JPH01264530A - Ground fault circuit selector - Google Patents

Ground fault circuit selector

Info

Publication number
JPH01264530A
JPH01264530A JP9149688A JP9149688A JPH01264530A JP H01264530 A JPH01264530 A JP H01264530A JP 9149688 A JP9149688 A JP 9149688A JP 9149688 A JP9149688 A JP 9149688A JP H01264530 A JPH01264530 A JP H01264530A
Authority
JP
Japan
Prior art keywords
zero
phase
circuit
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9149688A
Other languages
Japanese (ja)
Other versions
JP2702961B2 (en
Inventor
Hiroshi Haga
博 芳賀
Yasuro Akisawa
秋沢 安郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9149688A priority Critical patent/JP2702961B2/en
Publication of JPH01264530A publication Critical patent/JPH01264530A/en
Application granted granted Critical
Publication of JP2702961B2 publication Critical patent/JP2702961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To specify a ground-fault circuit without being influenced by the amplitude of a residual current normally by comparing the phases of higher order zero-phase except the fundamental wave component of the zero-phase current by means of zero-phase current transformers provided to respective wirings. CONSTITUTION:When a ground-fault trouble occurs, a current is applied to a ground-fault channel selector DG through zero-phase current transformers ZCT1-ZCTn, and currents of specific order components are removed by filters 1-1-1-n. Since the logic circuit 32-1 of a phase discriminator 3 inputs the signals of a phase inverter 31-1 and waveform shapers 2-1-2-n, its superposed angle is output with a predetermined width. Further, waveform measuring circuits 33-1-33-n output pulse waveforms since the output of the circuit 32-1 has a width of approx. 180 deg. of an electric angle. Then, an output circuit 4 outputs an operation command to a corresponding circuit breaker CB when the output pulse of the circuit 33-1 becomes a predetermined value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非接地配電線路の機材劣化による地絡回線を
特定する装置に係り、特に配電線に設けた零相変流器か
ら得る零相電流のみで地絡回線を特定することが可能な
地絡回線選択装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for identifying a ground fault line due to equipment deterioration of an ungrounded power distribution line, and in particular to a device for identifying a ground fault line caused by equipment deterioration of an ungrounded power distribution line. The present invention relates to a ground fault line selection device that can identify a ground fault line using only phase currents.

〔従来の技術〕[Conventional technology]

「高圧受電設備指針」社団法人日本電気協会発行によれ
ば我が国の高圧配電線路は、一般に樹枝状の系統であり
、受電用変圧器の中性点は非接地となっている。そして
、その線路の各組電線は、大地に対し幾何学的配置が非
対称となっている部分が存在している。このため各相の
対地静電容量が不平衡となり、常時残留零相電流Ior
が存在しており、絶縁電線の増大と共に対地静電容量も
増加している。
According to the "High Voltage Power Receiving Equipment Guidelines" published by the Japan Electric Association, Japan's high voltage power distribution lines are generally dendritic systems, and the neutral point of the power receiving transformer is ungrounded. Each wire assembly on the line has a portion whose geometrical arrangement is asymmetrical with respect to the ground. Therefore, the ground capacitance of each phase becomes unbalanced, and the residual zero-sequence current Ior
exists, and as the number of insulated wires increases, the ground capacitance also increases.

一方地絡保護には、一般に接地変圧器より得る零相電圧
と、各配電線に設置された零相変流器から得る零相電流
を入力とし、この両者の位相関係を判定し地絡回線を特
定する地絡方向継電器が採用されている。この検出感度
は、保安」二及び線路機材の保□守点検業務の効率化と
、供給信頼度の向、上を割る点から絶縁劣化区間を高感
度に検出することが望まれている。しかし前記残留零相
電圧の存在゛や、残留零相電流の存在、更に対地静電容
量の増大による零相電圧の低下などより検出感度は制限
されてしまう。また残留電圧、電流で許容される検出感
度以上に整定した場合は、その判定結果に誤まりを起こ
す結果となる。
On the other hand, for ground fault protection, the zero-sequence voltage obtained from the grounding transformer and the zero-sequence current obtained from the zero-sequence current transformer installed on each distribution line are input, and the phase relationship between the two is determined and the ground fault circuit is detected. A ground fault directional relay is used to identify the ground fault. This detection sensitivity is desired to detect insulation deterioration sections with high sensitivity in order to improve the efficiency of maintenance and inspection work for railway equipment and to improve supply reliability. However, detection sensitivity is limited due to the presence of the residual zero-sequence voltage, the presence of residual zero-sequence current, and a decrease in zero-sequence voltage due to an increase in ground capacitance. Furthermore, if the detection sensitivity is set to be higher than the allowable residual voltage and current, the determination result will be erroneous.

