and uniformity in terms of process, which poses a problem.

発明の目的 本発明はこのような問題に鑑み、低書き込みおよび消去
電圧で、かつ良質のトンネルS io 2膜を有する不
揮発性半導体メモリ装置を提供することを目的とする。
OBJECTS OF THE INVENTION In view of the above problems, an object of the present invention is to provide a nonvolatile semiconductor memory device having low write and erase voltages and a high quality tunnel S io 2 film.

発明の構成 本発明は、Si基板上に複数層のゲート絶縁膜を有する
半導体装置において、第2層ゲート絶縁膜としてTa2
06という高誘電率材料を用いることにより低い書き込
みおよび消去電圧の不揮発性半導体メモリ装置を実現し
、第1層ゲート絶縁膜である薄いS 102膜をTa2
05膜形成の後に酸化雰囲気中でSt基板とTa2O,
膜との界面酸化により形成することにより良質のトンネ
ルS IO2膜を形成可能とするものである。
Structure of the Invention The present invention provides a semiconductor device having multiple layers of gate insulating films on a Si substrate, in which Ta2 is used as the second layer gate insulating film.
A nonvolatile semiconductor memory device with low write and erase voltages was realized by using a high dielectric constant material called 06, and the thin S102 film, which is the first layer gate insulating film, was replaced with Ta2.
05 After film formation, St substrate and Ta2O,
By forming the film by oxidation at the interface with the film, it is possible to form a high quality tunnel SIO2 film.

実施例の説明 6 /、 。Description of examples 6/,.

第2図に本発明の実施例を工程順に断面構造で示した。FIG. 2 shows a cross-sectional structure of an embodiment of the present invention in the order of steps.

捷ずSt基板1上にTa206膜6を形成する。(第2
図(a))Ta206膜6の形成にはTa膜の堆積の後
酸化雰囲気中、500〜600℃で酸化処理を行なうあ
るいはTa膜の陽極酸化を行なうあるいはTaやTa2
O,ターゲットを用いた反応性スパッタによりTa20
6膜を堆積するあるいはCVD法によりTa206膜を
堆積するなどの方法を用い、たとえば膜厚400八程度
のTa2o6膜6を形成する。次に700〜800℃の
水蒸気雰囲気中または800〜1ooo℃の酸素雰囲気
中で、Ta2o5膜6を通して酸化種をSi基板1との
界面にまで到達させSt基板1表面を酸化し、たとえば
膜厚2〇八程度のトンネルSiO2膜2を形成する(第
2図(b)) 次にTa205膜6上に多結晶シリコンあるいは金属あ
るいは金属シリサイドからなるゲート電極4を形成する
。(第2図(C))このゲート電極4あるいはそのパタ
ーン形成に用いたレジスト膜をマスクとして、Ta20
5膜6とトンネルSiO2膜2′6 メ\−1 とをエツチングする。(第2図(d))エツチングには
、たとえば03F8あるいはCHF3等のガスを用いた
反応性スパッタエツチングを用いる。つづいて、イオン
注入によりソース・ドレイン領域6を形成する。(第2
図(e))この後層間絶縁膜形成。
A Ta206 film 6 is formed on the St substrate 1 without removing it. (Second
Figure (a)) To form the Ta206 film 6, oxidation treatment is performed at 500 to 600°C in an oxidizing atmosphere after the Ta film is deposited, or the Ta film is anodized, or Ta or Ta2
Ta20 by reactive sputtering using O, target
Using a method such as depositing a Ta206 film or depositing a Ta206 film by CVD, a Ta2O6 film 6 having a thickness of, for example, about 400.88 cm is formed. Next, in a water vapor atmosphere at 700 to 800°C or an oxygen atmosphere at 800 to 100°C, oxidizing species are allowed to reach the interface with the Si substrate 1 through the Ta2O5 film 6 to oxidize the surface of the St substrate 1. A tunnel SiO2 film 2 of about 08 is formed (FIG. 2(b)). Next, a gate electrode 4 made of polycrystalline silicon, metal, or metal silicide is formed on the Ta205 film 6. (FIG. 2(C)) Using this gate electrode 4 or the resist film used for its pattern formation as a mask,
5 film 6 and tunnel SiO2 film 2'6 me\-1 are etched. (FIG. 2(d)) For etching, reactive sputter etching using a gas such as 03F8 or CHF3 is used. Subsequently, source/drain regions 6 are formed by ion implantation. (Second
Figure (e)) After this, interlayer insulating film is formed.

コンタクト孔形成、金属配線形成、パッシベーション膜
形成等の工程を経て、不揮発性半導体メモリ装置が完成
される。
A nonvolatile semiconductor memory device is completed through steps such as forming contact holes, forming metal wiring, and forming a passivation film.

