JPS60244924A - Multi-layered liquid crystal panel - Google Patents

Multi-layered liquid crystal panel

Info

Publication number
JPS60244924A
JPS60244924A JP59102288A JP10228884A JPS60244924A JP S60244924 A JPS60244924 A JP S60244924A JP 59102288 A JP59102288 A JP 59102288A JP 10228884 A JP10228884 A JP 10228884A JP S60244924 A JPS60244924 A JP S60244924A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal panel
transparent substrate
substrate
thin glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59102288A
Other languages
Japanese (ja)
Inventor
Haruo Watanabe
晴男 渡辺
Eiichi Tajima
田島 栄市
Masaaki Matsunaga
正明 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP59102288A priority Critical patent/JPS60244924A/en
Publication of JPS60244924A publication Critical patent/JPS60244924A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To output information made of high-density picture elements to a multi-layered liquid crystal panel by using a composite transparent substrate having two sheets of extra-thin glass or plastic films to form the intermediate transparent substrate of the multi-layered liquid crystal panel consisting of >=2 layers. CONSTITUTION:The intermediate transparent substrate 30 is constituted with the composite glass substrate formed by adhering extra-thin glass 15 and 19 by an adhesive agent 110 and disposing transparent electrodes 16, 14. Transparent electrodes 12, 17 are further provided via a liquid crystal 13 and the transparent substrates 11, 18 are laminated on the outside thereof. The product which is made stabler than the product having the same thickness by the resilience of the resin and permits easy working is thus manufactured and the higher density is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度画素液晶パネルに関し、さらに詳しく
は、液晶層を多層にした高密度画素液晶パネルに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-density pixel liquid crystal panel, and more particularly to a high-density pixel liquid crystal panel having multiple liquid crystal layers.

〔発明の背景〕[Background of the invention]

近年、液晶表示パネルは白黒表示から多色カラー、さら
にフルカラー表示の開発が進められている。液晶パネヌ
はCRTに比較し、小型、薄形、低消費電力、ICとの
易結合性等の特性が期待されている。情報出力端末の機
能として、情報密度の向上への努力が続けられてきた。
In recent years, the development of liquid crystal display panels from black and white display to multicolor and even full color display is progressing. Compared to CRTs, liquid crystal panels are expected to have characteristics such as being smaller, thinner, lower power consumption, and easier to connect with ICs. Efforts have been made to improve the information density of information output terminals.

ひとつは、電圧平均化法によるダイナミック駆動のハイ
デユーティ化であり、もうひとつは、トランジスタスイ
ッチング、MIM素子、ダイオード等の非線形素子によ
るアクティブ駆動である。この結果、高密度画素化と同
時にフルカラー液晶パネルの具体的な開発が始まった。
One is high-duty dynamic drive using a voltage averaging method, and the other is active drive using nonlinear elements such as transistor switching, MIM elements, and diodes. As a result, concrete development of full-color liquid crystal panels began at the same time as increasing pixel density.

この高密度画素化の要求は非常に強く、3次元多層化に
関し工夫がなされていた。
There is a very strong demand for higher pixel density, and efforts have been made to create three-dimensional multilayers.

〔従来技術と問題点〕[Conventional technology and problems]

液晶パネルの多層化は、情報の高密度化の目的のために
従来から検討されており、第4図は多層構造の代表例と
して2層化した液晶パネルの断面図である。41.48
は透明基板であり、42.44.46.47は透明電極
、46は液晶、45は中間透明基板である。第2図は、
高解像度を利用したカラーフィルター形のカラー液晶パ
ネルの断面図である。21.28は透明基板であり、2
2.24.26.27は透明電極、26は液晶、29は
カラーフィルター、210は接着層、211はカラーフ
ィルターと液晶の完全分離、平坦性、透明電極の射影成
性と安定性、配向力の安定性を持させることが可能な超
薄板ガラス又はプラスチックフィルムである(この21
1に関しては、特願昭 P−8248,58,3,31
に出願しである)。
Multilayering of liquid crystal panels has been studied for the purpose of increasing information density, and FIG. 4 is a cross-sectional view of a two-layered liquid crystal panel as a representative example of a multilayer structure. 41.48
is a transparent substrate, 42, 44, 46, 47 are transparent electrodes, 46 is a liquid crystal, and 45 is an intermediate transparent substrate. Figure 2 shows
1 is a cross-sectional view of a color filter-type color liquid crystal panel that utilizes high resolution. 21.28 is a transparent substrate, 2
2.24.26.27 is transparent electrode, 26 is liquid crystal, 29 is color filter, 210 is adhesive layer, 211 is complete separation of color filter and liquid crystal, flatness, projective property and stability of transparent electrode, alignment force It is an ultra-thin glass or plastic film that can have the stability of
Regarding 1, patent application Sho P-8248, 58, 3, 31
).