第2図は非接地系配電線路の従来の地絡保護の概要を示
したものである。この図に於て、F1〜F3は、配電線
でしゃ断器CB l−CB sを介してそれぞれ母線B
USに接続され、さらに主変圧器MTに接続される。一
方地絡方向継電器DG1〜DGaは夫々対応する零相変
流器Z CT 1〜ZCT3、と共通設置の接地変成器
CI) Tの出力する電気信号を入力とし、零相電圧V
 oおよび零相電流lot〜I03が所定値以上でかつ
位相関係が所定位相角以内の時動作出力を導出し、該当
しゃ断器CB 】〜CB3のいずれかを作動させ開放す
る。
FIG. 2 shows an overview of conventional ground fault protection for ungrounded power distribution lines. In this figure, F1 to F3 are connected to bus line B via circuit breaker CB l-CB s on the distribution line.
It is connected to US and further connected to main transformer MT. On the other hand, the ground fault direction relays DG1 to DGa are connected to the corresponding zero-phase current transformers ZCT1 to ZCT3 and the grounding transformer CI) which is commonly installed.
o and the zero-sequence current lot~I03 are greater than a predetermined value and the phase relationship is within a predetermined phase angle, an operating output is derived, and one of the corresponding circuit breakers CB]~CB3 is operated and opened.

第2図の地絡方向継電器D 01〜D G 3の構成と
動作について第3図と第4図を用いて説明する。
The configuration and operation of the ground fault direction relays D 01 to D G 3 shown in FIG. 2 will be explained using FIGS. 3 and 4.

第3図は地絡方向継電器の1例であり、ここでPTは、
接地変成器GPTの出力零相電圧Voをレベル検出回路
1に適した電気量に変換する変成器で、CTは、零相変
流器zCTの出力零相電流Ioをレベル検出回路3に適
した電気量に変換する変成器である。レベル検出回路1
は、Voの所定のレベル以上を方形波回路2に導出する
。一方レベル検出回路3は、Ioの所定のレベル以上を
方形波回路4に導出する。位相比較回路5は、方形波回
路2および4の出力方形波を入力とし、これらの方形波
の重り角が動作判定角(電気角で約90’C)以上のと
き判定出力を出力回路6Lこ導出し、出力回路6は、位
相比較回路5のパルス状の信号を受けて、そのパルスが
所定個数連続したことを検出して該当するしゃ断器C1
3r〜CB sへしゃ断指令を出力する。
Figure 3 shows an example of a ground fault directional relay, where PT is
CT is a transformer that converts the output zero-sequence voltage Vo of the grounding transformer GPT into an amount of electricity suitable for the level detection circuit 1. It is a transformer that converts electricity into electricity. Level detection circuit 1
outputs Vo above a predetermined level to the square wave circuit 2. On the other hand, the level detection circuit 3 outputs Io at a predetermined level or higher to the square wave circuit 4. The phase comparator circuit 5 inputs the output square waves of the square wave circuits 2 and 4, and outputs a judgment output to the output circuit 6L when the weight angle of these square waves is equal to or greater than the operation judgment angle (approximately 90'C in electrical angle). The output circuit 6 receives the pulse-like signal from the phase comparator circuit 5, detects that a predetermined number of pulses are consecutive, and outputs the corresponding breaker C1.
Outputs a shutoff command to 3r to CB s.

第4図に第3図の各部の波形i’l + b + c+
 dを示しており、零相電圧Voと零相電流Ioの位相
−3= 差角Oが位相比較回路5の動作判定角以上で動作出力を
導出する。第5図は第3図で示す地絡方向継電器のVo
とIoとの動作及び不動作域を示す位相特性図で位相比
較回路5の動作判定角を電気角で約90°とした例示で
、本例の位相弁別は、VoとIoとの位相角θが90″
より小さい場合、すなわちθくπ/2の時不動作となり
θ〉π/2の時動作となる。
Figure 4 shows the waveforms of each part in Figure 3: i'l + b + c+
d, and the operating output is derived when the phase difference O between the zero-sequence voltage Vo and the zero-sequence current Io is −3=difference angle is equal to or greater than the operation determination angle of the phase comparator circuit 5. Figure 5 shows the Vo of the ground fault direction relay shown in Figure 3.
This is an example in which the operation determination angle of the phase comparator circuit 5 is approximately 90 degrees in electrical angle in the phase characteristic diagram showing the operating and non-operating regions between Vo and Io. is 90″
If it is smaller, that is, when θ<π/2, it is inactive, and when θ>π/2, it is active.

次に第2図の系統の配電線F1のG点に1線地絡事故G
が発生したと仮定し、地絡方向継電器DG’z〜DG3
の動作について説明する。
Next, a single-line ground fault G occurs at point G of distribution line F1 in the system shown in Figure 2.
Assuming that a ground fault directional relay DG'z~DG3
The operation will be explained.

