JPS6024449A - Method for estimating internal quality of continuously cast piece - Google Patents

Method for estimating internal quality of continuously cast piece

Info

Publication number
JPS6024449A
JPS6024449A JP58133190A JP13319083A JPS6024449A JP S6024449 A JPS6024449 A JP S6024449A JP 58133190 A JP58133190 A JP 58133190A JP 13319083 A JP13319083 A JP 13319083A JP S6024449 A JPS6024449 A JP S6024449A
Authority
JP
Japan
Prior art keywords
slab
zone
short side
amount
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58133190A
Other languages
Japanese (ja)
Inventor
Yoshihiro Igaki
井垣 至弘
Kosaku Ozawa
小沢 浩作
Fumio Nomura
文夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58133190A priority Critical patent/JPS6024449A/en
Publication of JPS6024449A publication Critical patent/JPS6024449A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To estimate the internal quality of a cast piece over the entire length thereof in a casting direction without time lag in a non-destructive manner, by measuring the upper and lower average width or short side trapezoidal amount of the cast piece on and after the correcting zone outlet of a curved type continuous casting machine. CONSTITUTION:In a low machine height (H) multi-point correcting curved continuous casting machine (LHCCM) having a fundamental circular arc zone 2, a cast piece bending multi-point correcting zone 3, a horizontal zone 4, a secondary cooling (water pouring) zone 5 and a water pouring completion point 6, a continuously cast piece 7 is cast by using a rectangular mold 1 and the upper and lower average width or short side trapezoidal amount thereof is measured directly after the machine end of LHCCM while an internal crack index is calculated by using the scatter diagram of the average width or short trapezoideal amount and the internal crack index. By this method, the internal quality of the cast piece 7 is estimated without time lag in a non-destructive way.

Description

【発明の詳細な説明】 本発明は、湾曲型連続鋳造機で鋳造され丸鋳片の内質を
非破壊で推定する方法に関し、特に上記連続°鋳造機で
鋳造中、の鋳片の内質を非破壊で、かつ低コストの計測
装置でタイムラグなく推定できる連鋳鋳片の内質推定方
法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for non-destructively estimating the internal quality of a round slab cast by a curved continuous casting machine, and particularly to a method for non-destructively estimating the internal quality of a round slab cast by a curved continuous casting machine. The purpose of the present invention is to provide a method for estimating the internal quality of continuously cast slabs, which can be estimated non-destructively and without time lag using a low-cost measuring device.

湾曲型連続鋳造機では、鋳片の完全凝固までの冷却過程
において、鋳片の凝固界面に、(1)溶鋼静圧によるバ
ルジラグ歪εb % (2)鋳片の曲げ戻し矯正による
矯正歪εu s’(a)ロールアライメントずれによる
ミスロールアライメント歪(Mが作用し、これらの単独
或は複合歪或は総合歪ETが、鍋物性よシ決まる内部割
れ発生限界歪εCを越えると、内部割れが発生し、欠陥
鋳片となる。欠陥鋳片の発生を防止するため内部割れの
発生をみない鋳造条件を設定し、鋳造操業を実施するが
、上記設定鋳造条件の突発的変化や、経時変化、例えば
ロールアライメントずれの増大変化による歪増大変化等
によシ、内部割れが発生することがある。このため一般
に、定期的に連続鋳造機のロール交換が実施されると共
に、鋳片内質の確認のために、鋳造された鋳片の内質欠
陥の有無や欠陥の程度の検査が実施されている。
In a curved continuous casting machine, during the cooling process until the slab is completely solidified, the solidification interface of the slab undergoes (1) bulge lag strain εb % due to static pressure of molten steel (2) straightening strain εu s due to straightening of the slab by bending back. (a) Misroll alignment strain (M) due to roll alignment misalignment acts, and if these individual, combined strains, or total strains ET exceed the internal crack occurrence limit strain εC determined by the physical properties of the pan, internal cracks will occur. In order to prevent the occurrence of defective slabs, casting conditions are set to prevent the occurrence of internal cracks and casting operations are carried out, but sudden changes in the set casting conditions or changes over time occur. For example, internal cracks may occur due to increased strain due to increased changes in roll alignment.For this reason, rolls in a continuous casting machine are generally replaced periodically, and the internal quality of the slab is To confirm this, the cast slabs are inspected for the presence or absence of internal defects and the extent of the defects.

