JPS6024459A - Improvement in disconnection trouble detecting system - Google Patents

Improvement in disconnection trouble detecting system

Info

Publication number
JPS6024459A
JPS6024459A JP58130970A JP13097083A JPS6024459A JP S6024459 A JPS6024459 A JP S6024459A JP 58130970 A JP58130970 A JP 58130970A JP 13097083 A JP13097083 A JP 13097083A JP S6024459 A JPS6024459 A JP S6024459A
Authority
JP
Japan
Prior art keywords
output voltage
value
current
distribution line
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58130970A
Other languages
Japanese (ja)
Other versions
JPH043510B2 (en
Inventor
Masaji Nakajima
中島 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58130970A priority Critical patent/JPS6024459A/en
Publication of JPS6024459A publication Critical patent/JPS6024459A/en
Publication of JPH043510B2 publication Critical patent/JPH043510B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To confirm disconnection trouble, by detecting such a state that the change in output voltage due to a zero phase current at the time of trouble is larger than detection sensitivity wherein a max. value is setting and the ratio of said max. value and the change value of output voltage is present between two setting values. CONSTITUTION:The max. change value among change values of data due to a zero phase current inputted to an input port PI on the basis of the control of CPU is successively and succeedingly selected. By the disconnection trouble and the other state change of a distribution line, the max. value among the change values of data due to the zero phase current is selected. When this value is larger than the detection senitivity of setting and succeeds for a set time while the ratio of the max. value Vod among the change values of data due to the zero phase current and the change value Vd of data due to the load current of distribution line is larger than a first setting value, by operation control of CPU, it can be confirmed that the distribution line max. in the change values of data due to the zero phase current has disconnection trouble.

Description

【発明の詳細な説明】 任怠の配峨臓に一謬或に二線の@緘故4がめ几ば、対地
静電容鎗の変化で各配電線の引出口の零相電流が変化し
、その増減の値の絶対値は各配電線の長さ等に関係なく
%@線故障の配電線のものが最大で、且つ健全のものと
の差が極めて大きいことが模擬配電録等について種々の
試験研究の結果実証さnている。
[Detailed description of the invention] If one or two wires are faulty due to neglect, the zero-sequence current at the outlet of each distribution line will change due to a change in the ground capacitance. The absolute value of the increase/decrease value is the largest for the faulty distribution line, regardless of the length of each distribution line, etc., and the difference between it and the healthy one is extremely large. The results of testing and research have been proven.

線検出用零相変流器を設げ、二次側にアナログ・デジタ
ル変換回路等を接続し、各配’1lilの零相電流によ
って蕗起する出力電圧tアナログ・デジタル変換して、
マイクロコンピュータ−に入力し、この演算制御により
、サンプリング時間(例v、b秒)毎に夫々の複数AJ
iC例31)のメモリーに記憶し、こtN、を走畳周期
(例10秒ン41CM返して継続し、サンプリング時間
毎に、前記のメモリーvc記憶の各配′屯法の最新の出
力電圧と、これ工9走介向期(例16秒ン以前の出力電
圧の差の絶対値(以下変化値と称するンの最大のもの紫
順次に継続して選出し、任意の配電線の断線故障でこの
デ′ジタル出力電圧の変化値]最大のものが設定ざnだ
検出感度より大きく且つ設定時間継続丁ルば、このデジ
タル出力電圧の変化値の最大の配電線が断線故障である
と判定し、該配電線の断線故障以外をし、且つ選択遮断
するよう番Cした配電線の断縁故障検出方式が本IIA
発明者[工って開発さルている。
A zero-phase current transformer for line detection is provided, an analog-to-digital conversion circuit is connected to the secondary side, and the output voltage t generated by the zero-phase current of 1 lil in each circuit is converted from analog to digital.
The data is input to a microcomputer, and by this arithmetic control, each of the plurality of AJs is
iC (Example 31) is stored in the memory of the memory, and this tN, is returned for a running period (Example 10 seconds and 41CM) and continued, and at each sampling time, the latest output voltage and the latest output voltage of each distribution method of the memory VC are stored. , the absolute value of the difference in output voltage (hereinafter referred to as change value) before the 9th operation period (example 16 seconds) is continuously selected in order of purple, and is determined in order of If the maximum change value of this digital output voltage is larger than the set difference detection sensitivity and continues for the set time, it is determined that the distribution line with the maximum change value of this digital output voltage has an open circuit failure. This IIA describes a disconnection fault detection method for a distribution line that is not connected to a disconnection failure and is selected to be cut off selectively.
It was developed by the inventor.

