JPS60244822A - Measuring method of spectral transmissivity of polarizing sample - Google Patents

Measuring method of spectral transmissivity of polarizing sample

Info

Publication number
JPS60244822A
JPS60244822A JP10145984A JP10145984A JPS60244822A JP S60244822 A JPS60244822 A JP S60244822A JP 10145984 A JP10145984 A JP 10145984A JP 10145984 A JP10145984 A JP 10145984A JP S60244822 A JPS60244822 A JP S60244822A
Authority
JP
Japan
Prior art keywords
sample
polarizer
light
transmittance
transmissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10145984A
Other languages
Japanese (ja)
Other versions
JPH0565804B2 (en
Inventor
Osamu Akiyama
修 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP10145984A priority Critical patent/JPS60244822A/en
Publication of JPS60244822A publication Critical patent/JPS60244822A/en
Publication of JPH0565804B2 publication Critical patent/JPH0565804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain the transmissivety of the titled polarizing sample to natural light by making the projection light of a spectroscope incident on the polarizing sample through a linear polarizer, rotating the linear polarizer and polarizing sample by 90 deg. relatively, and averaging transmissivity values before and after the rotation. CONSTITUTION:The projection light of the spectroscope is made incident on the polarizing sample. The linear polarizer and polarizing sample are rotated relatively and an equation I is estimated from measure apparent transmissivity. An equation II is derived from the equation II. This equation II shows the relation between the apparent transmissivity and angular position of rotation of the polarizing sample on the optical axis of a spectrophotometer. When natural light is incident, light only in one polarization direction is reduced in energy to half and denoted as (a/2)+c. Therefore, the average of transmissivity gamma(theta+pi/2) at the time of 90 deg. rotation and transmissivity gamma(theta) at the time of 0 deg. is the transmissivity to the natural light.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明は偏光性試料の自然光に対する分光透過率を測定
する分光透過率測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a spectral transmittance measuring device for measuring the spectral transmittance of a polarizing sample to natural light.

口 従来技術 分光透過率の測定1こは分光光度計が用いられる。Mouth Conventional technology Measurement of spectral transmittance 1 A spectrophotometer is used.

所が偏光性試料の分光透過率を測定しようとする場合に
は、分光器自身の偏光特性が問題になってくる。分光器
に用いられる分散素子である回折格子は著るしい偏光特
性を有しており、しかも偏光特性は波長によって異って
いるから、回折格子を用いた分光器も波長に依存した偏
光特性を有する。
However, when attempting to measure the spectral transmittance of a polarizing sample, the polarization characteristics of the spectrometer itself become a problem. Diffraction gratings, which are dispersive elements used in spectrometers, have significant polarization properties, and the polarization properties vary depending on the wavelength, so spectrometers using diffraction gratings also have wavelength-dependent polarization properties. have

プリズムを用いた分光器でも、プリズム及び分光器を構
成する他の光学素子の表面反射率がよく知られているよ
うに偏光特性を有しているので、回折格子を用いた分光
器程ではないが偏光特性を呈する。しかもこの偏光特性
は分光器毎に異っている。従って偏光性試料の場合分光
光度計を用いて単純に透過率を測定するだけでは一義的
な意味のある透過率の値は得られないつ 偏光性を持った試料としては偏光子そのものもあるが、
薄膜試料や斜入射に対する光学部品、光学材料等がある
。従来分光光度計の応用は分光分析、種々な材料の色彩
の測定、等方性材料の透過率の測定等であったから、分
光器の偏光特性が問題にされることは殆どなく、分光器
の偏光特性自体明かIこはされていなかった。
Even spectrometers using prisms have polarization characteristics, as is well known, as the surface reflectance of the prism and other optical elements that make up the spectrometer is not as good as that of spectrometers using diffraction gratings. exhibits polarization properties. Moreover, this polarization characteristic differs depending on the spectrometer. Therefore, in the case of a polarizing sample, simply measuring the transmittance using a spectrophotometer will not give a meaningful transmittance value.An example of a polarizing sample is the polarizer itself. ,
These include thin film samples, optical components for oblique incidence, and optical materials. Traditionally, spectrophotometers have been used for spectroscopic analysis, measuring the color of various materials, and measuring the transmittance of isotropic materials, so the polarization characteristics of spectrometers have rarely been an issue; The polarization characteristics themselves had not been clearly determined.