この検査方法は、鋳片の断面サンプルを切出し、S(サ
ルファー)プリント等によシ直接的に目視するものであ
る。この方法はサンプリングであるため鋳片の全量検査
は不可能であシ、更に検査に3時間以上もかかる。
This inspection method involves cutting out a cross-sectional sample of a slab and visually inspecting it directly using an S (sulfur) print or the like. Since this method involves sampling, it is impossible to inspect the entire amount of slabs, and furthermore, the inspection takes more than three hours.

ところで、最近、省エネルギーのために淳鋳〜圧延プロ
セスにおける連続鋳造機と圧延設備との直結、即ちダイ
レクトロール法や、圧延前の加熱炉への熱間装入、いわ
ゆるホットチャージ法が実施されつつあるが、前記断面
サンプルによる内質検査方法では、内質欠陥が生じた場
合、判定までに3時間以上もかかるため、その間に大量
の不合格品(内質欠陥鋳片及び不合格圧延成品)を製造
してしまうという重大な問題がある。
By the way, recently, in order to save energy, the direct connection of the continuous casting machine and rolling equipment in the casting to rolling process, that is, the direct roll method, and the so-called hot charging method, which is hot charging into a heating furnace before rolling, have been implemented. However, in the internal quality inspection method using cross-sectional samples, if an internal quality defect occurs, it takes more than three hours to make a determination, so a large number of rejected products (internal defective slabs and rejected rolled products) are produced during that time. There is a serious problem of manufacturing.

かかる問題に対して最近、鋳造条件や四−ルアライメン
ト情報によシ間接的にオンラインで内質推定を行なう方
法が提案されている。即ち鋳片の内質欠陥の発生は、鋳
造速度、2次呼冷却水量、ロールアライメント等に強い
相関があることを利用して、p〒ル反力やロール変位等
からp−ルアライメントを動的に計測して、鋳片に作用
する歪を推定し、内質推定を行なわんとするものである
To address this problem, a method has recently been proposed in which internal quality is estimated indirectly on-line using casting conditions and four-way alignment information. In other words, the occurrence of internal defects in slabs is strongly correlated with casting speed, amount of secondary cooling water, roll alignment, etc., and it is possible to control p-ru alignment from p-ru reaction force, roll displacement, etc. The aim is to estimate the internal quality by measuring the strain acting on the slab.

しかしながら連続鋳造機は多数のロールから構成されて
いるため上記方法にょシ効呆的に内質推定を行うにはロ
ール反力やロール変位計測に多数のセンサーを設置しな
ければならないことから、極めて高価な内質推定装置と
なシ、推定コストが高くつく欠点がある。
However, since a continuous casting machine is made up of a large number of rolls, it is extremely difficult to estimate the internal quality using the above method because a large number of sensors must be installed to measure roll reaction force and roll displacement. Although it is an expensive internal quality estimation device, it has the disadvantage of high estimation cost.

本発明は上記実状並びに従来の欠点に鑑みなされたもの
であシ、連続鋳造機で鋳造中の鋳片の内質を、鋳造方向
全長にわたって、非破壊でかつ低コストの装置でタイム
ラグなく推定できる連鋳鋳片の内質推定方法を提供する
ものである。
The present invention has been made in view of the above-mentioned actual situation and the conventional drawbacks, and is capable of estimating the internal quality of a slab being cast in a continuous casting machine over the entire length in the casting direction without any time lag using a non-destructive and low-cost device. The present invention provides a method for estimating the internal quality of continuously cast slabs.

本発明の要旨は、次の通シである。The gist of the present invention is as follows.

(1)湾曲型連続鋳造機の鋳片曲げ矯正帯内或は上記矯
正帯出口以降で連鋳鋳片の上、下面平均中又は短辺台形
化量を計測し、この計測値に基づいて鋳片の内質を推定
することを特徴とする連鋳鋳片の内質推定方法。
(1) Measure the average amount of trapezoiding on the top and bottom surfaces of the continuously cast slab within the slab bending straightening zone of the curved continuous casting machine or after the exit of the straightening zone, and based on this measurement value, A method for estimating the internal quality of continuously cast slabs, characterized by estimating the internal quality of the slabs.