事故発生と同時に各D ’G 1〜D G sには、正
常時とは異なるVoが印加され、一方、Ioについてみ
ると、D G 1では故障点電流Igに見合った零相電
流IO’lがZCTlより印加される。”’DG2は対
地静電容量C2の充電々流IC2に見合った電流I02
.DG3は、接地静電容量C3に見合った電流l113
が印加される。第2図に示すように各配電線の電流方向
は、Flが母線BUSより流出する方向で17z、F8
では、母線に対し流入する方向と一4= なっておりこの例ではほぼ18o°の位相差をもってい
る。すなわち故障回線F1のD G 1 を動作方向と
すべく位相判定を行なったとすればF2のDG2.F8
のD G sは不動作となるため故障回線の選択が可能
となる。
At the same time as the accident occurs, Vo, which is different from the normal state, is applied to each of D'G 1 to D G s. On the other hand, looking at Io, in D G 1, a zero-sequence current IO'l corresponding to the fault point current Ig is applied. is applied from ZCTl. ``DG2 is the current I02 corresponding to the charging current IC2 of the ground capacitance C2.
.. DG3 is a current l113 commensurate with the ground capacitance C3.
is applied. As shown in Figure 2, the current direction of each distribution line is 17z, F8 in the direction in which Fl flows out from the bus bar BUS.
In this case, the inflow direction is 14= with respect to the generatrix, and in this example, there is a phase difference of approximately 18°. That is, if phase determination is performed to set DG 1 of faulty line F1 as the operating direction, DG2 of F2. F8
DGs becomes inoperable, making it possible to select a faulty line.

次に常時、系統に残留零相電圧V Or +残留零相電
流Iorが発生している系統に地絡事故が発生した例に
ついて説明する。地絡事故によって発生する零相電圧を
Vos、事故回線の零相電流を■oss、健全回線の零
相電流をI 052とすると第6図に示すようにDGR
の端子入力零相電圧は、VoszまたはVO52のよう
に、Vosと■θ、のベタ1〜ル合成となり真の故障に
よって発生した真のVosより±φ位相ずれを起こしこ
の値はVosとvolの大きさが等しいときその合成零
相電圧はVosに対し±45°の位相差をもつことにな
る。残留零相電圧V 6 rの発生位相は系統条件によ
って同相から360゜の範囲となり、’DGRの動作範
囲を示す位相特性は第6図に示すように零相電圧の位相
ずれ角φと等しくVosの基準特性Sに対しφ■、φ2
の位相のずれを起こす。一方継電器の端子人力零相電流
は、事故回線のIo1、健全回線のIC12は、それぞ
れの回線に発生している残留電流Ior1.  I。、
2と事故時発生したそれぞAしの回線に流れる真の零相
電’Jr(、’r osl、 I O32とのヘクトル
合成となる。この時の事故回線のDGでは位相特性Bと
No1との関係において不動作となる範囲、健全回線D
Gでは、位相特性I3とIoy、との関係て動作となる
範囲が存在する。
Next, an example will be described in which a ground fault occurs in a system in which a residual zero-sequence voltage V Or +residual zero-sequence current Ior always occurs in the system. Assuming that the zero-sequence voltage generated by a ground fault is Vos, the zero-sequence current of the faulty line is ■oss, and the zero-sequence current of the healthy line is I052, the DGR is as shown in Figure 6.
The terminal input zero-sequence voltage of , like Vosz or VO52, is a solid combination of Vos and When the magnitudes are equal, the composite zero-sequence voltage will have a phase difference of ±45° with respect to Vos. The generation phase of the residual zero-sequence voltage V 6 r ranges from the same phase to 360° depending on the system conditions, and the phase characteristic indicating the operating range of the 'DGR is Vos equal to the phase shift angle φ of the zero-sequence voltage, as shown in Figure 6. φ■, φ2 for the reference characteristic S of
This causes a phase shift. On the other hand, the terminal human power zero-sequence current of the relay is Io1 of the failed line, and the residual current Ior1 of the healthy line is Ior1. I. ,
2 and the true zero-sequence electricity 'Jr(, 'rosl, I O32) flowing in the line A that occurred at the time of the accident.In the DG of the fault line at this time, the phase characteristics B and No. The range of non-operation in the relationship, healthy line D
In G, there is a range of operation depending on the relationship between the phase characteristics I3 and Ioy.

次に1線地絡事故発生時の零相電圧について対地静電容
量との関係について第7図にて説明する。
Next, the relationship between the zero-sequence voltage and the ground capacitance when a one-wire ground fault occurs will be explained with reference to FIG.

第7図は1線地絡発生時の等価回路である相電圧E、系
全体の対地静電容量をC2故障点抵抗■(□とすると発
生ずる零相電圧VOと和電圧Eとの関係は(1)式で示
すことかできる。
Figure 7 shows the equivalent circuit when a one-wire ground fault occurs, and the relationship between the zero-sequence voltage VO and the sum voltage E is It can be expressed by equation (1).

すなわち第8図にバク1〜ル図に示すように、Wし 零相電圧Voに相当する、R6を一定とした時のVoは
対地静電容量Cの大きい系統では小さくなることがわか
る。
That is, as shown in Figure 8, it can be seen that Vo, which corresponds to the zero-sequence voltage Vo when R6 is constant, becomes smaller in a system where the ground capacitance C is large.