しかし近時、薄膜工学の進歩シこより薄膜の利用が増加
しており、光ファイバー応用の広がり、レーザーの普及
による偏光を扱う機会の増加等の技術進歩の結果偏光性
試料の正確な分光透過率の測定、従来看過されて来た色
々な材料、装置の偏光特性の再検討の必要性が高まって
来た。
However, in recent years, the use of thin films has increased due to advances in thin film engineering, and technological advances such as the spread of optical fiber applications and increased opportunities to handle polarized light due to the spread of lasers have resulted in accurate spectral transmittance of polarized samples. There is an increasing need to reconsider the polarization characteristics of various materials and devices that have been overlooked in the past.

ハ 目的 本発明は分光光度計が任意の分光偏光特性を有すること
を容認し、そのような分光光度計を用いて偏光性試料に
対して一義的Iこ意味のある自然光即ち全ての方向の偏
光を同じ割合で含んでいる光に対する分光透過率を測定
する方法を提供しようとするものである。
C. Purpose The present invention allows a spectrophotometer to have arbitrary spectral polarization characteristics, and uses such a spectrophotometer to detect unique natural light, i.e., polarized light in all directions, for a polarized sample. The purpose of the present invention is to provide a method for measuring the spectral transmittance of light containing the same proportions.

二構成 本発明は分光器出射光を直線偏光子を通して試料に入射
させ、上記直線偏光子と試料との光学系の光軸に垂直な
面内での相対的な角位置を90゜変えてその油浸におけ
る透過率を測定し、その平均値を計算して自然光に対す
る透過率とするものである。こ\で偏光子と試料との角
位置と云うのは、分光器出射光を試料に入射させる光学
系の光軸を軸として偏光子及び試料が回転するときの相
互の方向の関係を表わすものである。つまり偏光子及び
試料夫々に光軸に垂直な方向1こ一本の目印をつけたと
して、両者の目印の間の角度のことである。またこ\で
相対的と云っているのは試料を固定して偏光子を90°
回わしても、偏光子を固定して試料を90°回わしても
同じであると云うことであり、両方を共に回りして角位
@を90゜変えることは含まない。どちらか−万だけを
90゜回わすと云うことである。
Two configurations The present invention makes spectrometer output light incident on a sample through a linear polarizer, and changes the relative angular position of the linear polarizer and the sample in a plane perpendicular to the optical axis of the optical system by 90 degrees. The transmittance in oil immersion is measured, and the average value is calculated and used as the transmittance for natural light. The angular position between the polarizer and the sample here refers to the relationship between the mutual directions when the polarizer and the sample rotate around the optical axis of the optical system that makes the spectrometer output light incident on the sample. It is. In other words, assuming that one mark is placed on each of the polarizer and the sample in the direction perpendicular to the optical axis, it is the angle between the two marks. Also, when I say relative here, I mean fix the sample and set the polarizer at 90°.
This means that it is the same whether the polarizer is rotated or the sample is rotated by 90° with the polarizer fixed, and does not include changing the angular position by 90° by rotating both together. This means that only one of the numbers - 10,000 is turned 90 degrees.

以下上述したようにして自然光に対する透過率がめられ
る根拠を説明する。第3図A−Dは幾つかの分光器の分
光偏光特性を示す。この特性は測定試料として偏光子を
用い、偏光子を光学系の光軸を回転中心として回わして
みかけの透過率を測定してプロットすることによりめら
れる。こ\でS成分と云うのは光波の電気ベクトルが回
折格子の格子線と直角の偏光、P成分と云うのは電気ベ
クトルが格子線と平行な偏光であり、0°。
The basis for determining the transmittance of natural light as described above will be explained below. 3A-3D show the spectral polarization characteristics of several spectrometers. This characteristic can be determined by using a polarizer as a measurement sample, rotating the polarizer around the optical axis of the optical system, and measuring and plotting the apparent transmittance. Here, the S component is polarized light whose electric vector is perpendicular to the grating lines of the diffraction grating, and the P component is polarized light whose electric vector is parallel to the grating lines at 0°.