(2) 湾曲型連続鋳造機の鋳片曲げ矯正帯出口以降連
鋳鋳片の上、下面平均中又は短辺台ノ彪化量を計数の連
鋳鋳片の内質推定方法。
(2) A method for estimating the internal quality of continuously cast slabs by counting the average amount of dilatation on the upper and lower surfaces of the continuously cast slabs after the outlet of the slab bending straightening zone of a curved continuous casting machine.

以下本発明の方法について詳細に説明する。The method of the present invention will be explained in detail below.

本発明者等は、第1図に示す、小円弧半径Rで鋳片曲げ
多点矯正帯又はゾーン3を有する低機高(H)多点矯正
湾曲型連続鋳造機(以下LHCCMという)で、第2図
に水平断面形状を示す矩形モールドlを用すて各種の鋳
造実験を実施し、各種解析を行なった結果、鋳片7の外
面歪を示す鋳片の上下面平均中、鋳片の短辺台形化量と
鋳片の内部4は水平ゾーンを、5は2次冷却(注水)ゾ
ーンr16は注水完了点を、8はメニスカスを示し、機
端は図示していない。また第2図において?、1oは長
辺鋳型片、11は短辺鋳型片を示す。
The present inventors have developed a low machine height (H) multi-point straightening curved continuous casting machine (hereinafter referred to as LHCCM) having a multi-point straightening zone or zone 3 for bending slabs with a small arc radius R, as shown in FIG. As a result of conducting various casting experiments using a rectangular mold l whose horizontal cross-sectional shape is shown in Fig. 2 and performing various analyses, it was found that the average of the upper and lower surfaces of the slab 7 showing the external surface strain of the slab 7, The amount of trapezoidization on the short side and the inside of the slab 4 indicates the horizontal zone, 5 indicates the secondary cooling (water injection) zone r16 indicates the water injection completion point, 8 indicates the meniscus, and the machine end is not shown. Also in Figure 2? , 1o indicates a long side mold piece, and 11 indicates a short side mold piece.

第3,4図は上記実験測定及び解析から得られたもので
、表1に示す条件のLHCCMで表2で示す鋳造条件で
鋳造し九完全凝固常温鋳片の上下面平均中、短辺台形化
量と内部割れ指数との関係を示したものである。
Figures 3 and 4 are obtained from the above experimental measurements and analysis, and show that the average upper and lower sides of nine completely solidified room-temperature slabs cast using LHCCM under the conditions shown in Table 1 and the casting conditions shown in Table 2 have a trapezoidal shape on the short side. This figure shows the relationship between the amount of cracking and the internal cracking index.

表I LHCCMの条件 表2 鋳造条件 すると2次冷却条件をに=25〜30範囲で変更しても
、機端での鋳片全断面平均温度は一定となる0 なお、本発明において上下面平均中X及び短辺台形化:
iYは、鋳片7の断面形状図を示す第5図において上面
中をa1下面巾をbとするとa + b X□、Y=l)−a で定義するものである。なお第5図のCは鋳片厚みであ
る。
Table I LHCCM Condition Table 2 If the casting conditions are used, even if the secondary cooling conditions are changed in the range of 25 to 30, the average temperature of the entire slab cross section at the machine end remains constant. Medium X and short side trapezoidization:
iY is defined as a+bX□,Y=l)-a, where the upper surface is a1 and the lower surface width is b in FIG. 5 showing the cross-sectional shape of the slab 7. Note that C in FIG. 5 is the slab thickness.

第3,4図から同一鋳造速度領域では上下面平均中Xが
増大する程、又短辺台形化量Yが増大する程、内部割れ
指数が低下することが明らかになった。
It is clear from FIGS. 3 and 4 that in the same casting speed range, the internal cracking index decreases as the average middle X of the upper and lower surfaces increases and as the short side trapezoidization amount Y increases.

