JP5413289B2 - Center segregation judgment method for continuous cast slabs - Google Patents

Center segregation judgment method for continuous cast slabs Download PDF

Info

Publication number
JP5413289B2
JP5413289B2 JP2010094559A JP2010094559A JP5413289B2 JP 5413289 B2 JP5413289 B2 JP 5413289B2 JP 2010094559 A JP2010094559 A JP 2010094559A JP 2010094559 A JP2010094559 A JP 2010094559A JP 5413289 B2 JP5413289 B2 JP 5413289B2
Authority
JP
Japan
Prior art keywords
slab
reduction
center
solid phase
fsh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010094559A
Other languages
Japanese (ja)
Other versions
JP2011224583A (en
Inventor
哲男 持田
康一 堤
倫哉 駒城
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2010094559A priority Critical patent/JP5413289B2/en
Publication of JP2011224583A publication Critical patent/JP2011224583A/en
Application granted granted Critical
Publication of JP5413289B2 publication Critical patent/JP5413289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、未凝固層を有する凝固末期の鋼鋳片が凝固収縮量程度の圧下速度で鋳片支持ロールによって徐々に圧下されて鋳造されるときに、鋳造される鋳片の中心部に発生する中心偏析の程度を鋳造中にオンラインで判定する方法に関する。   The present invention occurs at the center of a cast slab when a steel slab at the end of solidification having an unsolidified layer is gradually reduced and cast by a slab support roll at a reduction rate of about the solidification shrinkage. The present invention relates to a method for determining online the degree of central segregation during casting.
鋼の凝固過程では、炭素、燐、硫黄などの溶質元素は、凝固時の再分配により未凝固の液相側に濃化される。これがデンドライト樹間に形成されるミクロ偏析である。連続鋳造機により鋳造されつつある鋳片の凝固収縮や、連続鋳造機のロール間で発生する凝固シェルのバルジングなどによって、鋳片中心部に空隙が形成されたり負圧が生じたりすると、この部分に溶鋼が吸引されるが、凝固末期の未凝固層には十分な量の溶鋼が存在しないので、上記のミクロ偏析によって濃縮された溶鋼が流動し、鋳片中心部に集積して凝固する。このようにして形成された偏析スポットは、溶質元素の濃度が溶鋼の初期濃度に比べ格段に高濃度となっている。これを一般にマクロ偏析と呼び、その存在部位から、中心偏析と呼んでいる。   In the solidification process of steel, solute elements such as carbon, phosphorus and sulfur are concentrated on the unsolidified liquid phase side by redistribution during solidification. This is the microsegregation formed between dendrite trees. If a void is formed in the center of the slab or negative pressure occurs due to solidification shrinkage of the slab being cast by the continuous casting machine or bulging of the solidified shell that occurs between the rolls of the continuous casting machine, this part Although a sufficient amount of molten steel does not exist in the unsolidified layer at the end of solidification, the molten steel concentrated by the microsegregation flows and accumulates in the center of the slab and solidifies. In the segregation spot formed in this way, the concentration of the solute element is much higher than the initial concentration of the molten steel. This is generally called macrosegregation, and is called central segregation because of its existence site.
中心偏析は、鋼製品の品質を劣化させる。例えば、石油輸送用や天然ガス輸送用のラインパイプ材においては、サワーガスの作用により中心偏析を起点として水素誘起割れ(「HIC」ともいう)が発生する。また、飲料用の缶製品に用いられる深絞り材においては、成分の偏析により加工性に異方性が出現することもある。そのため、連続鋳造工程から圧延工程に至るまで、鋳片の中心偏析を低減する対策が多数提案されている。   Central segregation degrades the quality of steel products. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking (also referred to as “HIC”) occurs from the center segregation due to the action of sour gas. Further, in deep drawn materials used for beverage can products, anisotropy may appear in workability due to segregation of components. Therefore, many measures for reducing the center segregation of the slab have been proposed from the continuous casting process to the rolling process.
そのなかで、効果的に且つ安価に鋳片の中心偏析を低減する手段として、連続鋳造機内において、未凝固層を有する凝固末期の鋳片を鋳片支持ロールによって凝固収縮量程度の圧下速度で徐々に圧下しながら鋳造する方法(以下、「軽圧下」と呼ぶ)が提案されている(例えば特許文献1を参照)。   Among them, as a means for effectively and inexpensively reducing the center segregation of the slab, in the continuous casting machine, the slab at the end of solidification having an unsolidified layer is reduced by a slab support roll at a reduction speed of about the solidification shrinkage. A method of casting while gradually reducing (hereinafter referred to as “light reduction”) has been proposed (see, for example, Patent Document 1).