この零相電流により肪起するデジタル出力電圧の変化値
のみt′要素とじて用いる従来の断線故障検出方式にお
いてd、配xiの断線故障以外の状tと1変化によって
t零相電流によるデジタル出力電圧の変化値の最大のも
のが、整定された検出感度より大きく、整定時間継続す
i′L、ば該配電11みかけの@標故障」として誤検出
する欠点がbつ足。
In the conventional disconnection fault detection method, which uses only the change value of the digital output voltage caused by this zero-sequence current as the t' element, the digital output due to the zero-sequence current is If the maximum voltage change value is greater than the set detection sensitivity and continues for a settling time i'L, there is an additional drawback that it may be falsely detected as an apparent failure of the power distribution unit 11.

本発明は各配電線の引出口に、断機検出用零相変流器と
既設の2個の変成器に直列に接続する補助変流器r設け
t、夫々の二次側にA・D変換器等を接続し、零相a流
、負荷電流により酷起するデ゛ジタル出力電圧の2要素
倉用いて、前記のように任意の配電巖の断線故障或は他
の状態変化により零相′電流によるデ′ジタル出力電圧
の変化値の最大のものが整定さf′L7を検出感度より
大き(整定時間継続する状7頓の該配電線に訃いて 零相電流の変化値工0によるデジタル出力電圧の変化値
VO−肪工0と負荷電流の変化値ILによるデジタル出
力電圧の変化値VL−Lλ工L(但しがあらかじめ適宜
の値に定められた、第1整定値!より大きく、第2整定
値m工9小さい時のみ該配電線が断線故障であると判定
する。即らt (慰・−E’< tramのみ断線故障
として検出に2. IL かけの5yrs故障」として省略Tるように判定して、
実際の断線故障以外の状癲変化による1−みかけの断線
故障」のものはこnz除去して、誤検出しないようにし
た配電線の断線故障検出方式に関する。
In the present invention, a zero-phase current transformer for disconnection detection and an auxiliary current transformer connected in series to two existing transformers are installed at the outlet of each distribution line, and A and D are installed on the secondary side of each. By connecting a converter, etc., and using a two-element storage for the digital output voltage that is often caused by the zero-phase A current and load current, the zero-phase voltage can be generated due to a disconnection fault in any power distribution line or other state changes as described above. The maximum value of change in the digital output voltage due to the current is set to f'L7 which is greater than the detection sensitivity (the change value of the zero-sequence current due to the change in the zero-sequence current due to the distribution line in a condition that continues for a settling time of 7) is greater than the detection sensitivity. Change value of digital output voltage due to change value VO - Fat 0 and change value IL of load current VL - L Only when the second set value m is small, it is determined that the distribution line has a disconnection fault.In other words, it is abbreviated as t (only tram is detected as a disconnection fault. The judgment is made so that the
This invention relates to a method for detecting disconnection faults in distribution lines in which 1--apparent disconnection faults due to changes in conditions other than actual disconnection faults are removed to prevent false detection.

(例・1)V結縁の自動ブースタを設備した配電線にお
いては1自動ブーλりの昇圧、降圧の動作時の零相電流
の変化値Inは極めて犬きく、負荷電流の変化値ILは
極めて小さい。従って前(K+ Kzは定数) は極めて太きい。
(Example 1) In a distribution line equipped with a V-connected automatic booster, the change value In of the zero-sequence current during step-up or step-down operation of 1 automatic boost λ is extremely small, and the change value IL of the load current is extremely large. small. Therefore, the front (K+Kz is a constant) is extremely thick.

(例・2) 短時間に負荷電流の大きい変化の時(負荷
電流の変化値ILは大きく、従ってデジタル出力電圧の
変化値VLは太きい。)は、零相電流の変化値は小さく
、これによるデジタル出力電圧の変化値VOは断線故障
の検出感展以上になるが、仁の変化値■Oは小さい。従
ってこの負荷電流によるデジタル出力電圧の変化値vL
とVn L I 工0 。
(Example 2) When there is a large change in the load current in a short period of time (the change value IL of the load current is large, and therefore the change value VL of the digital output voltage is large), the change value of the zero-sequence current is small, and this The change value VO in the digital output voltage due to this is more than the sensitivity for detecting a disconnection fault, but the change value VO is small. Therefore, the change value vL of the digital output voltage due to this load current
and Vn L I Eng 0 .

の比−m−・ −は憧めて小さい。The ratio -m-・- is admirably small.

VL IL4 工り 前記の例のように零相電流、負荷v7L流によるVo 
K I。
VL IL4 As in the previous example, Vo due to zero-sequence current and load v7L flow
K.I.