従って例えば表1の条件のLHCCMで、表2の条件で
鋳造する場合、第1図の多点矯正ゾーン3出口以降の特
定した位置で、例えば水平ゾーン4内及び機端後方の走
間切断機配備位置までのゾーンの特定した位置で鋳片7
の短辺台形化量Yt−計測、よシ詳しくは測定値から計
算にめることにょ)、第4図の常温鋳片の短辺台形化量
と内部割れめ鋳片内質を推定することができる。常温相
関図から直ちに高温鋳片の内質を推定できる理由は短辺
台形化iiYは、常温と高温とで#1とんど等しいから
である。
Therefore, for example, when casting under the conditions of Table 2 in an LHCCM with the conditions of Table 1, at a specified position after the exit of the multi-point straightening zone 3 in Fig. 1, for example, the running cutting machine in the horizontal zone 4 and behind the end of the machine. Slab 7 at the specified position of the zone up to the deployment position
To estimate the amount of trapezoidization on the short side of the room-temperature slab and the internal quality of the slab with internal cracks, as shown in Fig. 4, Can be done. The reason why the internal quality of a hot slab can be immediately estimated from the room temperature correlation diagram is that the short side trapezoidization iiY is almost equal to #1 at room temperature and at high temperature.

又、機端全断面平均温度が一定(1280℃)となるこ
とを利用して、機端直後位置で高温鋳片7の上、下面平
均中を計測し、この高温鋳片の平均中を、常温鋳片の平
均中に換算し、第3図の常温鋳片の平均中と内部割れ指
数との相関図(以下常温平均中相関図という)より内部
割れ指数をめ鋳片内質を推定する仁とができる。又、逆
に、第3図の相関図の横軸を、予め上下面平均中の計測
位置の高温鋳片の温度における上下面平均中に換算して
おいてこれを高温域の計測値からめた上下面平均中とか
ら内部割れ指数をめてもよい。
Also, taking advantage of the fact that the average temperature of the entire section at the end of the machine is constant (1280°C), the average middle of the upper and lower surfaces of the high-temperature slab 7 is measured at a position immediately after the end of the machine, and the average middle of this high-temperature slab is The internal quality of the slab is estimated by converting it into the average temperature of the room-temperature slab, and calculating the internal cracking index from the correlation diagram between the average temperature of the room-temperature slab and the internal cracking index (hereinafter referred to as the correlation diagram between the average temperature and internal cracking index) in Figure 3. I can do it with Jin. Conversely, the horizontal axis of the correlation diagram in Figure 3 was converted in advance to the average of the upper and lower surfaces at the temperature of the hot slab at the measurement position in the average of the upper and lower surfaces, and this was calculated from the measured values in the high temperature range. The internal crack index may be calculated from the average of the upper and lower surfaces.

更に、第3,4図から常温相関式、高温相関式をめてお
き計測値から指数をめるようにしても良い。
Furthermore, the normal temperature correlation equation and the high temperature correlation equation may be determined from FIGS. 3 and 4, and the index may be calculated from the measured value.

上記上下面平均中X1短辺台形化量Yは種々の計測装置
を使用して計測でき、上記上下面平均中X1短辺台形化
量Yの計測装置の計測センサーとして例えばレーザース
キャン型距離針を用いて、固定位置から所定のサンプリ
ング周期で鋳片短辺までの距離を計測して、上下面平均
中、短辺台形化量をめる場合には、第6図の如く鋳片7
の上面7L及び下面7Fからd及び、(d=、)だけは
いった位置の短辺7S面と基準位置f (g)との間の
距離り及び1()゛及びk)を計測してf−g間の固定
距敞を1とすると、上下面平均中X及び短辺台形化量Y
は X=1− でめる。ただしQは鋳片厚みを示す。
The above-mentioned upper and lower surface average medium X1 short side trapezoidation amount Y can be measured using various measuring devices.For example, a laser scanning distance needle is used as a measuring sensor of the measuring device for the above-mentioned upper and lower surface average medium X1 short side trapezoidization amount Y. When measuring the distance from a fixed position to the short side of the slab at a predetermined sampling period and calculating the amount of trapezoidization on the short side in the average of the upper and lower surfaces, the distance from the fixed position to the short side of the slab can be calculated using
Measure the distance between the short side 7S surface at the position where d and (d=,) are included from the upper surface 7L and the lower surface 7F and the reference position f (g) and 1()'' and k). - If the fixed distance between g is 1, then the average middle X of the upper and lower surfaces and the amount of trapezoidation on the short side Y
is determined by X=1−. However, Q indicates the slab thickness.