また25は本発明に関係する中間透明基板である。これ
ら第4図、第2図の構造を種々実験した結果、中間透明
基板に問題点があった。上液晶層と下液晶の分離基板で
ある中間透明基板が厚いと、画素間の段差、視差による
画素間の干渉が発生する欠点があり実用的でなかった。
Further, 25 is an intermediate transparent substrate related to the present invention. As a result of various experiments on the structures shown in FIGS. 4 and 2, there was a problem with the intermediate transparent substrate. If the intermediate transparent substrate that separates the upper liquid crystal layer and the lower liquid crystal layer is thick, it is not practical because of the disadvantage that interference between pixels occurs due to steps between pixels and parallax.

これを解決する方法として、各画素を上液晶層と上液晶
層を燥り返し設けるのではなく、画面を2分割して一ト
液晶層と上液晶層に割り振る工夫もなされたが、中央部
の段差の解決が十分でなかった。この解決法は、単純明
快であり中間透明基板の厚みを薄くすることにある。し
かし超薄板ガラスは液晶パネルの組立(加圧焼成する)
工程で非常に破壊しやすく実用的でなかった。また完成
パネルの対衝撃においても常に不安定性を残し実用不可
能であり、特に大型(例えば50X50−以上)になれ
ば、その面積に対応して破壊しやすくなった。
As a way to solve this problem, instead of providing each pixel with an upper liquid crystal layer and an upper liquid crystal layer, the screen was divided into two and divided into one liquid crystal layer and an upper liquid crystal layer. The resolution of the difference in level was not sufficient. The solution is simple and consists in reducing the thickness of the intermediate transparent substrate. However, ultra-thin glass is used for assembly of liquid crystal panels (pressure firing).
It was extremely easy to break during the process and was impractical. In addition, the completed panel always remains unstable in terms of impact resistance, making it impractical, and especially when it becomes large (for example, 50 x 50- or more), it becomes easy to break corresponding to its area.

次に工程の問題として、1枚基板の両面に高密度の微細
パターンを形成することは、つぎの点に問題がある。一
方の面(以下A面)を微細パターン形成後、他方の面(
以下B面)を微細パターンする時にA面側をエツチング
防止のために保護膜で被う必要がある。微細パターンを
A面、B面共に形成することは1面のみパターン化する
ことに比較して歩留りを非常に悪(する。
Next, as a process problem, forming a high-density fine pattern on both sides of a single substrate has the following problems. After forming a fine pattern on one side (hereinafter referred to as A side), the other side (hereinafter referred to as side A) is
When forming a fine pattern on side B), it is necessary to cover side A with a protective film to prevent etching. Forming fine patterns on both the A side and the B side has a very poor yield compared to patterning only one side.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような欠点を解消させた多層液晶パネル
とし、高密度画素化した情報出力端末としての画面を形
成することを目的とするものである。
It is an object of the present invention to provide a multilayer liquid crystal panel that eliminates the above-mentioned drawbacks, and to form a screen as an information output terminal with high pixel density.

〔発明の実施例〕[Embodiments of the invention]

以下図面にもとすき本発明を説明する。 The present invention will be explained below with reference to the drawings.