一方系統の配電線路を構成する機材の経年的な絶縁劣化
による地絡事故は、微小地絡で間欠的に発生し、更に経
時と共に連続的になる。この検出を、従来の地絡方向継
電器は地絡事故が所定の時間連続して発生したことを判
定する方式となっている。
On the other hand, ground faults caused by insulation deterioration over time in the equipment that makes up the power distribution lines of a power system occur intermittently as small ground faults, and become more continuous over time. Conventional ground fault directional relays use this detection method to determine that ground faults have occurred continuously for a predetermined period of time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述べたように従来の地絡方向継電器は、配電線の出
口に設けられる零相変流器(ZCT)より得る零相電流
(Io)の他に、母線に接続され゛る接地変成器(GP
T)より得る零相電圧(V o )との位相弁別を行な
って回線の選択をするもので、位相側弁を行なう基本原
理を各回線に流れる零相電流Ioの他に基準となる電気
量(この例ではVo)を必ず取り込む方式としている。
As mentioned above, conventional ground fault directional relays use not only the zero-sequence current (Io) obtained from the zero-sequence current transformer (ZCT) installed at the outlet of the distribution line, but also the grounding transformer (Io) that is connected to the busbar. G.P.
The line is selected by phase discrimination with the zero-sequence voltage (V o ) obtained from T), and the basic principle of performing phase-side valve is based on the zero-sequence current Io flowing through each line as well as the reference electrical quantity. (In this example, Vo) is always taken in.

−力検出感度は、従来の地絡方向継電器では、常時、残
留電圧または残留電流の存在する系M1では、残留電気
量と地絡事故によって発生する零相分電気量とのヘタ1
〜ル合成量を入力として位相を弁別することになるため
、特に動作限界近傍の微地絡事故(高抵抗地絡事故)時
には、位相弁別を誤ることになる。これを防止するため
検出感度髪高くし残留零相電圧または残留電流に影響を
受けないように配慮するなど残留電気量により検出感度
の整定に制約を受ける。また地絡事故の判定を確実にす
るため、地絡事故が連続して所定の時間継続したことを
確認する方式となっているため軽微な地絡事故で間欠的
なものは検出できないケースがあった。
-Force detection sensitivity is determined by the difference between the residual electricity quantity and the zero-sequence electricity quantity generated by a ground fault accident in the system M1 where residual voltage or residual current always exists in the conventional ground fault directional relay.
Since the phase is discriminated by inputting the combined amount of signals, the phase discrimination may be incorrect, especially in the case of a slight ground fault (high resistance ground fault) near the operating limit. In order to prevent this, the detection sensitivity is set very high so that it is not affected by the residual zero-sequence voltage or residual current, and the setting of the detection sensitivity is restricted by the amount of residual electricity. In addition, in order to ensure the determination of ground faults, the method is to confirm that a ground fault has continued continuously for a predetermined period of time, so there are cases where intermittent and minor ground faults cannot be detected. Ta.

本発明は、各配電線に設置する零相変流器より得る零相
電流のみを人力とし、この零相電流相互の位相関係から
地絡回線を選択可能とし、更に、常時発生している残留
電流の大きさに左右されることなく軽微な地絡事故をも
判定可能な、地絡回線選択装置を提供することにある。
The present invention uses only the zero-sequence current obtained from the zero-sequence current transformer installed in each distribution line by hand, makes it possible to select the ground fault line from the mutual phase relationship of these zero-sequence currents, and furthermore, To provide a ground fault line selection device capable of determining even a minor ground fault accident without being influenced by the magnitude of current.

〔課題を解決するための手段〕[Means to solve the problem]

非接地系の樹枝状配電線路の機材はどの絶縁劣化などに
よって発生する零相電流は、各配電線路の対地静電容量
にもとづく充電々流が主体を占めており、その方向性は
、健全回線相互間ではほぼ同位相となり、事故回線と健
全回線の位相差は、逆位相すなわち電気角でほぼ180
°近傍の位相差となっている。
The zero-sequence current generated due to insulation deterioration in ungrounded dendritic distribution line equipment is mainly a charging current based on the ground capacitance of each distribution line, and its direction is They have almost the same phase, and the phase difference between the faulty line and the healthy line is opposite, that is, approximately 180 in electrical angle.
The phase difference is in the vicinity of °.

一方故障様相と零相電流の関係は、絶縁ケーブルのピン
ホール又は碍子の絶縁劣化などに発生する零相電流は間
欠的かつ高調波成分を多く含有するひずみ波型流となり
、また系統の亘長のアンバランスなとによって発生する
残留電流は基本波成分が大半を占めている。
On the other hand, the relationship between failure mode and zero-sequence current is that the zero-sequence current that occurs due to pinholes in insulated cables or insulation deterioration of insulators becomes an intermittent, distorted wave flow that contains many harmonic components, and The fundamental wave component occupies most of the residual current generated due to the unbalance.

本発明は以上の点に着目し、各配電線に設置するZCT
を得る零相電流の基本波成分以外の高次の零相電流の位
相関係を比較し事故回線を特定するようにしたものであ
る。
The present invention focuses on the above points, and the ZCT installed on each distribution line.
The fault line is identified by comparing the phase relationship of higher-order zero-sequence currents other than the fundamental wave component of the zero-sequence current to obtain the following.