デ゛ジタル出力電圧の変化値の比VL−K2’ It、
が極メて太キiもの、又極めて小さいものは、あらかじ
め適宜に選定した第2整定値mより大きく、第1整定埴
!より小さいので、「みかけの断線故障」としてマイク
ロコンピュータの演算制御に工りこt′L全除去して、
誤検出しないようにすることができる。
Ratio of change value of digital output voltage VL-K2' It,
If the value is extremely large or extremely small, it is larger than the second setting value m, which is appropriately selected in advance, and the first setting value is greater than the second setting value m, which is appropriately selected in advance. Since it is smaller than the above, we completely removed all the steps in the microcomputer's arithmetic control to treat it as an "apparent disconnection failure."
This can prevent false detection.

以下図面につい−C詳細に説明する。第1図は本発明の
一実施例の配’!祿路の説明図で、(0)は変電所の高
圧母線、(T)は供給用主変圧器、(’L)は接地変圧
器、(r)は接地′#を流制限抵抗s (OB)は遮断
器、(SS)は自動区分開閉器、+11 +2113J
 (41は配’t 1tsi、111113111 I
IVIは配電区間、(口0 (OH) (On)(0+
v)は各配電区間の静電容量、(0□。)(G、。)(
(lお)L O<a )は各配電鈑の全区間の対地#嘔
谷重でおる。
The drawings will be explained in detail below. Figure 1 shows the layout of one embodiment of the present invention! In this diagram, (0) is the high-voltage bus of the substation, (T) is the main supply transformer, ('L) is the grounding transformer, (r) is the ground '#, and the current limiting resistor s (OB ) is circuit breaker, (SS) is automatic sectional switch, +11 +2113J
(41 is 1tsi, 111113111 I
IVI is the distribution section, (0 (OH) (On) (0+
v) is the capacitance of each distribution section, (0□.)(G,.)(
(lO) L O<a ) is the ground level of the entire section of each distribution board.

又(b−201’)は@線検出用零相変流器、各配電線
yc:&けル21ドパC′1′)ハ既設の変流器、2個
の(Or−13は既設の各変流器に直列に接続する補助
変流器で谷配置!巌の引出口に設けらnる。r8は低抵
抗である。
In addition, (b-201') is a zero-phase current transformer for @ line detection, each distribution line yc: & kel 21 dopa C'1') C is an existing current transformer, two (Or-13 is an existing An auxiliary current transformer connected in series to each current transformer is provided at the outlet of the valley arrangement!n.r8 has a low resistance.

第2図は本願発明の断線故障検出装置の一実施例金示す
説明図で、(5)はp波器、(6)は増巾回路、(7)
は整流回路、(8)はム・D変換回路、 (PI)け各
配電線の零相電流による断縁検出用零相変流器(D、Z
(j’l’)のデジタル出力電圧及び負荷電流による補
助変流器(0’1−IJのデジタル出力電圧(以下率V
CYou Was・・・・・、v1焉・・・・・と配子
)2夫々のメモリー−に伝える罠めの入力ポートで01
l(2)(2)α4は谷配電線用の端子である。(PO
) は配電線の断崖故障?検出し電断線表示信号を外部
に出力するだめの出力ポートで1(ロ)翰(至)(ハ)
は各配也嶽用の出力端子である。(口Pυ)はWr線故
障検出装置の動作を演算制御する中央処理装置、匡)は
各種のり数のメモリーで、人力ポート(PI)より人カ
レ7’C谷配直I撃の零相電諷、貝荷1流によるデジタ
ル出力′醒圧(■o+Vn ”・p ”x Vm ”・
・・)、所蔵故障の配電−の番号、及び断線検出装置の
動作のプログラム等kVき込んでおく記憶回路である。
FIG. 2 is an explanatory diagram showing an embodiment of the disconnection fault detection device of the present invention, in which (5) is a p-wave device, (6) is an amplification circuit, and (7) is an amplification circuit.
(8) is a rectifier circuit, (8) is a Mu/D conversion circuit, and (PI) is a zero-phase current transformer (D, Z) for detecting disconnection due to the zero-phase current of each distribution line.
Auxiliary current transformer (0'1-IJ digital output voltage (ratio V
CYou Was..., v1... and terminal) 01 with a trap input port that transmits to each memory.
l(2)(2)α4 is a terminal for the valley distribution line. (P.O.
) Is it a cliff failure in the distribution line? 1 (B) 翰(To) (C) is the output port for detecting and outputting the power disconnection display signal to the outside.
is the output terminal for each wiring board. (口Pυ) is a central processing unit that calculates and controls the operation of the Wr line fault detection device, and 匡) is a memory with various numbers of connections. In other words, the digital output 'relaxation pressure (■ o + Vn ''・p ``x Vm ''・
.

cL)はデ゛−タバスで各配電線の零相也流検出用零相
変流器(i、+・ZCiI’) 、負荷電匠検出用補助
変流器(ar−13のデジタル出力電圧(val′Jn
9・・・・・。
cL) is a data bus that includes a zero-phase current transformer (i, +・ZCiI') for detecting zero-phase current of each distribution line, and an auxiliary current transformer for detecting load electric current (digital output voltage of ar-13 ( val'Jn
9...