第3図は本発明による多層白黒液晶パネルの中間透明基
板の断面図であり、第1図は第3図の中間透明基板を用
いて組立てた多層白黒液晶パネルの一実施例を示す断面
図である。第3図の中間透明基板は、超薄板ガラス61
.62を接着剤65で接着し、透明電極66.64を配
設した複合ガラス基板である。
FIG. 3 is a cross-sectional view of an intermediate transparent substrate of a multilayer black-and-white liquid crystal panel according to the present invention, and FIG. 1 is a cross-sectional view showing an embodiment of a multilayer black-and-white liquid crystal panel assembled using the intermediate transparent substrate of FIG. be. The intermediate transparent substrate in FIG. 3 is an ultra-thin glass plate 61.
.. 62 is bonded with an adhesive 65, and transparent electrodes 66 and 64 are arranged on the composite glass substrate.

第1図において、超薄板ガラス15.19、接着層11
0、透明電極14.16が第3図の中間透明基板と同様
であり、11.18は透明基板、12.17は透明電極
、16は液晶、110は接着剤により超薄板ガラス15
.19を接着した接着層である。同様に第5図は、不発
明の他の実施例による多層カラi液晶パネルの中間透明
カラー基板の断面図であり、第6図は第5図の中間透明
カラー基板を用いて組立てた多層カラー液晶パネルの断
面図である。
In FIG. 1, ultra-thin glass 15.19, adhesive layer 11
0. The transparent electrodes 14 and 16 are the same as the intermediate transparent substrate shown in FIG.
.. This is an adhesive layer on which 19 is adhered. Similarly, FIG. 5 is a sectional view of an intermediate transparent color substrate of a multilayer color I-LCD panel according to another embodiment of the invention, and FIG. FIG. 3 is a cross-sectional view of a liquid crystal panel.

第5図の中間透明カラー基板は超薄板ガラス5L 52
の間にカラーフィルター55を配設し、超薄板ガラス5
2とカラーフィルター55を接着し、透明電極56.5
4を配設した複合ガラス基板である。カラーフィルター
55のうち55−aは赤、55−bは緑、55−cは青
であり、56は接着層である。第6図において、超薄板
ガラス65.611、接着剤610、カラーフィルター
69、透明電極64.66が第5図の中間透明カラー基
板と同一であり、61.68は透明基板、62.67は
透明電極、66は液晶、610は接着剤である。
The intermediate transparent color substrate in Figure 5 is ultra-thin glass 5L 52
A color filter 55 is arranged between the ultra-thin glass 5
2 and a color filter 55 are glued together, and a transparent electrode 56.5 is attached.
This is a composite glass substrate on which 4 is arranged. Of the color filters 55, 55-a is red, 55-b is green, 55-c is blue, and 56 is an adhesive layer. In FIG. 6, ultra-thin glass 65.611, adhesive 610, color filter 69, and transparent electrodes 64.66 are the same as the intermediate transparent color substrate in FIG. 5, 61.68 is a transparent substrate, and 62.67 is A transparent electrode, 66 a liquid crystal, and 610 an adhesive.

さらにカラー液晶パネル構造として図示しないが、基本
的には第2図の多層カラー液晶パネルの構造を用い、中
間透明基板のみを・変更して、中間透明基板として第3
図の中間透明基板を利用しても−よい。
Although not shown as a color liquid crystal panel structure, basically the structure of the multilayer color liquid crystal panel shown in FIG. 2 is used, only the intermediate transparent substrate is changed, and a third transparent substrate is used as the intermediate transparent substrate.
The intermediate transparent substrate shown in the figure may also be used.

つぎに使用する各部材と製法に関して記す。超薄板ガラ
ス(例えばコーニング社の#0211)の厚みは下限が
50μからある。電極形成は、ガラス表面の物性は厚み
に依存しないため従来と全く同じ条件でよく、特別に低
温条件を選択する必要がない。接着剤は感光性接着剤、
熱硬化性接着剤、感熱性接着剤、感圧性接着剤等広く利
用可能である。積層方法の簡便さを考えると、常圧下で
無気泡積層できることが好ましい。
Next, we will describe each component used and the manufacturing method. The lower limit of the thickness of ultra-thin glass (for example, #0211 manufactured by Corning Co., Ltd.) is 50 μm. Since the physical properties of the glass surface do not depend on the thickness, electrode formation can be performed under exactly the same conditions as in the past, and there is no need to specially select low-temperature conditions. The adhesive is photosensitive adhesive,
It can be widely used as thermosetting adhesives, heat-sensitive adhesives, pressure-sensitive adhesives, etc. Considering the simplicity of the lamination method, it is preferable that the lamination can be carried out without bubbles under normal pressure.