〔作用〕[Effect]

非接地系樹枝状配電線路において、1線地絡事故発生時
の零相電流は、健全回線側の対地充電々流の向きは、母
線(BUS)に流入する方向に流れる方向で事故回線側
では、母線から流出する方向に流れる。この値は、健全
回線の対地充電々流と対地漏洩抵抗による電流の合成値
が流れる。
In an ungrounded dendritic distribution line, when a one-line ground fault occurs, the zero-sequence current flows in the direction of the ground charging current on the healthy line side, flowing into the bus (BUS), and on the faulty line side. , flows in the direction outflowing from the bus bar. This value is the combined value of the ground charging current of the healthy line and the current due to the ground leakage resistance.

(一般に対地漏洩電流は対地充電々流に比較して非常に
小さいため省略しても良い。) 従って、各々の配電線に設置する零相変流器より得た零
相電流を直流分及び基本波成分を阻止し第2次高調波分
以上をパスするバイパスフィルタを介してこの電流の位
相関係を相互に比較し他の複数回線の電流方向と自回線
の電流方向が逆位相となったことを判別し、その逆位相
関係にある回線を事故回線と特定する。
(In general, the ground leakage current is very small compared to the ground charging current, so it can be omitted.) Therefore, the zero-sequence current obtained from the zero-sequence current transformer installed in each distribution line is calculated as the DC component and the basic current. The phase relationship of this current is compared with each other through a bypass filter that blocks wave components and passes second harmonics and above, and it is determined that the current direction of the other multiple lines and the current direction of the own line are in opposite phase. The line with the opposite phase relationship is identified as the failed line.

また、この装置は、軽微な地絡事故を検出するためしこ
常時の残留電流に対してはバイパスフィルタを介し基本
渡分を阻止させることにより高感度化をR1る方式とし
た。
In addition, this device has a method of increasing sensitivity by blocking the basic distribution of residual current through a bypass filter in order to detect minor ground faults.

〔実施例〕〔Example〕

以下、本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1図に本発明による配電線の地絡回線選択装置の一実
施例に示す。本発明の接続で、第2図と異なる点は、母
線(BUS)に接続される接地変圧器G P Tより得
る零相電圧(Vo)の取り込みを不要とし、各配電線路
に設置する零相変流器(ZCT+−ZCT、)の2次側
電流(jan、 io2・l On)のみを取り込む方
式とした点にあり、他は同一である。
FIG. 1 shows an embodiment of a ground fault line selection device for a power distribution line according to the present invention. The difference between the connection of the present invention and that of Fig. 2 is that it is not necessary to take in the zero-phase voltage (Vo) obtained from the grounding transformer GPT connected to the bus (BUS), and the zero-phase voltage (Vo) obtained from the grounding transformer GPT connected to the bus The only difference is that the system takes in only the secondary current (jan, io2·l On) of the current transformer (ZCT+-ZCT,), and the rest is the same.

第1図において、MTは受電変圧器、CB 1 。In Figure 1, MT is a power receiving transformer, and CB1.

CB2.CB、は配電線F1〜F 11のしゃ断器、Z
CT t 。
CB2. CB is the circuit breaker for distribution lines F1 to F11, Z
CT t.

ZC’14 、ZCT、lは故障点電流(rg)または
対地充電々流(IC2,Icn)に見合った電流(io
n。
ZC'14, ZCT, l is the fault point current (rg) or the current (io) commensurate with the ground charging current (IC2, Icn).
n.

i 02110n)に変換する零相変流器、C1,CZ
i 02110n) zero-phase current transformer, C1, CZ
.

C1、は、当該配電線路の対地静電容量、I)Gは本発
明の地絡回線選択装置、OTlはFl、○T2はF2、
○Tnは、Fnに対応して出力する事故回線選択出力信
号であり第9図は、第1図のDGの構成例である。第9
図において1−1.1−2.1−nは、7. CTの2
次電流101+ l OZ+ 1. Onを入力とし、
この電流の特定次数分を通過させるフィルタ、2−1 
、2−2 、2− nは、1.−1.、、L−2,1−
nの出力に対応し、これを方形波に変換する波形整形回
路、3は、波形整形回路の出力信号を人力とし、所定の
位相関係になったとき出力を導出する位相弁別部、(3
1−1,31−2゜3l−n)は、対応する波形整形回
路の出力を反転する位相反転回路、(32−1,3’2
−2゜32−n)は、自回線の位相反転回路出力と他の
回路の波形整形回路出力とを入力とする、論理積回路、
(33−1,33−2,33−n)は、対応する論理積
回路の出力を入力とし、特定次数の。
C1 is the ground capacitance of the distribution line, I) G is the ground fault line selection device of the present invention, OTl is Fl, ○T2 is F2,
○Tn is a failure line selection output signal outputted corresponding to Fn, and FIG. 9 shows an example of the configuration of the DG in FIG. 1. 9th
In the figure, 1-1.1-2.1-n is 7. CT 2
Next current 101+ l OZ+ 1. With On as input,
A filter that passes a specific order of this current, 2-1
, 2-2, 2-n are 1. -1. ,,L-2,1-
3 is a waveform shaping circuit that corresponds to the output of n and converts it into a square wave; 3 is a phase discriminator that uses the output signal of the waveform shaping circuit manually and derives an output when a predetermined phase relationship is reached;
1-1, 31-2゜3l-n) is a phase inversion circuit that inverts the output of the corresponding waveform shaping circuit, (32-1, 3'2
-2゜32-n) is an AND circuit whose inputs are the phase inversion circuit output of its own line and the waveform shaping circuit output of another circuit;
(33-1, 33-2, 33-n) have the outputs of the corresponding AND circuits as inputs, and have a specific order.