尚、第6図においてPloは長辺寸法を示す。In addition, in FIG. 6, Plo indicates the long side dimension.

ところで連鋳鋳片は次工程の圧延工程において通常重殺
しされるが、断面形状が台形状であると矩形に比べて、
その巾殺しの際、余分な圧下パスを行なわねばならず、
エネルギーロス、ロール消耗等が著しく大きくなる欠点
があシ、これらを防止するため第1図のLHCCMの矩
形モールドlを第7図に水平断面形状を示す台形モール
ド12に変え、これによって矯正完了点で略矩形断面の
鋳片とすることが知られている。
By the way, continuously cast slabs are usually subjected to heavy cutting in the next rolling process, but when the cross-sectional shape is trapezoidal, it
When cutting the width, an extra reduction pass must be performed,
There is a disadvantage that energy loss, roll consumption, etc. are significantly increased.In order to prevent these, the rectangular mold 1 of the LHCCM shown in Fig. 1 is replaced with a trapezoidal mold 12 whose horizontal cross-sectional shape is shown in Fig. 7. It is known that the slab has a substantially rectangular cross section.

上記第7図の台形モールド12の各寸法をH2Lr、L
t とすると、モールド12の上下面平均中LM=(L
F+LL)/2であシ短辺台形化量2=LF−LLであ
る。
The dimensions of the trapezoidal mold 12 in FIG. 7 above are H2Lr, L
t, then LM=(L
F+LL)/2 and the short side trapezoidization amount 2=LF-LL.

以下に台形モールドの場合における本発明方法の適用に
ついて説明する。表1の条件のM1図のLHCCMに第
7図の台形モールドを採用し、第一2の条件で鋳造し、
LHCCM機端と走間切断装置の間で鋳片の平均中X又
は、短辺台形化量Yを計測するときの内部割れ指数を知
る方法を例として説明する。
Application of the method of the present invention in the case of a trapezoidal mold will be explained below. The trapezoidal mold shown in Fig. 7 was adopted for the LHCCM shown in Fig. M1 under the conditions shown in Table 1, and cast under the conditions No. 1 and 2,
A method for determining the internal crack index when measuring the average medium X or short side trapezoidization amount Y of the slab between the LHCCM machine end and the running cutting device will be explained as an example.

第2図と第7図とに示したモールド寸法記号において、
L= (LL+LF)/2になる台形モールド12を用
いるとし、かつ第3図の相関図を用いる場合には、第3
図の横軸の上下面平均中を計測位置における鋳片温度で
の寸法に換算しておく。そして鋳片の上下面平均中Xを
計測して上記換算した相関図から内部割れ指数を知多、
これから鋳片の内質を推定することができ、また、第4
図の相関図を用いる場合には、第4図の横軸の短辺台形
化量Yを、(LF LL) 量だけ差し引いた相関図と
しておく。そして鋳片の短辺台形化MYを計測して、上
記換算した相関図から内部割れ指数を知多、これから鋳
片の内質を推定することができる。
In the mold dimension symbols shown in FIGS. 2 and 7,
When using a trapezoidal mold 12 where L=(LL+LF)/2 and using the correlation diagram in FIG.
The average of the upper and lower surfaces of the horizontal axis in the figure is converted into the dimension at the slab temperature at the measurement position. Then, measure the average medium X of the upper and lower surfaces of the slab, and use the above-converted correlation diagram to determine the internal crack index of Chita,
From this, the internal quality of the slab can be estimated, and the fourth
When using the correlation diagram shown in the figure, the correlation diagram is obtained by subtracting the short side trapezoidization amount Y on the horizontal axis of FIG. 4 by the amount (LF LL). Then, the short side trapezoidization MY of the slab is measured, and the internal crack index is determined from the above-converted correlation diagram, and the internal quality of the slab can be estimated from this.

このように湾曲型連続鋳造機の鋳片曲げ矯正帯出口以降
の特定した位置で鋳片の上下面平均中又は短辺台形化量
を計測することにょシ、鋳片の内部割れ指数をめ、これ
から鋳片の内質を推定することができる。
In this way, by measuring the average amount of trapezoidization on the upper and lower surfaces of the slab at a specified position after the outlet of the slab bending straightening zone of the curved continuous casting machine, the internal crack index of the slab is determined. From this, the internal quality of the slab can be estimated.