V、 V、・・・・・)を人力し、顕゛線表示信号等を
出力へする信号線で中火処理装置(apu) 、メモリ
ーIMJ。
V, V, ...) is manually operated, and the signal line that outputs the visible line display signal, etc. is used for the medium heat processing unit (APU) and memory IMJ.

入力ボート(PI)、出力ポート(PO)が共用する。It is shared by the input port (PI) and output port (PO).

(ηはアドレスバスで中央処理装置(LJPU)がメモ
リー匡)2人カポ−) (PIJ 、出力ポート(PO
)t−選択する時vc−t−の番地を出力する信号線で
選択さn tc @路だけがデータバス匡)を使用でき
る。
(η is the address bus and the central processing unit (LJPU) is the memory box) (2-person capo) (PIJ, output port (PO)
) When selecting t-, only the ntc@ path selected by the signal line that outputs the address of vc-t- can use the data bus.

(80助はサイリスタ、(IP) (2P) (3P)
 <4P)は疋蝿リレーで、各配w#!IIJ 12)
 (3) +41 (Q断線故障表示用と遮断用の回路
装置の一実施例の構成部である。(Ipt) (Ips
 ) (21)I J (2p++)・・・・・は各電
磁リレーのメーク接点で69、又181は%電磁リレー
の復帰接点である。谷装置1を線Q零相電流検出用<o
、zaT)coデジタIt’ BJ 力it jii 
圧(vllt ’Vo1” ’ )、負荷′dLm検出
用((J’l’−13のデジタル出力電圧rCより夫々
のメモリー閣に記憶さ几る。
(80 assistants are thyristors, (IP) (2P) (3P)
<4P) is a fly relay, and each handout w#! IIJ12)
(3) +41 (This is a component of an embodiment of a circuit device for Q disconnection fault indication and cutoff. (Ipt) (Ips
) (21) I J (2p++) 69 is the make contact of each electromagnetic relay, and 181 is the return contact of the % electromagnetic relay. The valley device 1 is connected to the line Q for zero-phase current detection <o
, zaT) co digital It' BJ force it jii
voltage (vllt 'Vo1'''), load 'dLm detection ((J'l'-13's digital output voltage rC is stored in each memory).

第3図は各配電線の所縁検出用零相変流器(1)−ZO
’L’)のデジタル出力電圧、負荷電流検出用変流器(
0’l’ −13のデジタル出力電圧(以下各配電線の
零相電流のデータ焉 、負荷電流のデータVと記す)を
夫々のメモリーぽ)に記憶する順序ノ動f’F(Dma
Aテ、v′I)I Vl 1 VC@v、 p ”il
l ’I P ”++4 V4は配電線(11(2J 
(3J(4)の零相電流、負荷電流のデータである。メ
モリーは1.2.3.・・・・・30組と0岨との31
mで構成さn1中失処理Ht(CPU)の制御によ#)
谷配電祿のデ゛−タV。1 ”A I ’at焉。
Figure 3 shows the zero-phase current transformer (1)-ZO for detecting the edge of each distribution line.
'L') digital output voltage, load current detection current transformer (
0'l' -13 digital output voltages (hereinafter referred to as zero-sequence current data and load current data V for each distribution line) are stored in the respective memories.
Ate, v'I) I Vl 1 VC@v, p ”il
l'I P''++4 V4 is the distribution line (11 (2J
(This is the zero-sequence current and load current data for 3J(4).The memory is 1.2.3...30 sets and 31
The n1 dropout processing consists of m and is controlled by the CPU (CPU).
Valley power distribution data V. 1 ”A I'at end.