電気角π/2+α以上と入力波形がなった時出力する波
形測定回路、4は、波形測定回路の出力が所定の時間内
に所定の量になったことを開側し、所定値以上で該当し
ゃ断器CBl−CBnへ引外し指令を出す出力回路など
で構成している。
A waveform measurement circuit that outputs when the input waveform is equal to or more than electrical angle π/2+α, 4 indicates that the output of the waveform measurement circuit has reached a predetermined amount within a predetermined time, and corresponds to a predetermined value or more. It consists of an output circuit that issues a trip command to the circuit breakers CBl-CBn.

この構成において以下動作を説明する。The operation in this configuration will be explained below.

例えば第1図において母線(BUS)の62点に地絡事
故が発生したと仮定すると、各配電線路の対地充電々流
ICI〜Icnが故障点Gzに流れ各配電線に流れる充
電々流は、対応するZCTn〜ZCTnよりこれに見合
った零相電流iox〜iθ1゜波数成分電流に関する位
相判定を行なう、この故障のケースの対地充電々流の方
向は各配電線共母線側に流入する方向で全回線共はぼ同
位相にある。
For example, assuming that a ground fault occurs at 62 points on the bus (BUS) in Figure 1, the ground charging currents ICI to Icn of each distribution line flow to the fault point Gz, and the charging currents flowing to each distribution line are: The phase of the corresponding zero-sequence current iox~iθ1° wave number component current is determined from the corresponding ZCTn~ZCTn.In this fault case, the direction of the ground-to-ground charging current is the direction in which it flows into the common bus side of each distribution line. Both lines are in approximately the same phase.

この関係を第10図に示す。位相弁別回路3の論理積回
路(31〜1.3l−n)は、各形波整形回路の出力が
全べて同相となっており自回線のみ位相反転されている
ため、この出力はほぼ零となる。従って、この理論回路
の出力信号が零の場合この回路の後段“の回路は作動し
ないため出力OT+〜OToは零となり該当する全べて
の回線は健全であることを示す。
This relationship is shown in FIG. In the AND circuit (31 to 1.3l-n) of the phase discrimination circuit 3, the outputs of each wave shaping circuit are all in the same phase, and only the own line is inverted in phase, so this output is almost zero. becomes. Therefore, when the output signal of this theoretical circuit is zero, the circuits in the subsequent stages of this circuit do not operate, so the outputs OT+ to OTo become zero, indicating that all the corresponding lines are healthy.

次に第′1図においてFlの61点に地絡事故が発生し
たことを仮定すると、対地充電々流102+ionは母
線側に流入する方向に流れ、故障点GIにはIglが母
線から流出する方向に流れる。このIgxは、はぼ■c
2+Icnと健全回線の対地充電々流が支配的であり、
この■□1と102.  Ionの位相差はほぼ180
°近傍にある。この電流はZCT工〜ZCT、を介して
これに見合った]01〜]0゜に変換されI)Gに印加
される。第1j図にこのケースの各部の波形を示す。位
相弁別部3の論理回路32−1は位相反転回路3]−1
と形整形回路2]−2,21−nの信号を入力とするた
めその重り角が出力され第11図の31−1の出力波形
の!I++ <所定の幅をもって出力される。他の論理
積回路32−2.32−丁1は2−1の出力との論理積
となるためこの出力は零となる。波形測定回路31−1
〜31− nは論理積回路32−1の出力が電気角でほ
ぼ180°の幅とを有するため第1]図の33−1の如
くパル波形を導出する。次に出力回路4は33−1の出
力パルスを所の時間内に決められた値に達したか否かを
確認しこの値か所定の値となった時、対応する当該CB
に作動指令を出力する。
Next, in Figure '1, assuming that a ground fault has occurred at point 61 of Fl, the ground-to-ground charging current 102+ions flows in the direction of flowing into the bus bar side, and at the fault point GI, Igl flows in the direction of flowing out from the bus bar. flows to This Igx is
2+Icn and the ground charging current of the healthy line are dominant,
This ■□1 and 102. Ion's phase difference is approximately 180
° Nearby. This current is converted to a corresponding value of ]01 to ]0° via ZCT and applied to I)G. Figure 1j shows waveforms at various parts in this case. The logic circuit 32-1 of the phase discriminator 3 is a phase inversion circuit 3]-1
Since the signals of the shaping circuit 2]-2 and 21-n are inputted, the weight angle is outputted, and the output waveform of 31-1 in FIG. I++ <Output with a predetermined width. Since the other AND circuits 32-2 and 32-1 are ANDed with the output of 2-1, this output becomes zero. Waveform measurement circuit 31-1
Since the output of the AND circuit 32-1 has a width of approximately 180 degrees in electrical angle, a pulse waveform as shown in FIG. 33-1 is derived. Next, the output circuit 4 checks whether the output pulse of 33-1 reaches a predetermined value within a predetermined time, and when it reaches this value or a predetermined value, the corresponding CB
Outputs an operation command to.