以上は、矯正帯出口以降の所定位置で鋳片の上下面平均
中又は短辺台形化量を計測して、内部割の計測値によっ
て上下面平均中、又は短辺台形化量をめ、とれから内質
の良否を推定できることについて、以下に述べる。
The above method measures the average upper and lower surfaces or the amount of trapezoidization on the short side of the slab at a predetermined position after the exit of the straightening zone, and determines the average upper and lower surface or the amount of trapezoidization on the short side based on the internal division measurement value. The following describes how the quality of the internal quality can be estimated from the following.

先づ、第8図は表1の条件のLHCCM で、鋳造速度
を1.4〜1.7 m / m i nとした以外は表
2の条件で鋳造したときの多点矯正帯内で計測した短辺
台形化量とメニスカスよシの距離との相関関係を、該短
辺台形化量を累積表面歪に換算して示したものである。
First, Figure 8 shows LHCCM under the conditions of Table 1, and measurements were taken within the multi-point correction zone when casting was performed under the conditions of Table 2 except that the casting speed was 1.4 to 1.7 m/min. The correlation between the short side trapezoidization amount and the meniscus distance is shown by converting the short side trapezoidization amount into cumulative surface strain.

ここで、累積表面歪Eは、で示すものである。Here, the cumulative surface strain E is expressed as follows.

ただし、W及び2 (u−v) はそれぞれ第10図に
示す完全凝固鋳片の鋳片厚みと短辺台形化量に比例する
値を示す式であJ)、2 (r s)は、第1に示す各
計測位置での第9図に示す未凝固相7′を有する鋳片7
の短辺台形化量に比例する値を示す式であL Rは第1
図に示すLHCCMの基本円弧半径である。
However, W and 2 (u-v) are equations showing values proportional to the slab thickness and short side trapezoidization amount of the fully solidified slab shown in Fig. 10, respectively, and 2 (rs) is, The slab 7 having the unsolidified phase 7' shown in FIG. 9 at each measurement position shown in the first
L R is the first
This is the basic arc radius of the LHCCM shown in the figure.

第8図から、矯正ゾ←゛ン内での鋳片の短辺台形化量を
換算した累積表面歪のパターンにょシ、即ち、短辺台形
化量の大きさによシ、内部割れの有無が決定できること
が明らかであシ、矯正ゾーン内で鋳片の短辺台形化量を
計測し、モールドが矩形であれば第8図にもとづいて、
内部割れの有無を判定できる。又1台形モールドであれ
ば台形モールドの短辺台形化量即ち第7図に併記した。
From Figure 8, the pattern of cumulative surface strain calculated by converting the amount of trapezoidization on the short side of the slab within the straightening zone, that is, the presence or absence of internal cracks depending on the amount of trapezoidization on the short side. It is clear that it is possible to determine the amount of trapezoidization on the short side of the slab within the straightening zone, and if the mold is rectangular, based on Fig. 8,
The presence or absence of internal cracks can be determined. In the case of a single trapezoidal mold, the amount of short side trapezoidization of the trapezoidal mold is also shown in FIG.

(LFI−LLI)を考慮して第8図の縦軸をき、該補
正された第8図にもとづいて内部割れ指数を知多鋳片の
内質を推定することができる。
(LFI-LLI) is plotted on the vertical axis of FIG. 8, and based on the corrected FIG. 8, the internal quality of the Chita slab can be estimated from the internal crack index.

上記説明では矯正ゾーン内で短辺台形化量を計測しこの
計測値にもとづいて累積表面歪をめ、これと嬉8図から
内部割れ指数を知多、鋳片内質を推定したが、鋳片の短
辺台形化量と平均中とは何れも鋳片の外部歪を示すもの
であシ、第11図に示す如く両者間には強い相関関係が
あるから多点矯正ゾーン内で上下面平均中を計測値から
め1、該上下面平均中にもとづいて、第11図の如き相
関図から短辺台形化量をめ、更に累積表面歪をめて第8
図から内部割れ指数を知多、鋳片内質を推定することが
できる。
In the above explanation, the amount of trapezoidization on the short side was measured in the straightening zone, the cumulative surface strain was calculated based on this measurement value, and the internal crack index was estimated from Chita and the internal quality of the slab from this and Figure 8. Both the short side trapezoidization amount and the average medium indicate the external strain of the slab, and as shown in Fig. 11, there is a strong correlation between the two, so the average of the upper and lower surfaces within the multi-point straightening zone is Based on the measured value of the inside, calculate the short side trapezoidization amount from the correlation diagram as shown in Figure 11 based on the average value of the upper and lower surfaces, and further calculate the cumulative surface strain and calculate 8.
From the figure, it is possible to estimate the internal crack index and the internal quality of the slab.