90°と云うのは直線偏万子の方向で分光器のスリット
と平行な電気ベクトルを持った光成分のみを取出す方向
を90°と定義している。第3図りは特に偏光子をlθ
°ずつ回わして分光器の特性を測定した結果である。第
4図はこの第3図りの結果から任意の波長における見か
けの透過率を偏光子の角度の関数として極座標形式で画
いたものである。供試の分光器では波長450nm付近
を境にして偏光特性が反対(90°回転)になっている
。第4図でT1とT2とはこの450nmの前と後の波
長域における二つの波長位置での測定結果で透過率は最
大を100とする相対値で表わしである。第5図は直線
偏光に対する偏光子の透過率と角度の関係を示すグラフ
でこの形はγ(の−asミn θ 又はγ(の−b c
os θで表わされる。第6図は自然光に対する直線偏
光子の透過率と角度との関係で完全な円であり、γ(の
=c(一定) で表わされる。第3図りの結果は数式としてはγ(の=
aSIn θ+c−[IKTlに対する式)で表わし得
ると予想される。第4図のもとになった実測値から上式
のaをめると、 γ(の−47,8s+n θ+17.8・・・・・・・
・・・(2)となる。実測値と上式で計算したγ(のと
実測値の差を末尾の第1表に示す。誤差は最大で1.1
(誤差率2%)であるが、この実測の場合偏光子の角T
(θ)=asin CO”rへ)+c = ・・・・=
 = (31の形で表わされることは実証されていると
云える。
90° is the direction of the linear polarizer, and 90° is defined as the direction in which only the light component having an electric vector parallel to the slit of the spectrometer is extracted. The third diagram is especially for the polarizer lθ
These are the results of measuring the characteristics of the spectrometer by rotating it in degrees. FIG. 4 plots the apparent transmittance at a given wavelength as a function of the polarizer angle in polar coordinate form based on the results of the third plot. In the sample spectrometer, the polarization characteristics are reversed (rotated by 90°) at a wavelength of around 450 nm. In FIG. 4, T1 and T2 are measurement results at two wavelength positions in the wavelength range before and after 450 nm, and the transmittance is expressed as a relative value with the maximum being 100. Figure 5 is a graph showing the relationship between the transmittance of a polarizer and the angle for linearly polarized light.
It is expressed as os θ. Figure 6 shows the relationship between the transmittance of a linear polarizer for natural light and the angle, which is a perfect circle, and is expressed as γ( = c (constant).
It is expected that it can be expressed as aSIn θ+c−[formula for IKTl]. Subtracting a in the above formula from the actual measured values that are the basis for Figure 4, we get -47,8s+n θ+17.8...
...(2) becomes. The difference between the actual measured value and the actual measured value of γ calculated using the above formula is shown in Table 1 at the end.The maximum error is 1.1
(error rate 2%), but in this actual measurement, the polarizer angle T
(θ)=asin CO”r)+c= ・・・=
= (It can be said that it has been proven that it can be expressed in the form of 31.