以上のようにしてトンネルS 102膜上に高誘電率を
もつT a 20 s膜を形成した構造にすると、MN
O8構造に比べ書き込みあるいは消去電圧を低くするこ
とができる。具体的に言うと、トンネルSiO2膜2′
の膜厚と比誘電率をtl、ε1 とし、第2層ゲート絶
縁膜6の膜厚と比誘電率をt2゜ε2とすると、トンネ
ルS 102膜2′に一定の電界を印加するために必要
な外部電圧は、t、+t2×(61/ε2)に比例する
。tlに比べてt2がか゛なり大きいことと、SiO2
、Si3N4 、Ta206のそれぞれの誘電率が約4
 、7 、25であることを考慮すれば、MNO8構造
のSi3N4膜をTa205膜に置き換えることにより
書き込み/消去のかなりの低電圧化が実現できる。
If a structure is formed in which a T a 20 s film with a high dielectric constant is formed on a tunnel S 102 film as described above, MN
The write or erase voltage can be lowered compared to the O8 structure. Specifically, the tunnel SiO2 film 2'
Let the film thickness and dielectric constant of the second layer gate insulating film 6 be tl, ε1, and the film thickness and dielectric constant of the second layer gate insulating film 6 be t2°ε2. The external voltage is proportional to t, +t2×(61/ε2). t2 is much larger than tl, and SiO2
, Si3N4, and Ta206 each have a dielectric constant of about 4.
, 7, and 25, by replacing the Si3N4 film of the MNO8 structure with a Ta205 film, a considerably lower write/erase voltage can be realized.

さらにトランジスタのゲート絶縁膜の誘電率が高くなる
と、トランジスタの相互コンダクタンスが大きくなり、
読み出し速度の大きい不揮発性半導体メモリ装置を実現
することができる。
Furthermore, as the dielectric constant of the gate insulating film of the transistor increases, the mutual conductance of the transistor increases.
A nonvolatile semiconductor memory device with high read speed can be realized.

また、トンネルS 102形成方法として、Ta205
膜を通して酸化種をSi基板界面に到達させる方法を採
用することにより、酸化種に含捷れる不純物等がTa2
05膜にとらえられて、絶縁耐圧が15MV/、以上で
あるなどの良質な酸化膜を形成することができる。
In addition, as a method for forming the tunnel S 102, Ta205
By adopting a method in which the oxidizing species reaches the Si substrate interface through the film, impurities etc. contained in the oxidizing species are removed from Ta2.
05 film, it is possible to form a high-quality oxide film with a dielectric strength of 15 MV/or more.

なお、ゲート電極からトンネルSiO2/Ta205界
面への正孔の流入を防ぐために、T a 20 s膜と
ゲート電極との間にたとえば薄い5102膜のような正
孔の流入防市膜をそう人すれば、Ta206膜をさらに
薄く形成することが可能となる。
In addition, in order to prevent the inflow of holes from the gate electrode to the tunnel SiO2/Ta205 interface, a hole inflow prevention film such as a thin 5102 film is placed between the Ta20s film and the gate electrode. For example, it becomes possible to form the Ta206 film even thinner.