Vos Vm 、 vo4V4 k ”j :/ブリン
グ時間(例0.6秒)毎に零相電流のデジタル出方電圧
も用、負荷電流のデジタル出力電圧V用の夫々のメモリ
ー10+組に一度記憶した後、各メモリー1t 21 
’39・・・30iに順次に移しかえで記憶する。メモ
リー10+組に記憶し疋各配電線の最新のデータ”OL
 vllv)s v* 、V、s Vos VO4’4
 (!:、i ”e 9 30 q Ic ae 憶(
D 走査周期16秒以前の谷配亀臓のデータ姑■□′、
入’* vII +・・・・・より走査局期前、後の各
配電心の零相電流によるデジタル出力電圧の差の絶対値
(以下変化値と称す)141−鬼11鳥−鬼1,1焉、
−嬬1゜1V114’%’sa Iを演算し、且つその
最大のものを選出し、又負荷電流によるデジタル出方電
圧の変比値Iv1”11− IVI Vll’ l・・
・・・を演算する。
Vos Vm, vo4V4 k ”j:/The digital output voltage of the zero-sequence current is also used for every bling time (example 0.6 seconds), and after it is stored once in each memory 10+ set for the digital output voltage V of the load current. , each memory 1t 21
'39...30i and stored sequentially. The latest data of each power distribution line is stored in memory 10+ sets.
vllv)s v*,V,s Vos VO4'4
(!:, i ”e 9 30 q Ic ae memory (
D Data of Taniai turtle before scanning period 16 seconds ■□′,
Input'* vII +...The absolute value of the difference in digital output voltage due to the zero-sequence current of each power distribution core before and after the scanning station period (hereinafter referred to as change value) 141 - Oni 11 bird - Oni 1, 1 end,
- 嬬1゜1V114'%'sa I is calculated, and the maximum one is selected, and the ratio value of the digital output voltage according to the load current Iv1"11- IVI Vll' l...
... is calculated.

即ち谷装置4を線の零相電流VCよるデジタル出力電圧
vo用、負荷電流によるデジタル出力電、圧V用の夫々
のメモリー30 Idl&C記憶の1回目のデータと3
1回目にメモリー0組に記憶の1jIt新のデータより
、次に2回目のデ゛−夕と32回目にメモリー0組に記
憶し定最新のデータより、前記のように走!:醐期の前
、後の各配電線の零相電流、負荷vtWによるデータV
変化値を演算し、且つ各配置!線の零相電流の最大のち
のt選出し、この動作音サンプリンク時間毎に順次に繰
返し継続T心。而して前記のメモリ−1LJJ組のデー
タは■算後山組のメモリーに移しかえ、山岨のメモリー
の% IQ i’j 121組のメモリーに順次移し刀
為えらル6゜又卿組のメ士9−〇テータは自動的に消去
する。
That is, the valley device 4 is connected to the memory 30 for the digital output voltage vo based on the zero-sequence current VC of the line, the digital output voltage based on the load current, and the voltage V.
Run as described above from the 1jIt new data stored in the memory 0 group at the first time, then from the latest data stored in the memory 0 group at the 2nd and 32nd times! : Data V based on the zero-sequence current and load vtW of each distribution line before and after the peak period
Calculate the change value and each placement! After the maximum zero-sequence current in the line, select t, and continue repeating this operation sound sampling link time sequentially. Then, the data of the memory 1LJJ group is transferred to the memory of the Yamagumi group after the calculation, and sequentially transferred to the memory of the 121 group of Yamaga's memory. 9-〇 data will be automatically deleted.

◎断線故障の配電線の検出 入力ポート(PI)に人力した各配電線の零相電jlt
 +負荷電流による最新のデーター■1− ”0% V
*・・・・・は中央処理装置(OP(J)の制御により
メモリー(07組にサンプリング時間(例・0.5秒)
毎に記憶し、この最新のデータと夫々の(80組)のメ
モリーに記憶する。こnより走査回期(例16秒)以前
のデータv、、 ’v、 y ’Vow V*・・・・
・より走査周期の前、後の去就を線の零相電流、負荷電
流によるデータの変化値をサンプリング時間毎に演算す
ると共に、零相電流によるデータの変化値の最大のもの
を順次に継続して選出する。
◎ Zero-phase power jlt of each distribution line manually input to the detection input port (PI) of the distribution line with disconnection fault.
+Latest data based on load current ■1- “0% V
*... is the memory (sampling time (e.g. 0.5 seconds) for group 07 under the control of the central processing unit (OP (J)).
This latest data is stored in each (80 sets) of memories. From this point on, the data v,, 'v, y 'Vow V*... before the scanning period (example 16 seconds)
・Calculate the changes in data due to the zero-sequence current and load current of the line before and after the scanning period at each sampling time, and sequentially calculate the maximum change in data due to the zero-sequence current. to be selected.