こ\で の性質を使うと、131式から γ(θ)+7 (0+−) 7 a+2 c・・・・・
・・・・+4]と云う関係が導かれる。との関係はθの
如何に関せず成立つ。上記Ill、 t2L t3)弐
は分光器の任意波長における偏光特性を表わしているが
、見方を変えると、任意の分光器で直線偏光子の透過率
を測定したときの偏光子の角度と見かけの透過率との関
係を表わし、更に一般化すれば偏光特性を持つ試料の分
光光度計の光軸を軸とする回転の角位置と見かけの透過
率との関係を表わす。この見方によると(4)式の意味
は、試料の任意の角位置での見かけの透過率γ(のとそ
れから90°回わしだ角位置の見かけの透過率γζθ+
π/2)の平均が自然光lこ対する透過率であると云う
ことである。その理由を以下に述べる。
Using this property, from formula 131 we get γ(θ)+7 (0+-) 7 a+2 c...
...+4] is derived. The relationship holds true regardless of θ. Ill, t2L t3) 2 above represents the polarization characteristics of a spectrometer at an arbitrary wavelength, but if you look at it differently, the angle of the polarizer and the apparent value when measuring the transmittance of a linear polarizer with an arbitrary spectrometer. It represents the relationship between the transmittance and, more generally, the relationship between the angular position of rotation about the optical axis of the spectrophotometer of a sample with polarization characteristics and the apparent transmittance. According to this view, the meaning of equation (4) is that the apparent transmittance γ(at any angular position of the sample) and the apparent transmittance γζθ +
This means that the average of π/2) is the transmittance for natural light. The reason for this is explained below.

A 試料が直線偏光子の場合。A: When the sample is a linear polarizer.

(1)式に基いて議論しても一般性は失われないから(
θが任意であるから)、]1)式に基いて説明すると、
aは入射光の開光成分の電気ベクトルと偏光子とが平行
の場合(90° )の偏光成分の透過率を示し、この場
合の全透過率がa + cである。
Since generality is not lost even if we discuss based on equation (1) (
Since θ is arbitrary),]1) Based on the formula,
a represents the transmittance of the polarized light component when the electric vector of the open light component of the incident light and the polarizer are parallel (90°), and the total transmittance in this case is a + c.

偏光子の向きが0°になると偏光成分の透過率はOLこ
なるから、全透過率はCである。今分光器の出射光と同
じエネルギーを持った同波長の自然光を考えると、分光
器出射光憂こおける偏光成分基こ相当する分が全方向の
偏光にエネルギーを均分することになるので、一つの偏
光方向だけの光を取出すとエネルギーが半分になる。従
って透過光のエネルギーは(a/2)+cとなる。即ち
自然光に対する透過率はγ(のとγ(θ+π/2)との
平均である。
When the orientation of the polarizer is 0°, the transmittance of the polarized light component is OL, so the total transmittance is C. Now, if we consider natural light of the same wavelength and the same energy as the light emitted from the spectrometer, the polarization component of the light emitted from the spectrometer will equally divide the energy into polarized light in all directions. When light is extracted in only one polarization direction, the energy is halved. Therefore, the energy of the transmitted light is (a/2)+c. That is, the transmittance for natural light is the average of γ( and γ(θ+π/2)).

B 任意試料の場合 任意試料は無偏光性の部分と偏光子の部分とのモザイク
と等価である。無偏光性の部分は試料を回わしても透過
率が変らないからtl1式の定数Cの値を増すだけであ
る。偏光性の部分についてはAで述べたことが適用でき
る。従ってこの場合も、任意角位置と90°回わした角
位置の透過率の平均が自然光Sこ対する透過率となる。
B. Case of an arbitrary sample An arbitrary sample is equivalent to a mosaic of a non-polarizing part and a polarizer part. In the non-polarizing part, the transmittance does not change even if the sample is rotated, so the value of the constant C in the tl1 equation is simply increased. Regarding the polarizing part, what was said in A can be applied. Therefore, in this case as well, the average transmittance of the arbitrary angular position and the angular position rotated by 90° is the transmittance of the natural light S.