本発明は連鋳鋳片の上、下面平均中X又は短辺台形化量
Yを計測してこのXl又はYにもとづいて鋳片の内部割
れ指数を知り、これから内質を推定するものであるから
、本発明によれば単一の平均巾計又は短辺台形化量針を
要するだけでよく低コストの装置でかつ安定して、タイ
ムラグなしに鋳片内質を推定することができ、大量の不
合格品を製造することを防止できる。
The present invention measures the average medium X or short side trapezoidization amount Y of the upper and lower surfaces of continuously cast slabs, determines the internal crack index of the slab based on this Xl or Y, and estimates the internal quality from this. Therefore, according to the present invention, only a single average width meter or short-side trapezoidal measuring needle is required, and the internal quality of slabs can be estimated stably and without time lag using a low-cost device. This can prevent the production of rejected products.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は全て本発明に関係することの説明図であシ、第1
図は、湾曲型連続鋳造機のプロフィルの説明図、第2図
は矩形モールドの説明図、第3.4図は完全凝固常温鋳
片の上下面平均中、短辺台形化量と内部割れ指数の関係
図、第5図は、上下面平均中及び短辺台形化量の説明の
ための鋳片断面図、第6図は、上下面平均中又は短辺台
形化量の計測法説明のため図、第7図は台形モールドの
説明図、第8図はメニスカスよシの距離と累積表面歪と
の関係図、第9.10図は短辺台形化量と累積表面歪と
の関係の説明図傘船挙娶存である。 第11図は銃片平均巾と短辺台形化量との相関関係の説
明図である。 1・・・矩形モールド、 2・・・基本円弧ゾーン、 3・・・鋳片曲げ多点矯正帯又はゾーン、4・・・水平
ゾーン、 5・・・2次冷却(注水)ゾーン、 6・・・注水完了点、 7・・・鋳片、 8・・・メニスカス、 9・・・長辺鋳型片、 10・・・ “ “ 11・・・短辺鋳型片、 12・・・台形モールド、 7L・・・鋳片長辺上面、 7F・・・“ “ 下面、 7S・・・鋳片短辺、 7′・・・鋳片未凝固相、 Y・・・短辺台形化量。 代理人 弁理士 秋 沢 政 光 外2名 口 (コ も ’aQJ 口 α) 杖 (貰A)11ぴ1ψ係ψ 庄7 (M、41■μmφ鋸ψ
The drawings are all explanatory diagrams of matters related to the present invention.
Figure 2 is an explanatory diagram of the profile of a curved continuous casting machine, Figure 2 is an explanatory diagram of a rectangular mold, and Figure 3.4 is an average of the upper and lower surfaces of a completely solidified room-temperature slab, the amount of trapezoidization on the short side, and the internal cracking index. Fig. 5 is a cross-sectional view of the slab for explaining the amount of average medium and short side trapezoidization on the upper and lower surfaces, and Fig. 6 is for explaining the method for measuring the average medium and short side trapezoidation on the upper and lower surfaces. Figure 7 is an explanatory diagram of a trapezoidal mold, Figure 8 is a diagram of the relationship between the distance of the meniscus and cumulative surface strain, and Figures 9 and 10 are diagrams of the relationship between the short side trapezoidization amount and cumulative surface strain. This is the current state of affairs. FIG. 11 is an explanatory diagram of the correlation between the average width of the gun piece and the amount of short side trapezoidization. 1... Rectangular mold, 2... Basic circular arc zone, 3... Multi-point straightening zone or zone for slab bending, 4... Horizontal zone, 5... Secondary cooling (water injection) zone, 6... ... Water injection completion point, 7... Slab, 8... Meniscus, 9... Long side mold piece, 10... "" 11... Short side mold piece, 12... Trapezoidal mold, 7L...Top surface of the long side of the slab, 7F..."" Bottom surface, 7S...Short side of the slab, 7'...Unsolidified phase of the slab, Y...Amount of trapezoidation on the short side. Agent Patent attorney Masa Aki Sawa Mitsugai 2 name mouth (komo'aQJ 口α) Cane (A) 11pi 1ψ person ψ Sho 7 (M, 41■μmφ saw ψ