任意の配電線の断線故障その他の状態変化により前記の
零相電流によるデータの変化値の最大のものが整定の検
出感度(例・40mV)より大きく、設定時間(例・1
秒)継続し、且つ前記の零相電流によるデータの変化値
の最大のものCVdL)と該配電線の負荷電流によるデ
ータの変化値(Vd)との比公がオ、整定イ0より大き
くオd 2整定値mより小さいときは、即ち ノく5く・ a の条件を満足する時のみ、中央処理装置(CPU)の演
算制御によって、この零相電流によるデータの変化値の
最大の該配電線が断線故障であることを判定する。
Due to disconnection failure or other state changes in any distribution line, the maximum value of change in data due to the above zero-sequence current is greater than the detection sensitivity of the setting (e.g. 40 mV), and the setting time (e.g. 1)
seconds), and the ratio of the maximum data change value due to the zero-sequence current (CVdL) to the data change value (Vd) due to the load current of the distribution line is O, and the setting value I is greater than 0. d 2 When the setting value m is smaller than m, that is, only when the conditions of Determine that the wire is disconnected.

前記のように断線故障の配電線全判定丁nば、中央処理
装@ (0PIJ )の制御により断線故障の配電?M
記憶用メモリーに、該配電線の番号を記憶する。このメ
七す−諷)の内容は次の断線故障力五発生し、@森故障
の配電線の検出tするまで変更しない。又アドレスl<
スに出力ホー ト(PO)の番地金出力すると共に、デ
ータl<スに断線故障の配′1線の萱号を出力する。出
力ポート(PO’)はアドレスバスの内容が出力ポート
(PO)の番地の時動作し、データパスにある@載故障
の配電線0:11号倉入力し、例えば配電線[1)刀≦
断線故障のときはΩ■ζ対応する出力ポート(PO)の
出力側端子(ロ)に11王を出力し、サイリスター(s
on)τ4通し、電磁リレー(IP)Q動作し、七のメ
ーク接点<IpI) (1pmt w閉路して断線故障
表示回路に加圧しVjT線故障の表示をする。又断線故
障の配Vt線の遮断器(OB )の遮断回路に加圧して
こ−n會遮断する。電磁リレー(IP)は遮断器(OB
)が遮断後例えば4秒後自動的に復帰するように設計さ
れている。又断線故障表示は手動によりa帰する。
As mentioned above, if all distribution lines are determined to have a disconnection fault, the central processing unit @ (0PIJ) will control the distribution line to determine if the disconnection fault has occurred. M
The number of the distribution line is stored in the storage memory. The contents of this message will not be changed until the next disconnection fault occurs and the faulty distribution line is detected. Also address l<
It outputs the address of the output port (PO) to the data space, and also outputs the number of the wiring '1' in which the disconnection occurred to the data space. The output port (PO') operates when the content of the address bus is the address of the output port (PO), and inputs the faulty power distribution line 0:11 in the data path, for example, the power distribution line [1] Katana ≦
In the event of a disconnection fault, output 11K to the output terminal (B) of the output port (PO) corresponding to Ω■ζ, and turn on the thyristor (s
on) through τ4, the electromagnetic relay (IP) Q operates, and the 7th make contact <IpI) (1pmt) is closed and pressurizes the disconnection fault display circuit to indicate a VjT line failure.Also, the disconnection fault wiring Vt line The circuit breaker (OB) is pressurized to shut off the circuit.The electromagnetic relay (IP) is connected to the circuit breaker (OB).
) is designed to automatically return, for example, 4 seconds after being shut off. In addition, the disconnection failure display can be returned manually.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実m例を示すもので、第1図は本発明に
おける配電線路の説明図、第2図はvfr朦故障検出装
置の説明図、第3図は各配電線の断線検出用零相変流器
のデジタル出力電圧、負荷電流検出用変流器のデジタル
出力電圧を夫々のメモリーに記憶するJI序の動作の説
明用図である。 なお図におい−(ILI)に変電所υ高圧母線、(T□
)は供給用主変圧器、(T9)は接地変圧器、(r)は
接地電流!lI限抵仇、(OB)は遮断器、(SS)は
自動区分間K at % ill (27L3J (4
1は配電線、(lJfilJ(組1ivJは配電区間嶌
(’1) (’i) (On) (04)は各配電区間
の静電容量、(Osn ) (”so ) L Osn
 )’ (Oao )は各配電線の全区間の対地静電容
量、(1)・ZOr)は#線検出用零相変流器、(OI
’)は既設の変流器、(GT−1) は各変流器に直列
接i助変流器、(5)はP波器、I6)は増巾回路、(
7)は!Iv!を回路、(8)はム・D変換回路、(P
l)は入力ポート、Llll(2)a輛は各配電産月の
端子、(PO)Fi出力ボート、(財)@@(財)は各
配電線用の出力端子、((d)EJ)は中火処理装f4
(樹に%檎メモリー、lxlはデータバス、X−はアド
レスバス、 (8GR)はサイリスタ、(IP) (2
F)(3P) (4P) [’i!!# !j レ−1
(1”1) (IPI) (2P1)(2Ps)・・・
・・は各1!磁紮リレーのメーク接点、(S)は各電磁
リレーの復帰接点でtt)ゐ。 手 続 補 正 誉(方式) 昭和68年11月15日 特許片長′1若杉相大殿 を事件の表示 昭和68年特許願第130970号 3補正をする者 ■代 理 人 ム補正の対象 図 面 Z補正の内存 別紙の通り(内存に変更なし)
The drawings show an actual example of the present invention. Fig. 1 is an explanatory diagram of a power distribution line in the present invention, Fig. 2 is an explanatory diagram of a VFR failure detection device, and Fig. 3 is an explanatory diagram of a VFR breakage detection device. FIG. 6 is a diagram for explaining the operation of the JI order in which the digital output voltage of the zero-phase current transformer and the digital output voltage of the load current detection current transformer are stored in respective memories. In addition, in the figure - (ILI) is the substation υ high voltage bus, (T□
) is the main supply transformer, (T9) is the grounding transformer, and (r) is the grounding current! lI limiter, (OB) is circuit breaker, (SS) is automatic section K at % ill (27L3J (4
1 is the distribution line, (lJfilJ (set 1ivJ is the distribution section ('1) ('i) (On) (04) is the capacitance of each distribution section, (Osn) ("so) L Osn
)' (Oao) is the ground capacitance of the entire section of each distribution line, (1)・ZOr) is the zero-phase current transformer for # line detection, (OI
') is the existing current transformer, (GT-1) is the i-auxiliary current transformer connected in series with each current transformer, (5) is the P-wave device, I6) is the amplifier circuit, (
7) Ha! IV! circuit, (8) is a mu-D conversion circuit, (P
l) is the input port, Lllll (2) a is the terminal for each distribution line, (PO) Fi output port, (Foundation) @@ (Foundation) is the output terminal for each distribution line, ((d) EJ) is medium heat processing equipment f4
(% memory in the tree, lxl is the data bus, X- is the address bus, (8GR) is the thyristor, (IP) (2
F) (3P) (4P) ['i! ! #! j le-1
(1”1) (IPI) (2P1) (2Ps)...
...is 1 each! (S) is the make contact of the magnetic relay, and (S) is the return contact of each electromagnetic relay. Procedure Amendment Homare (Method) November 15, 1988 Patent Section '1 Wakasugi Sodaidono Case Display 1988 Patent Application No. 130970 3 Person who makes the amendment ■Representative Person who makes the amendment Person drawing to be amended Surface Z As per the attached appendix of the amendment (there is no change in the inherent nature)