ホ 実施例 第1図は本発明の一実施例を示す。この装置は分光光度
計の試料室にセットされるアクセサリとして構成されて
いる。lはベースブロックで貫通孔1alこソケットz
、2′が挿入され、ソケット2゜2′はねじlbにより
固定される。ソケット2,2Iは円周方向に90°+X
の範囲で切欠き2a、2’aを有する。3は試料ホル)
゛で、ソケット2′に適合する挿入部3aと面板3bと
板ばね3cとよりなっている。Sは試料で面板3bと板
ばね3cとの間に押入され、板ばね3clこよって面板
3blこ押圧されてホルタ゛3に保持される。ソケット
3の挿入部3aにはピン3dが立て\ある。試料ホJL
7ダ3を挿入部3aをソケット2′に挿入することによ
りソケット2′に保持させると、ピン3dが切欠2’a
の両端に当る範囲で試料ホルダはソケット2′の中心軸
を軸として回転できる。切欠2’aの角度90°+Xの
Xはピン3dの太さに相当しているので、試料ホルダ3
は90°の角範囲で回転できる。4は偏光子ホルタ゛で
ソケット2に適合する挿入部4aを有し、4aの部分釜
こピン4bが立て\あり、試料ホルダと同様ソケット2
に挿入したとき、ピン4bがソケット2の切欠2aの両
端に当る範囲で回転でき、偏光子Pを光軸を軸として9
0°回転させることができる。分光光度計の試料室にお
ける光軸はXである。
E. Embodiment FIG. 1 shows an embodiment of the present invention. This device is configured as an accessory that is set in the sample chamber of a spectrophotometer. l is the base block through hole 1al socket z
, 2' are inserted, and the socket 2°2' is fixed with the screw lb. Sockets 2 and 2I are 90°+X in the circumferential direction
It has notches 2a and 2'a in the range. 3 is the sample hole)
It consists of an insertion part 3a that fits into the socket 2', a face plate 3b, and a leaf spring 3c. S is a sample that is pushed between the face plate 3b and the leaf spring 3c, and is held in the holder 3 by being pressed against the face plate 3bl by the leaf spring 3cl. The insertion portion 3a of the socket 3 has a pin 3d. Sample ho JL
When the pin 3d is held in the socket 2' by inserting the insertion part 3a into the socket 2', the pin 3d is inserted into the notch 2'a.
The sample holder can rotate about the central axis of the socket 2' within a range that corresponds to both ends of the socket 2'. Since the angle of 90°+X of the notch 2'a corresponds to the thickness of the pin 3d, the specimen holder 3
can be rotated through an angular range of 90°. 4 is a polarizer holder, which has an insertion part 4a that fits into the socket 2, and a partial hook pin 4b of 4a stands up, and like the sample holder, the socket 2
When the pin 4b is inserted in the
It can be rotated by 0°. The optical axis in the sample chamber of the spectrophotometer is X.

分散素子に回折格子を用いている場合、分光器の出射光
は回折格子の格子と平行な電気ベクトルを持つ偏光成分
(S成分)が最大を示す波長範囲と格子と直角な電気ベ
クトルを持つ偏光成分(P成分)が最大を示す波長範囲
がある(第3図り参照〕。従って、このような分光器の
出射光は自然方法として偏光子Pが分光器の出射スリッ
トと+45°及び−45°の角度を採り得るようにソケ
ット2をベースブロック1に固定する(第1図は0°と
90°の角度を採り得る状態が画か\れている)と、偏
光子Pの+45°の位置と−45゜の位置とで偏光子透
過光の強度は同じであり、偏光の方向が90°異ってい
る。このことは偏光子Pを+45°又は−45°の位置
に固定しておいて、試料Sの万を偏光方向がθとθ+9
0°の二◇ つの位置に切換えると等価である。つまり試料Sを固定
しておき、偏光子Pを十45°にしたときと一45°に
したときの両方で夫々試料Sの透過率を測定して平均す
れば、試料の自然光に対する透過率がまる。末尾の第2
表は試料Sとして市販の安価な薄膜型偏光子をとり、そ
の自然光に対する透過率を測定した例を示す。偏光子P
としてはグラントムソン直線偏光子を用い、測定波長は
は510nmである。この測定法では試料Sは回わさな
いのが建前であるが、測定方法の正しさを証明するため
、試料Sの設定角度を08から900まで22.5°飛
びに5段に変えて測定した。夫々の場合における平均透
過率が互に等しいことによってこの測定方法の正しいこ
とが証明される。
When a diffraction grating is used as the dispersive element, the output light from the spectrometer has a wavelength range in which the polarization component (S component) with an electric vector parallel to the grating of the diffraction grating is at its maximum, and polarized light with an electric vector perpendicular to the grating. There is a wavelength range in which the component (P component) is maximum (see the third diagram).Therefore, the output light of such a spectrometer is naturally polarized by polarizer P at +45° and -45° with respect to the output slit of the spectrometer. When the socket 2 is fixed to the base block 1 so that it can take an angle of The intensity of the light transmitted through the polarizer is the same at the and -45° positions, but the direction of polarization differs by 90°.This means that if the polarizer P is fixed at the +45° or -45° positions, The polarization directions of sample S are θ and θ+9.
It is equivalent to switch to two ◇ positions of 0°. In other words, if the sample S is fixed and the transmittance of the sample S is measured both when the polarizer P is set at 145 degrees and when the polarizer P is set at 145 degrees and averaged, the transmittance of the sample to natural light can be calculated. circle. second at the end
The table shows an example in which a commercially available, inexpensive thin-film polarizer was taken as sample S, and its transmittance to natural light was measured. Polarizer P
A Glan-Thompson linear polarizer was used, and the measurement wavelength was 510 nm. In this measurement method, the sample S is not rotated, but in order to prove the correctness of the measurement method, the set angle of the sample S was changed from 08 to 900 in 5 steps at 22.5° intervals. did. The correctness of this measuring method is proved by the fact that the average transmittances in each case are mutually equal.