Claims (1)

【特許請求の範囲】 迫台形化量を計測し、この計測値に基づいて鋳片の内質
を推定することを特徴とする連鋳鋳片の内質推定方法。 測し、との計測値にもとづいて、鋳片の内部割れ指数を
め、内質を推定する特許請求の範囲(1)記載の連鋳鋳
片の内質推定方法。
[Scope of Claim] A method for estimating the internal quality of a continuously cast slab, characterized by measuring the amount of trapezoidization and estimating the internal quality of the slab based on this measured value. A method for estimating the internal quality of a continuously cast slab according to claim (1), wherein the internal quality of the continuously cast slab is estimated by determining the internal crack index of the slab based on the measured values of (1) and (1).
JP58133190A 1983-07-21 1983-07-21 Method for estimating internal quality of continuously cast piece Pending JPS6024449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133190A JPS6024449A (en) 1983-07-21 1983-07-21 Method for estimating internal quality of continuously cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133190A JPS6024449A (en) 1983-07-21 1983-07-21 Method for estimating internal quality of continuously cast piece

Publications (1)

Publication Number Publication Date
JPS6024449A true JPS6024449A (en) 1985-02-07

Family

ID=15098803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133190A Pending JPS6024449A (en) 1983-07-21 1983-07-21 Method for estimating internal quality of continuously cast piece

Country Status (1)

Country Link
JP (1) JPS6024449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899874A (en) * 2021-11-17 2022-01-07 重庆钢铁股份有限公司 Evaluation and detection method for low-power detection of intermediate cracks of continuous casting slabs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899874A (en) * 2021-11-17 2022-01-07 重庆钢铁股份有限公司 Evaluation and detection method for low-power detection of intermediate cracks of continuous casting slabs
CN113899874B (en) * 2021-11-17 2024-04-12 重庆钢铁股份有限公司 Evaluation and detection method for intermediate crack of low-power inspection of continuous casting slab

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JP5413289B2 (en) Center segregation judgment method for continuous cast slabs
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
CN116738518B (en) Numerical simulation verification method for crack position under continuous casting light reduction and internal quality control method
JP5417892B2 (en) Continuous casting method for steel slabs
JP2007245168A (en) Method and apparatus for detecting completion of solidification in continuous casting, and method and apparatus for continuous casting
CN115229149B (en) Continuous casting billet shell/liquid core thickness and solidification end point determining method based on crystallizer liquid level fluctuation in pressing process
JPS6024449A (en) Method for estimating internal quality of continuously cast piece
JP2009214150A (en) Surface defect-determining method for continuously cast slab and method for producing the same
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
KR100860322B1 (en) Loop Height Detecting Method for Strip Casting
JP4461075B2 (en) Continuous casting method
JP5712572B2 (en) Defect detection method and defect detection device for continuous cast slab for thin steel sheet
JPH0745096B2 (en) Continuous casting method
CN113510228A (en) Method for online judging deformation and blockage of secondary cooling nozzle of continuous casting machine
JP3719128B2 (en) Slab buckling detection method
KR100971982B1 (en) Method for controlling the roller through a quantitative analysis of the profile of the rolled material
JP4464583B2 (en) Evaluation method for billet and wire segregation
JP5071025B2 (en) Method for evaluating high temperature embrittlement of continuous cast slab and continuous casting method of steel
CN111829431A (en) Sector section arc-alignment online monitoring method
JPH0592248A (en) Diagnostic device for continuous casting equipment
JP3487463B2 (en) Detecting Roll Interval Abnormality in Continuous Casting Machine
JPH058003A (en) Method for casting with light rolling reduction in continuous casting
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
JPH04178253A (en) Method and device for evaluating flowing state at inner part of casting mold for continuous casting