Claims (1)

【特許請求の範囲】[Claims] 変電所の同一母線に接続する各配電線の引出口に、断線
検出用零相変流器と、既設の2個の変流器に直列に接続
する補助変流器2個を設けて1夫々の二次側にP波器、
増巾回路、整流回路、ム・D変換回路全直列にして大々
大刀ポートに接続し、上記入力ボートに中央処理装置、
各種のメモリー等を接続すると共に、この中火処理装置
t″出力ポートに接続し、谷配電巌の断疎故障表示用と
a新月の回路装置を出カホートに接続し、谷配電巌の零
相1流、負荷1!流により妨起する前記の夫々のム・D
変換回路の出カ電tfe、サンプリング時間毎に夫々の
グ数組のメーに記憶の各配電線の零・相電a、負荷電流
による出力電圧の夫々の最新のものと、これより走査同
期以前のものとの差の絶対値(以下変化値と称す)を演
算し、且つ零相電流による出力電圧の変化値の最大のも
のをサンプリング時間毎に順次に継続して選出し、任麓
の配電線の断縁 、故障、或は他の状態変化によって生
ずる零相電流による出力電圧の変化値の最大のものが、
整定の検出感度より大きく、整定時間継続し且つこの零
相電流による出力電圧の変化値の最大のものと、該配に
線の負荷電流による出力電圧の変化値との比が第1整定
値より大きく、第2整定値より小さければ、該配電線が
断機故障であることを判定し、該配電線の所蔵故障表示
tして、こf′Lt−選択遮断するようにし疋ことt特
徴とする配電線の断腺故障検出万弐の改良。
A zero-phase current transformer for disconnection detection and two auxiliary current transformers connected in series to the two existing current transformers are installed at the outlet of each distribution line that connects to the same bus in the substation. P-wave device on the secondary side of
The amplifier circuit, rectifier circuit, and Mu/D conversion circuit are all connected in series and connected to the large port, and the central processing unit is connected to the input port.
In addition to connecting various memories, etc., connect to this medium heat treatment device t'' output port, connect the circuit device for disconnection failure display of Tani power distribution Iwao and a Shingetsu to the output port, Each of the above-mentioned M・D caused by phase 1 flow and load 1! flow
The output voltage tfe of the conversion circuit, the zero and phase voltages of each distribution line stored in each set of voltages at each sampling time, and the latest output voltage due to the load current, and the latest output voltage from this before scan synchronization. Calculate the absolute value of the difference (hereinafter referred to as change value) from The maximum change in output voltage due to zero-sequence current caused by wire breakage, faults, or other state changes is:
The ratio of the maximum change in output voltage due to this zero-sequence current and the change in output voltage due to the load current of the wiring that is greater than the detection sensitivity of the setting and continues during the settling time is greater than the first setting value. If it is larger than the second predetermined value, it is determined that the distribution line has a disconnection failure, the current failure of the distribution line is displayed, and the current is selectively disconnected. Improvements in the detection of disconnection faults in distribution lines.
JP58130970A 1983-07-20 1983-07-20 Improvement in disconnection trouble detecting system Granted JPS6024459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58130970A JPS6024459A (en) 1983-07-20 1983-07-20 Improvement in disconnection trouble detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130970A JPS6024459A (en) 1983-07-20 1983-07-20 Improvement in disconnection trouble detecting system