上述した装置1こよる測定操作としては偏光子Pを固定
しておいて、試料Sの方を任意の設定角θとθ−90°
の夫々の位置に回わし、夫々の位置でのみかけの透過率
の平均をめてもよい。この場合偏光子Pは分光器の出射
スリットに対して45°に設定しておくのがもつとも望
ましい。偏光子Pを分光器の出射スリットに対して±4
5°回わし、或は45°(−45°でもよい)に固定す
ることの利益は第3図りを参照すれば明かなように、分
光器の出射光の±45°の方向の偏光成分は波長に関せ
ず略一定であるが、出射スリットと平行或は90°の方
向においては偏光成分の波長による変化が大きく、その
方向の偏光成分の大きな波長範囲では高感度、S/N比
の良い測定ができるが、その方向の成分が最小になる波
長範囲では逆に光量が少く低感度、低S/N比の測定に
なり、分光透過率を測定する場合、一様な感度、S/N
比の測定ができないことになる。また偏光子が90°の
ときは広い波長範囲で分光器出射光はS成分が最大を呈
しているので高感度、高S/N比の測定ができるとは云
っても、この偏光成分では回折格子のアノ−マリ反射が
強くでるので、波長走査の過程で、測定出力にこのアノ
−マリ反射によるショックが現われる恐れがある。
The measurement operation using the apparatus 1 described above involves fixing the polarizer P and moving the sample S at an arbitrary set angle θ and θ-90°.
Alternatively, the average apparent transmittance at each position may be calculated. In this case, it is most desirable to set the polarizer P at 45° with respect to the exit slit of the spectroscope. Polarizer P is set ±4 to the output slit of the spectrometer.
The benefit of rotating by 5 degrees or fixing at 45 degrees (-45 degrees is also acceptable) is clear when referring to the third diagram. Although it is almost constant regardless of the wavelength, the polarization component changes greatly depending on the wavelength in the direction parallel to the exit slit or at 90 degrees, and in the wavelength range where the polarization component in that direction is large, the sensitivity is high and the S/N ratio is low. Good measurements can be made, but in the wavelength range where the component in that direction is minimum, the amount of light is small, resulting in low sensitivity and low S/N ratio measurements.When measuring spectral transmittance, uniform sensitivity and S/N ratio N
This means that the ratio cannot be measured. Furthermore, when the polarizer is at 90°, the S component of the spectrometer output light exhibits the maximum in a wide wavelength range, so high sensitivity and high S/N ratio measurements can be made. Since the anomaly reflection of the grating is strong, there is a possibility that a shock due to this anomaly reflection may appear in the measurement output during the wavelength scanning process.