以」二の本発明の一実施例によれば、各配電線に設置す
る零相変流器より得る零相電流のみで残留電流の大小に
左右されないで、地絡回線の特定できる効果がある。
According to the second embodiment of the present invention, it is possible to identify a ground fault line using only the zero-sequence current obtained from the zero-sequence current transformer installed in each distribution line, regardless of the magnitude of the residual current. .

次に他の一実施例について説明する。Next, another embodiment will be described.

本発明は第9図に示す出力回路4の判定方法のみ異なる
もので他は第9図と同一である。一般に配電線路の機材
の絶縁劣化は、劣化の初期では微少電流が流れその発生
は間欠的で不規則的であり経時と共にその発生間隔が短
かくなる。
The present invention differs only in the determination method of the output circuit 4 shown in FIG. 9, and is otherwise the same as that shown in FIG. In general, when the insulation of power distribution line materials deteriorates, a small current flows in the early stages of deterioration, and the generation thereof is intermittent and irregular, and the interval between occurrences becomes shorter as time passes.

従って本実施例の出力回路は、この発生様相に見合った
判定方法とし、絶縁劣化の経時的な変化を検出可能にし
たものである。
Therefore, the output circuit of the present embodiment employs a determination method that is appropriate to the appearance of this occurrence, and makes it possible to detect changes over time in insulation deterioration.

この回路は、波形測定回路33−]〜33−nの出力パ
ルスの量が所定時間前の量と現在のパルス量を比較しそ
の量が増加している時対応する当該しゃ断器にしゃ断指
令を導出せしめる方式としたもので本発明の実施例によ
れば、配電線路の劣化製経時的に判定することが可能と
なる。
This circuit compares the amount of output pulses of the waveform measurement circuits 33-] to 33-n with the amount of the current pulses a predetermined time ago, and when the amount increases, issues a breaker command to the corresponding breaker. According to the embodiment of the present invention, which is a derivation method, it becomes possible to determine the deterioration of the distribution line over time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各配電線に設けられる零相変流器より
得る零相電流のみを入力とし、系統に常時発生する残留
電流を消去すべくフィルターを設け、各回線の零相電流
の相互の位相関係より事故回線を特定する方式としたた
め、従来一般に行なわれている接地変圧器より得るVo
と零相変流器より得る零相電流とから位相弁別する方式
と異なり常時の残留電流の大きさに左右されることなく
また零相電圧の特有の波形及び大きさに着目することが
なく、地絡回線の特定ができる。また装置の簡単化など
ができる効果がある。
According to the present invention, only the zero-sequence current obtained from the zero-sequence current transformer installed in each distribution line is input, and a filter is provided to eliminate the residual current that always occurs in the grid, so that the mutual zero-sequence current of each line is This method identifies fault lines based on the phase relationship between
Unlike the method of phase discrimination based on the zero-sequence current obtained from the zero-sequence current transformer, this method does not depend on the magnitude of the residual current at all times, and does not focus on the unique waveform and magnitude of the zero-sequence voltage. Can identify ground fault lines. It also has the effect of simplifying the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の系統接続図、第2図は従
来の地絡方向継電器による回線選択方式の例、第3図、
第4図は従来のDGの動作説明図、第5図は位相特性図
、第6図はベクトル図、第7図は1線地絡時の等価回路
、第8図は第7図に対応するベクトル図、第9図は、本
発明の一実施例の原理構成図、第10図、第11図は各
部の波形説明図。 MT ・受電変圧器、CB 1〜CBn しゃ断器、Z
 CT 1− Z CT n・零相変流器、F1〜Fo
・・配電線路、Gl、G2・故障点、01〜C0、・対
地静電容量、DG ・地絡回線選択装置、4・出力回路
、○T1〜OTl、 出力信号。
FIG. 1 is a system connection diagram of an embodiment of the present invention, FIG. 2 is an example of a line selection method using a conventional ground fault direction relay, and FIG.
Fig. 4 is an explanatory diagram of the operation of a conventional DG, Fig. 5 is a phase characteristic diagram, Fig. 6 is a vector diagram, Fig. 7 is an equivalent circuit in the case of a one-wire ground fault, and Fig. 8 corresponds to Fig. 7. The vector diagram and FIG. 9 are principle configuration diagrams of an embodiment of the present invention, and FIGS. 10 and 11 are waveform explanatory diagrams of each part. MT ・Power receiving transformer, CB 1 to CBn breaker, Z
CT 1-Z CT n/zero phase current transformer, F1~Fo
・・Distribution line, Gl, G2・Fault point, 01 to C0,・Ground capacitance, DG・Ground fault line selection device, 4・Output circuit, ○T1 to OTl, Output signal.