発明の効果 以上のように、本発明はTa206膜を第2層ゲート絶
縁膜として用いることにより、低い書き込みおよび消去
電圧が実現できるとともに、トランジスタの相互コンダ
クタンスが大きいため動作速度が大きくなるという効果
を有し、さらに第1層ゲート絶縁膜である薄いS 10
2膜を第2層ゲート絶縁膜であるTa206膜形成後の
S1//′I′a2o5界面の酸化により形成したこと
により、良質の酸化膜が得られるという効果を有するす
ぐれた不揮発性半導体メモリ装置を実現できるものであ
る。
Effects of the Invention As described above, the present invention has the effect that by using a Ta206 film as the second layer gate insulating film, low write and erase voltages can be realized, and the operation speed is increased due to the large mutual conductance of the transistor. and a thin S10 which is the first layer gate insulating film.
2 film is formed by oxidizing the S1//'I'a2o5 interface after forming the Ta206 film, which is the second layer gate insulating film, to provide an excellent nonvolatile semiconductor memory device that has the effect of obtaining a high-quality oxide film. It is possible to achieve this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMNO8構造不揮発性半導体メモリ装置
の断面図、第2図(、)〜(e)は本発明の一実施例の
メモリの工程断面図である。 1・・・・・・Si基板、2・・・・・・トンネルS 
102膜、3・・・・・・Si3N4膜、4・・・・・
・ゲート電極、5・・・・・・ソース・ドレイン領域、
6・・・・・・Ta206膜 21・・・・・トンネル
S iO2膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a sectional view of a conventional MNO8 structure nonvolatile semiconductor memory device, and FIGS. 2(a) to 2(e) are process sectional views of a memory according to an embodiment of the present invention. 1...Si substrate, 2...Tunnel S
102 film, 3...Si3N4 film, 4...
・Gate electrode, 5...source/drain region,
6...Ta206 film 21...Tunnel SiO2 film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) シリコン基板上に複数層のゲート絶縁膜を有し
、第1層ゲート絶縁膜として薄いSiO2膜を用い、第
2層ゲート絶縁膜としてT a、 05膜を用い、前記
多層ゲート絶縁膜上に多結晶Stあるいは金属あるいは
金属シリサイドをゲート電極とするMIS)ランジスタ
構造を有することを特徴とする不揮発性半導体メモリ装
置。
(1) A plurality of layers of gate insulating films are provided on a silicon substrate, a thin SiO2 film is used as the first layer gate insulating film, a T a,05 film is used as the second layer gate insulating film, and the multilayer gate insulating film is 1. A nonvolatile semiconductor memory device characterized by having an MIS (MIS) transistor structure having polycrystalline St, metal, or metal silicide as a gate electrode thereon.
(2) シリコン基板上にT a 20 s膜を形成し
た後に、酸化雰囲気中で前記シリコン基板と前記T a
 20 s膜との界面に薄いSio2膜を形成すること
を特徴とする特許請求の範囲第1項記載の不揮発性半導
体メモリ装置。
(2) After forming the Ta 20s film on the silicon substrate, the silicon substrate and the Ta 20 s film are formed in an oxidizing atmosphere.
20. The nonvolatile semiconductor memory device according to claim 1, wherein a thin Sio2 film is formed at the interface with the 20S film.
JP10099884A 1984-05-18 1984-05-18 Nonvolatile semiconductor memory device Pending JPS60245179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099884A JPS60245179A (en) 1984-05-18 1984-05-18 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099884A JPS60245179A (en) 1984-05-18 1984-05-18 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS60245179A true JPS60245179A (en) 1985-12-04

Family

ID=14288957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099884A Pending JPS60245179A (en) 1984-05-18 1984-05-18 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS60245179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677438A (en) * 1990-09-22 1994-03-18 Samsung Electron Co Ltd Manufacture and structure for nonvolatile semiconductor memory device provided with storage cell array and with peripheral circuit
JP2005537662A (en) * 2002-08-29 2005-12-08 フリースケール セミコンダクター インコーポレイテッド Dielectric storage memory cell (MONOS) with high dielectric constant top dielectric and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677438A (en) * 1990-09-22 1994-03-18 Samsung Electron Co Ltd Manufacture and structure for nonvolatile semiconductor memory device provided with storage cell array and with peripheral circuit
JP2005537662A (en) * 2002-08-29 2005-12-08 フリースケール セミコンダクター インコーポレイテッド Dielectric storage memory cell (MONOS) with high dielectric constant top dielectric and method therefor

Similar Documents

Publication Publication Date Title
JP2933902B2 (en) Method for incorporating non-volatile memory and logic components into a single sub-0.3 micron fabrication process to obtain integrated non-volatile memory
JPH10163348A (en) Manufcture of nonvolatile semiconductor storage device
JP2001156276A (en) Forming method of gate oxide layer of different thickness
US5679590A (en) Method for manufacturing contact hole for a nonvolatile semiconductor device
RU2168797C2 (en) Process of manufacture of elements of structures of very small size on semiconductor substrate
JPS60245179A (en) Nonvolatile semiconductor memory device
JP3054422B2 (en) Method for manufacturing semiconductor device
JPH08107158A (en) Floating gate type non-volatile semiconductor memory device and manufacture thereof
JP3436315B2 (en) Method of manufacturing MONOS type semiconductor nonvolatile memory device and method of manufacturing semiconductor device
JP2650925B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3082288B2 (en) Thin film memory transistor and method of manufacturing the same
JPH10189922A (en) Manufacture of flash memory element
JPH04196175A (en) Semiconductor device and manufacture thereof
TWI304642B (en)
JPH09298281A (en) Manufacturing method of semiconductor device
JPS6042632B2 (en) semiconductor equipment
JPH06196497A (en) Manufacture of semiconductor device
JP3138538B2 (en) Semiconductor nonvolatile memory element and method of manufacturing the same
KR0150669B1 (en) Forming method of dielectric material film in the semiconductor device
JPS6336575A (en) Manufacture of semiconductor device
JPH1154639A (en) Nonvolatile semiconductor memory and fabrication thereof
JPS61236165A (en) Semiconductor memory device and manufacture thereof
JPH09129758A (en) Manufacture of semiconductor integrated circuit device
JP2000332014A (en) Insulating film
JPH0936358A (en) Fabrication of semiconductor device