第2図は本発明方法を実施する分光光度計の構成を示す
。第2図Aはシングルビームの構成で、Lは光源、Mは
分光器、Dは光検出器で、SCは試料室であり、PAが
第1図に示したアクセサリである。第2図Bはダブルビ
ームの構成で、試料室SCIこは第1図のアクセサリで
偏光子ホル々゛4(偏光子を含む〕及びソケット2を除
いた部分をセントする。偏光子Pは分光器Mと光束を試
料光束Sと対照光束γとに分割する呼ヨツパーミラーC
Hとの間にセットされる。この構成は偏光子Pが一個で
すむので安価であるが、偏光子以後に反射素子が入って
いるので、試料光と対照光とで偏光状態が厳密には同じ
でなくなる。第2図Cも夕゛プルビームの構成で、試料
光S側に第1図のアクセサリをセットし、対照光γ側に
1′!偏光子Pのみをセットする。この偏光子は第1図
のアクセサリで試料ホルダ3.ソケット2′等を除いた
形のアクセサリに取付けられる(第2図Bも同じ)。第
2図Cの構成は偏光子を2個用いるので高価になるが、
試料の直前に偏光子があるので、第2図Bに比し高精度
の測定ができる。
FIG. 2 shows the configuration of a spectrophotometer for carrying out the method of the invention. FIG. 2A shows a single beam configuration, L is a light source, M is a spectrometer, D is a photodetector, SC is a sample chamber, and PA is an accessory shown in FIG. Figure 2B shows a double beam configuration. A mirror C that divides the luminous flux into the sample luminous flux S and the reference luminous flux γ.
It is set between H. This configuration is inexpensive because only one polarizer P is required, but since a reflective element is included after the polarizer, the polarization states of the sample light and the reference light are not strictly the same. Figure 2C also has a double beam configuration, with the accessories shown in Figure 1 set on the sample beam S side and 1'! on the reference beam γ side. Set only the polarizer P. This polarizer is attached to the sample holder 3. with the accessory shown in Figure 1. It can be attached to an accessory other than the socket 2' (the same applies to Figure 2B). The configuration shown in Figure 2C uses two polarizers, so it is expensive, but
Since there is a polarizer just in front of the sample, more accurate measurements can be made than in FIG. 2B.

へ 効果 本発明・によれば偏光子或は試料の何れかを90゜回わ
して二回みかけの透過率を測定してその平均をめると云
う簡単な操作で、偏光性試料の自然光に対する分光透率
を正確にめることができ、通常の分光光度計が使えると
云う利点がある。
Effects According to the present invention, it is possible to measure the natural light sensitivity of a polarizing sample by a simple operation of rotating either the polarizer or the sample by 90°, measuring the apparent transmittance twice, and calculating the average. It has the advantage that the spectral transmittance can be measured accurately and that a normal spectrophotometer can be used.

表1 グラントムソン直線偏光子のみかけの透過率Table 1 Apparent transmittance of Glan-Thompson linear polarizer

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する分光光度計用アクセサリの分
解斜視図、第2図A、B、Cは本発明を実施する分光光
度計の構成を示す平面図、第3図A−Dは幾つかの分光
器の分光偏光特性をボすグラフ、第4図は成る分光器の
出射光の偏光特性を極座標で示したグラフ、第5図は直
線偏光子同士を重ねたときの透過特性の極座標グラフ、
第6図は自然光の偏光特性の極座標グラフである。 l・・・・ベースブロック、2. 2’・・・ヴケット
、3・・・・試料ホJレタ゛、4・・・・偏光子ホルダ
、S・・・・試料、P・・・・偏光子、L・・・・光源
、M・・・・分光器、D・・・・光検田器、SC・・・
・試料室、PA・・・・本発明を実施するための分光光
度計のアクセサリ。 代理人 弁理士 係 浩 介
FIG. 1 is an exploded perspective view of an accessory for a spectrophotometer embodying the present invention, FIGS. 2A, B, and C are plan views showing the configuration of a spectrophotometer embodying the present invention, and FIGS. 3A-D are Graphs showing the spectral polarization characteristics of several spectrometers. Figure 4 is a graph showing the polarization characteristics of the output light of the spectrometers in polar coordinates. Figure 5 is a graph showing the transmission characteristics when linear polarizers are stacked on top of each other. polar coordinate graph,
FIG. 6 is a polar coordinate graph of the polarization characteristics of natural light. l...Base block, 2. 2'...Vacquette, 3...Sample holder, 4...Polarizer holder, S...Sample, P...Polarizer, L...Light source, M... ...Spectrometer, D...Optical detector, SC...
・Sample chamber, PA...Accessories for spectrophotometer for carrying out the present invention. Agent Patent Attorney Kosuke