Claims (1)

【特許請求の範囲】 1、複数回線を有する非接地系配電線路の地絡事故を検
出する地絡回線選択装置において、各回線の零相電流の
高次周波成分を導出する第1の手段、該第1の手段の出
力を他の回線の前記入力信号を基準に位相関係を比較し
、所定の位相範囲となつたとき判別出力を導出する第2
の手段、該第2の手段の出力が所定の時間内に所定の量
となつたことを判定する第3の手段とを備えたことを特
徴とする地絡回線選択装置。 2、請求項1の装置において、第2の手段の出力を入力
とし、所定時間内の所定の判定量と一定時間前の所定時
間内の所定の判定量とを比較しその比較量が増加または
減少することを判定する第4の手段を備えたことを特徴
とする地絡回線選択装置。
[Claims] 1. In a ground fault line selection device for detecting a ground fault in an ungrounded distribution line having multiple lines, a first means for deriving a high-order frequency component of a zero-sequence current of each line; a second means for comparing the phase relationship of the output of the first means with the input signal of another line, and deriving a discrimination output when a predetermined phase range is reached;
and third means for determining whether the output of the second means reaches a predetermined amount within a predetermined time. 2. In the apparatus according to claim 1, the output of the second means is input, and the predetermined determination amount within a predetermined time and the predetermined determination amount within a predetermined time before a predetermined time are compared, and the comparison amount increases or A ground fault line selection device characterized by comprising fourth means for determining that the ground fault line has decreased.
JP9149688A 1988-04-15 1988-04-15 Ground fault line selection device Expired - Lifetime JP2702961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9149688A JP2702961B2 (en) 1988-04-15 1988-04-15 Ground fault line selection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9149688A JP2702961B2 (en) 1988-04-15 1988-04-15 Ground fault line selection device

Publications (2)

Publication Number Publication Date
JPH01264530A true JPH01264530A (en) 1989-10-20
JP2702961B2 JP2702961B2 (en) 1998-01-26

Family

ID=14028023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9149688A Expired - Lifetime JP2702961B2 (en) 1988-04-15 1988-04-15 Ground fault line selection device

Country Status (1)

Country Link
JP (1) JP2702961B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113546A (en) * 2006-10-02 2008-05-15 Tohoku Electric Power Co Inc Discrimination system of dc ground fault line and discrimination method therefor
JP2010096709A (en) * 2008-10-20 2010-04-30 Kinkei System Corp Detection device for warning sign of electrical installation accident and detection system for warning sign of electrical installation accident
ES2758531A1 (en) * 2019-11-06 2020-05-05 Univ Madrid Politecnica SYSTEM AND METHOD OF LOCATION OF GROUND FAULTS IN ALTERNATING CURRENT FACILITIES (Machine-translation by Google Translate, not legally binding)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008113546A (en) * 2006-10-02 2008-05-15 Tohoku Electric Power Co Inc Discrimination system of dc ground fault line and discrimination method therefor
JP2010096709A (en) * 2008-10-20 2010-04-30 Kinkei System Corp Detection device for warning sign of electrical installation accident and detection system for warning sign of electrical installation accident
ES2758531A1 (en) * 2019-11-06 2020-05-05 Univ Madrid Politecnica SYSTEM AND METHOD OF LOCATION OF GROUND FAULTS IN ALTERNATING CURRENT FACILITIES (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JP2702961B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US7345863B2 (en) Apparatus and method for identifying a loss of a current transformer signal in a power system
Brunello et al. Shunt capacitor bank fundamentals and protection
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
US7345488B2 (en) Apparatus and method for determining a faulted phase of a three-phase ungrounded power system
Apostolov et al. Superimposed components based sub-cycle protection of transmission lines
US20120062239A1 (en) Directional fault sectionalizing system
Sidhu et al. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions
EP0026620A1 (en) Method and apparatus for identifying faults in electric power transmission systems
JP4199065B2 (en) Protective relay device
US4450497A (en) Ultra-high-speed relay
KR101989350B1 (en) Appatus for protecting of microgrid using superimposed reactive energy and method thereof
Schweitzer et al. A fresh look at limits to the sensitivity of line protection
JPH01264530A (en) Ground fault circuit selector
Jogaib et al. Autotransformer Protection Case Studies, Going Above and Beyond the Traditional Cookbook
Dusang A ground fault protection method for ungrounded systems
Venkataraman et al. Transient earth fault detection on compensated earthed system
Das et al. A Call to Action: Say YES to Restricted Earth Fault Protection
JPH0442726A (en) Ground fault indicator for distribution line
Zubic et al. Current-only fault passage indicator for high impedance grounded networks
JP2607483B2 (en) Ground fault directional relay
Billaut et al. Effective System Grounding. Analysis of the effect of High penetration of IBRs
Bui et al. Investigate Transient Behaviours and Select Appropriate Fault Protection Solutions of Uni-grounded AC Microgrids
Giuliante et al. A directional wave detector relay with enhanced application capabilities for EHV and UHV lines
Mirsaeidi et al. A novel approach for protection of radial and meshed microgrids
JPS605727A (en) Defect current breaking system