またカラーフィルター表面の凸凹形状や超薄板ガラス積
層体(中間透明基板)の平坦性を出すためには、液状接
着剤である感光性接着剤や熱硬化性接着剤が好ましい。
Further, in order to achieve the uneven shape of the color filter surface and the flatness of the ultra-thin glass laminate (intermediate transparent substrate), a liquid adhesive such as a photosensitive adhesive or a thermosetting adhesive is preferable.

方法は加圧法と回転法がある。加圧法は圧力てより被膜
を全体に広げた後、光又は熱エネルギーにより硬化させ
る方法であり、回転法は、両基板の中間に設けだ液滴を
遠心力により全体に広げた後、光又は熱エネルギーによ
り硬化させる方法である。カラーフィルターは印刷法、
ホトリソ法、顔料蒸着法、顔料吸着法、染料転写法等、
種々の製法があるが、特に限定されることはない。
There are two methods: pressure method and rotation method. The pressure method is a method in which the coating is spread over the entire surface using pressure and then cured using light or thermal energy.The rotation method is a method in which a droplet placed between both substrates is spread over the entire surface using centrifugal force and then cured using light or thermal energy. This is a method of curing using thermal energy. Color filters are printed using printing methods.
Photolithography method, pigment vapor deposition method, pigment adsorption method, dye transfer method, etc.
There are various manufacturing methods, but there are no particular limitations.

液晶パネルの組立は特に問題はな〈従来と同様に、配向
剤塗布・ラビング・封止剤印刷・積層・液晶注入・封孔
すればよい。
There are no particular problems in assembling the liquid crystal panel (just apply alignment agent, rub, print sealant, lamination, inject liquid crystal, and seal the holes in the same way as before).

つぎに中間透明基板の厚み依存による視差に関してのべ
る、この視差は正確に理論計算できる。
Next, we will talk about the parallax depending on the thickness of the intermediate transparent substrate.This parallax can be accurately calculated theoretically.

理論計算のためのモデル図を第7図及び第8図に示す。Model diagrams for theoretical calculations are shown in FIGS. 7 and 8.

第7図及び第8図に於いて、 X:視差(ずれ) d:CF−LC間の距離 θ:入射角 n:パネル(基板)の屈折率 !=パネルの横幅 p、e=視距離゛ ql:原点垂線からの距離 とすれば 理論式は、 となる。パネルの屈折率を基板(ソーダ石灰ガラス)の
屈折率151にとり、視距離をパネル画面幅の2倍から
4倍まで変え、カラーフィルターと液晶間の距離と斜光
の程度を示すd、qを変えて計算した結果を表に示した
In FIGS. 7 and 8, X: parallax (displacement) d: distance between CF and LC θ: angle of incidence n: refractive index of panel (substrate)! = Width of panel p, e = viewing distance ゛ql: Distance from the perpendicular to the origin, then the theoretical formula is as follows. The refractive index of the panel is set to 151 of the substrate (soda lime glass), the viewing distance is changed from 2 times to 4 times the panel screen width, and d and q, which indicate the distance between the color filter and the liquid crystal and the degree of oblique light, are changed. The calculated results are shown in the table.

n=1.51 p=2 Q 20 50 80 100 120 150 20
0 ’300 d(μ)i1=lJl 1)=2.5 q20 50 80 100 120 150 200
 300 d(μ)4、 13 33 54 67 8
1 101 135 203n =1.51 p=3 Q 20 50 80 100 120 150 20
0 300 d(μ)o ooo o o o o 。
n=1.51 p=2 Q 20 50 80 100 120 150 20
0 '300 d(μ)i1=lJl 1)=2.5 q20 50 80 100 120 150 200
300 d(μ) 4, 13 33 54 67 8
1 101 135 203n =1.51 p=3 Q 20 50 80 100 120 150 20
0 300 d(μ) o ooo o o o o o.