Claims (1)

【特許請求の範囲】[Claims] 分光器出射光を直線偏光子を通して試料に入射させ、試
料入射光の光軸を軸として、上記直線偏光子或は試料の
何れかを90°回転させ、この90°回転の前後で夫々
試料のみかけの透過率を測
Spectrometer output light is incident on the sample through a linear polarizer, and either the linear polarizer or the sample is rotated 90° around the optical axis of the sample incident light, and the sample is rotated before and after this 90° rotation. Measuring apparent transmittance
JP10145984A 1984-05-18 1984-05-18 Measuring method of spectral transmissivity of polarizing sample Granted JPS60244822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10145984A JPS60244822A (en) 1984-05-18 1984-05-18 Measuring method of spectral transmissivity of polarizing sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10145984A JPS60244822A (en) 1984-05-18 1984-05-18 Measuring method of spectral transmissivity of polarizing sample

Publications (2)

Publication Number Publication Date
JPS60244822A true JPS60244822A (en) 1985-12-04
JPH0565804B2 JPH0565804B2 (en) 1993-09-20

Family

ID=14301281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10145984A Granted JPS60244822A (en) 1984-05-18 1984-05-18 Measuring method of spectral transmissivity of polarizing sample

Country Status (1)

Country Link
JP (1) JPS60244822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107837U (en) * 1986-12-30 1988-07-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107837U (en) * 1986-12-30 1988-07-12

Also Published As

Publication number Publication date
JPH0565804B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
JP4728027B2 (en) Light measuring device
US5757494A (en) System and method for improving data acquisition capability in spectroscopic ellipsometers
US6278519B1 (en) Apparatus for analyzing multi-layer thin film stacks on semiconductors
US6515746B2 (en) Thin film optical measurement system and method with calibrating ellipsometer
US6353477B1 (en) Regression calibrated spectroscopic rotating compensator ellipsometer system with pseudo-achromatic retarder system
US6522406B1 (en) Correcting the system polarization sensitivity of a metrology tool having a rotatable polarizer
EP3413022A1 (en) Integrated polarization interferometer and snapshot spectrophotometer applying same
EP0737856B1 (en) A method of investigating samples by changing polarisation
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
JPS60244822A (en) Measuring method of spectral transmissivity of polarizing sample
JP4034184B2 (en) Liquid crystal cell gap measurement method
JP7041015B2 (en) Calibration method of electric field vector measurement
CZ20001015A3 (en) Analysis method of spectral distribution of light and apparatus for making the same
JPH04297835A (en) Method for measuring polarization and polarization measuring device using it
SU1122941A1 (en) Method of measuring reflection factor and test-object for application thereof
JP3206950B2 (en) Wave plate characteristic measuring device
JPH05126641A (en) Spectral ellipsometer
Rabinovitch et al. Optical rotary dispersion and the Keston polarimetric accessory: a simplified method for use and calibration
JP3227934B2 (en) Polarization characteristics measurement method
JPS6195230A (en) Apparatus for measuring reflectivity
DeFranzo et al. Index of refraction measurement at low temperatures
JPH0325347A (en) Double refraction measuring method
SU1617325A1 (en) Method of polarization optical measuring of optical difference of path
CN115808243A (en) Reference direction calibration method for intensity modulation module of channel type polarization spectrometer