Publications (2)

Publication Number Publication Date
JPS6024459A true JPS6024459A (en) 1985-02-07
JPH043510B2 JPH043510B2 (en) 1992-01-23

Family

ID=15046860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130970A Granted JPS6024459A (en) 1983-07-20 1983-07-20 Improvement in disconnection trouble detecting system

Country Status (1)

Country Link
JP (1) JPS6024459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133517A (en) * 1987-11-17 1989-05-25 Toshiba Corp Detection circuit for disconnection of transmission or distribution line
CN113687265A (en) * 2021-08-26 2021-11-23 广州小鹏智慧充电科技有限公司 Method and device for detecting disconnection of battery management system, vehicle, and medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133517A (en) * 1987-11-17 1989-05-25 Toshiba Corp Detection circuit for disconnection of transmission or distribution line
CN113687265A (en) * 2021-08-26 2021-11-23 广州小鹏智慧充电科技有限公司 Method and device for detecting disconnection of battery management system, vehicle, and medium

Also Published As

Publication number Publication date
JPH043510B2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
Yadav et al. A real-time resistance based fault detection technique for zonal type low-voltage DC microgrid applications
EP3506445B1 (en) System for identification of a feeder with high-ohmic earth fault in a distribution network
JP2018183034A (en) Protector for power supply system and system comprising the same
Saber et al. Wide-area backup protection scheme for transmission lines considering cross-country and evolving faults
US3192442A (en) Electrical protective relay systems
JP2004170093A (en) Testing device and testing method for electric equipment protection circuit
Meghwani et al. An on-line fault location technique for DC microgrid using transient measurements
RU2432660C1 (en) Method of automatic connection of reserve power supply to loads with high reliability along voltage circuits
JPS6024459A (en) Improvement in disconnection trouble detecting system
CN107064717B (en) distribution network grounding line selection method adopting composite current phase detection
JP2531988B2 (en) Transformer protection relay device test equipment and test method
Ciontea et al. A feeder protection method against the phase-phase fault using symmetrical components
CN108459233B (en) Equivalent circuit of main transformer high-voltage two-phase disconnection fault and identification method
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
Hemdan et al. Fault matrix based protection coordination in low voltage DC systems
Nomandela et al. Transformer Differential Protection System Testing for Scholarly Benefits Using RTDS Hardware-in-the-Loop Technique
RU2756380C1 (en) Method for determining insulation resistance of network and insulation resistances of ac connections with isolated neutral of more than 1000 v
Elsherbeiny et al. Instantaneous Power-Based Busbar Protection for Multi-terminal HVDC Network
SU663017A1 (en) Device for centralized relay protection of distribution apparatus
JPS622884Y2 (en)
JP2717320B2 (en) Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method
JP2602299Y2 (en) Zero-phase voltage detector connected to insulator capacitor
JPH01264530A (en) Ground fault circuit selector
SU805463A1 (en) Device for protecting electric equipment from single-phase earthing in balanced network twork
SU1075197A1 (en) Device for selective checking of electrical circuit insulation