O,52581013162132 1410172125324264 1,56152431374662932719313
9475978118 2592337465670931403102642
52637910515841231496274’ 
93 124 187n=1.51 1)=35 q20 50 so 100 120 150 200
 300 d(μ)o ooo o o o o 。
O,52581013162132 1410172125324264 1,56152431374662932719313
9475978118 2592337465670931403102642
52637910515841231496274'
93 124 187n=1.51 1)=35 q20 50 so 100 120 150 200
300 d(μ) o ooo o o o o o.

1.5 5 13 21 27 32 40 54 8
13 9 23 38 47 57 71 95 14
33.5 10 26 42 52 63 79 10
5 1584 11 28 45 57 68 86 
114 172n==1.5] p二4 q 20 50 80 100 120 150 20
0 300 d(μ)液晶パネルの画像は視野角に限定
される。特にTN型のパッシブ形方式に最も大きくその
傾向が発現する。一般に視距離は画面の3倍と考えられ
るのでp=3をとり、具体的な1例として、走査線数、
開口率(画像の明るさ、コントラストに重要な要素)、
大画面微細パターン形成(特に断線の発生)等を検討し
た結果、2重方式の画素間隔を60μ(微細線幅15μ
、電極配線間隔15μ)が良好であった。液晶パネル、
特にTN型のパッシブパネルは、機械と人間が1対1で
使用し、かつ優先視野角方向に合わせて利用するのが一
般化しておりqを3.4とかならずしも大きく取る必要
がない。
1.5 5 13 21 27 32 40 54 8
13 9 23 38 47 57 71 95 14
33.5 10 26 42 52 63 79 10
5 1584 11 28 45 57 68 86
114 172n==1.5] p24 q 20 50 80 100 120 150 20
0 300 d(μ) The image of a liquid crystal panel is limited to a viewing angle. In particular, this tendency is most pronounced in the TN type passive type system. In general, the viewing distance is considered to be three times the screen, so p = 3, and as a specific example, the number of scanning lines,
Aperture ratio (important element for image brightness and contrast),
As a result of studying large-screen fine pattern formation (particularly the occurrence of wire breaks), we decided to increase the pixel spacing of the double system to 60μ (fine line width: 15μ).
, the electrode wiring spacing was 15 μm). LCD panel,
In particular, TN type passive panels are generally used one-on-one by a machine and a human, and are used in accordance with the preferred viewing angle direction, so it is not necessary to set q to 3.4 or a large value.

これらのことから、qを1とすると、超薄板ガラスの厚
みは300μ以下である必要が発生した。
For these reasons, when q is 1, the thickness of the ultra-thin glass needs to be 300 μm or less.

これは特にカラー画像の色ずれに対して特に重要であっ
た。
This was particularly important for color shifts in color images.

〔発明の効果〕〔Effect of the invention〕

以上の実施例から明らかなように、本発明によれば、 ■ 超薄板ガラスの微細パターン形成は片面のみでよく
歩留りに非常に有利である。
As is clear from the above embodiments, according to the present invention, (1) The formation of fine patterns on ultra-thin glass can be performed only on one side, which is very advantageous in terms of yield.

■ 超薄板ガラスの層間に樹脂層(接着層)を設けたこ
とにより、樹脂の柔軟性が発現し、同厚みの薄板ガラス
より大きく安定化した。
■ By installing a resin layer (adhesive layer) between the layers of ultra-thin glass, the resin becomes more flexible and is more stable than thin glass of the same thickness.

この複合ガラス構造は、液晶パネル組立の加圧工程と完
成体の衝撃テストにおいて非常に有効であった。
This composite glass structure was very effective in the pressurizing process of LCD panel assembly and in the impact test of the completed product.

■ カラー液晶パネルにおいて、カラーフィルター層と
液晶層を完全に分離でき、化学的相互作用によるカラー
フィルターの変退色防止と、液晶中への不純物拡散を防
止できた。
■ In a color liquid crystal panel, the color filter layer and liquid crystal layer can be completely separated, preventing discoloration of the color filter due to chemical interaction and preventing impurities from diffusing into the liquid crystal.

以上のように多層液晶パネルの中間透明基板に超薄板ガ
ラスの複合ガラス構造とした基板を用いることにより、
情報端末機器としての目的である高密度化を達成するこ
とができた。なお、対向基板は、パッシブ基板、アクテ
ィブ基板(TPT。
As described above, by using a substrate with a composite glass structure of ultra-thin glass as the intermediate transparent substrate of a multilayer liquid crystal panel,
We were able to achieve high density, which is the goal of information terminal equipment. Note that the counter substrate is a passive substrate or an active substrate (TPT).

MIM、ダイオード等)等測でもよく、特に限定される
ものではない。液晶表示方式は一対の偏光板を用いるT
N型、染料を液晶に溶解したGHW等特に限定されるも
のでな(、複合して利用してもよい。
MIM, diode, etc.) may be used, and is not particularly limited. The liquid crystal display method uses a pair of polarizing plates.
There are no particular limitations, such as N-type, GHW in which dye is dissolved in liquid crystal, etc. (although they may be used in combination.

また電極も透明電極のみでなく低抗抵化のためにメタル
配線を入れてあってもよい。また2層液晶パネルを例に
とり説明してきたが、3層以上のパネルでもよい。
Furthermore, the electrodes may not only be transparent electrodes, but may also include metal wiring in order to lower the resistance. Further, although the explanation has been given using a two-layer liquid crystal panel as an example, a panel having three or more layers may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第4図、第2図は従来技術を示す断面図で、第4図は多
層白黒液晶パネル、第2図は多層カラー液晶パネルであ
り、第3図、第1図は本発明の一実施例の断面図で、第
3図は複合ガラス基板、第1図は第3図の複合ガラス基
板を用いた多層白黒液晶パネル、第5図、第6図は本発
明の他の実施例の断面図で、第5図はカラーフィルター
を内包した複合ガラス基板、第6図は第5図の複合ガラ
ス基板を用いた多層カラー液晶パネル、第7図、第8図
は理論計算のためのモデル図である。 11.18.61.68・・・・・・透明基板、16.
66・・・・・・液晶、 15.19.61.32.51.52.65.611・
・・・・・超薄板ガラス、 12.14.16.17.66.34.53.54.6
2.64.66.67・・・・・・透明電極、35.6
10・・・・・・接着剤、 55.69・・・・・・カラーフィルター、56.11
0・・・・・・接着層。 特許出願人 シチズン時計株式会社 第1図 第2図 第3図 第4vR 第6図
4 and 2 are cross-sectional views showing the prior art, in which FIG. 4 shows a multilayer black and white liquid crystal panel, FIG. 2 shows a multilayer color liquid crystal panel, and FIGS. 3 and 1 show an embodiment of the present invention. 3 is a sectional view of a composite glass substrate, FIG. 1 is a multilayer black and white liquid crystal panel using the composite glass substrate of FIG. 3, and FIGS. 5 and 6 are sectional views of other embodiments of the present invention. Figure 5 shows a composite glass substrate containing a color filter, Figure 6 shows a multilayer color liquid crystal panel using the composite glass substrate shown in Figure 5, and Figures 7 and 8 are model diagrams for theoretical calculations. be. 11.18.61.68...Transparent substrate, 16.
66...LCD, 15.19.61.32.51.52.65.611.
...Ultra-thin glass, 12.14.16.17.66.34.53.54.6
2.64.66.67...Transparent electrode, 35.6
10...Adhesive, 55.69...Color filter, 56.11
0...Adhesive layer. Patent applicant Citizen Watch Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4vR Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1) 液晶層が2層以上の多層液晶パネルにおいて、
中間透明基板が2板の超薄板ガラス又はプラスチックフ
ィルムを有する複合透明基板からなることを特徴とする
多層液晶パネル。
(1) In a multilayer liquid crystal panel with two or more liquid crystal layers,
A multilayer liquid crystal panel characterized in that the intermediate transparent substrate is composed of a composite transparent substrate having two ultra-thin glass or plastic films.
(2)複合透明基板の総厚が300μ以下であることを
特徴とする特許請求の範囲第1項記載の多層液晶パネル
(2) The multilayer liquid crystal panel according to claim 1, wherein the total thickness of the composite transparent substrate is 300 μm or less.
(3)複合透明基板の間にカラーフィルター層を設けて
なる特許請求の範囲第1項記載の多層液晶パネル。
(3) The multilayer liquid crystal panel according to claim 1, wherein a color filter layer is provided between the composite transparent substrates.
JP59102288A 1984-05-21 1984-05-21 Multi-layered liquid crystal panel Pending JPS60244924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102288A JPS60244924A (en) 1984-05-21 1984-05-21 Multi-layered liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102288A JPS60244924A (en) 1984-05-21 1984-05-21 Multi-layered liquid crystal panel

Publications (1)

Publication Number Publication Date
JPS60244924A true JPS60244924A (en) 1985-12-04

Family

ID=14323422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102288A Pending JPS60244924A (en) 1984-05-21 1984-05-21 Multi-layered liquid crystal panel

Country Status (1)

Country Link
JP (1) JPS60244924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596430A (en) * 1993-08-20 1997-01-21 International Business Machines Corporation Distributed index light deflector and method of light deflection
US6347742B2 (en) * 1999-06-14 2002-02-19 International Business Machines Corporation Variable focal length lenses
US6906762B1 (en) 1998-02-20 2005-06-14 Deep Video Imaging Limited Multi-layer display and a method for displaying images on such a display
US9137525B2 (en) 2002-07-15 2015-09-15 Pure Depth Limited Multilayer video screen
US9721378B2 (en) 2001-10-11 2017-08-01 Pure Depth Limited Display interposing a physical object within a three-dimensional volumetric space

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596430A (en) * 1993-08-20 1997-01-21 International Business Machines Corporation Distributed index light deflector and method of light deflection
US6906762B1 (en) 1998-02-20 2005-06-14 Deep Video Imaging Limited Multi-layer display and a method for displaying images on such a display
US6347742B2 (en) * 1999-06-14 2002-02-19 International Business Machines Corporation Variable focal length lenses
US9721378B2 (en) 2001-10-11 2017-08-01 Pure Depth Limited Display interposing a physical object within a three-dimensional volumetric space
US10262450B2 (en) 2001-10-11 2019-04-16 Pure Depth Limited Display interposing a physical object within a three-dimensional volumetric space
US9137525B2 (en) 2002-07-15 2015-09-15 Pure Depth Limited Multilayer video screen

Similar Documents

Publication Publication Date Title
JPS59180525A (en) Color liquid crystal display panel
JPH0493924A (en) Liquid crystal display device
JP3625396B2 (en) Display device
JP2007529771A (en) Color display device and manufacturing method thereof
US7375776B2 (en) Color filter and in plane switching type liquid crystal display using the same
JP3210791B2 (en) Method for manufacturing color liquid crystal display device
JPS6026320A (en) Optical modulator
JP3575135B2 (en) Liquid crystal display
JP2003255321A (en) Color display device
JPS60244924A (en) Multi-layered liquid crystal panel
KR101941444B1 (en) Liquid crystal display device having touch and three dementional display functions and method for manufacturing the same
JP2004151202A (en) Liquid crystal display device and method for manufacturing the same
JP4057816B2 (en) Liquid crystal display
JP3202192B2 (en) Liquid crystal display device and manufacturing method thereof
JPH1068961A (en) Liquid crystal display device, manufacture thereof and driving methods therefor
US7423709B2 (en) Color filter substrate, manufacturing method of color filter substrate, active matrix type liquid crystal display, and manufacturing method of active matrix type liquid crystal display
JP2003255390A (en) Liquid crystal display
KR100709711B1 (en) color filter panel and manufacturing method thereof and liquid crystal display including the same
JP2003131239A (en) Liquid crystal display device
JP2000221494A (en) Reflective liquid crystal display device
JPH0362019A (en) Color liquid crystal display element
JPH0462503A (en) Color filter
JP2018128669A (en) Polarizing plate, method for manufacturing polarizing plate, and display
JP2757942B2 (en) Manufacturing method of color filter substrate for liquid crystal display
JPS63226626A (en) Color liquid crystal display element