この軽圧下技術は、鋳造方向に並んだ複数対のロールを用い、凝固収縮量に見合った圧下速度で鋳片を徐々に圧下して未凝固層の体積を減少させ、鋳片中心部における空隙或いは負圧部の形成を防止すると同時に、デンドライト樹間に形成される濃化溶鋼の流動を防止し、これによって鋳片の中心偏析を軽減するという技術である。従って、軽圧下技術においては、一般的に、鋳片中心部の固相率の特定範囲を軽圧下帯の範囲内に制御することが行われている。ここで、軽圧下帯とは、鋳片に凝固収縮量に見合った量の圧下を付与する複数対のロール群のことである。   This light reduction technology uses multiple pairs of rolls aligned in the casting direction and gradually reduces the volume of the unsolidified layer by gradually reducing the slab at a reduction speed commensurate with the amount of solidification shrinkage. Or it is the technique of preventing the center segregation of a slab by preventing the flow of the concentrated molten steel formed between dendrite trees simultaneously by preventing formation of a negative pressure part. Therefore, in the light reduction technology, generally, a specific range of the solid phase ratio at the center of the slab is controlled within the range of the light reduction zone. Here, the light reduction belt is a group of a plurality of pairs of rolls that imparts a reduction in an amount corresponding to the amount of solidification shrinkage to the slab.
ところで、スラブ鋳片の凝固完了位置、即ち鋳片中心部の鋳造方向の固相率の推移は、鋳造条件によって刻々と変化する。鋳造速度や二次冷却条件はもとより、浸漬ノズルの詰まりによる溶鋼流動の変化や、冷却スプレーの詰まり状況によって変化し、且つ、時間によっても変動することが知られている。   By the way, the solidification completion position of the slab slab, that is, the transition of the solid fraction in the casting direction at the center of the slab, changes every moment depending on the casting conditions. It is known that not only the casting speed and secondary cooling conditions, but also changes in the flow of molten steel due to the clogging of the immersion nozzle, the clogging state of the cooling spray, and changes depending on the time.
凝固完了位置が変化すると、軽圧下帯における軽圧下量に変化が生じる場合がある。例えば、鋳造速度の急激な低下や二次冷却水の水温変動などにより、鋳片の幅中央部で全厚に渡って凝固が完了したり、鋳片短片側の凝固シェル厚が増大したりした場合には、これらの部位の圧下に対する変形抵抗が大きくなることから、未凝固層を有する他の部位に所要の圧下力を付与できなくなることがある。これは、一般的に、連続鋳造機の軽圧下装置は設備スペースや設備コストの制限から、完全凝固した鋳片を圧延するほどの耐荷重は有しておらず、鋳片短辺以外の幅方向の一部が完全凝固するなどして圧下による荷重が耐荷重以上になった場合には、設備保護のために皿バネ或いは油圧設定によって圧下ロールを逃がす構造となっているからである。   When the solidification completion position changes, the light reduction amount in the light reduction zone may change. For example, solidification was completed over the entire thickness at the center of the slab width due to a sudden decrease in casting speed or fluctuations in the temperature of the secondary cooling water, or the solidified shell thickness on the slab short piece side increased. In some cases, since the deformation resistance against the reduction of these parts increases, it may not be possible to apply a required reduction force to other parts having an unsolidified layer. This is because, generally, the light reduction device of a continuous casting machine does not have a load resistance enough to roll a completely solidified slab due to the limitation of equipment space and equipment cost, and the width other than the short side of the slab. This is because, when a part of the direction is completely solidified or the like, and the load due to the reduction becomes more than the withstand load, the structure is such that the reduction roll is released by a disc spring or hydraulic setting for protection of equipment.
このような場合は、実質的には軽圧下が行われず、鋳片の中心偏析が劣化する。また、鋳片の中心偏析は、軽圧下を実施しても必ずしも鋳造方向で一定ではなく、鋳造条件が大幅に変化した部位では目標水準を外れることも発生する。   In such a case, substantially no light reduction is performed, and the center segregation of the slab deteriorates. Further, the center segregation of the cast slab is not necessarily constant in the casting direction even when light reduction is performed, and it may occur that the target level is deviated from the site where the casting conditions are greatly changed.
従来、鋳片の中心偏析の程度を判定すべく、鋳片或いは圧延された鋼材から検査用の試料を採取し、マクロ組織試験、成分分析試験、シャルピー試験などを行ない、鋳片の中心偏析の程度を検査・判定していた。これらの試験方法はオフラインの検査方法であり、フィードバックに遅れる欠点があり、軽圧下鋳造であってもオンラインで鋳片の中心偏析の程度を判定する方法が求められていた。   Conventionally, in order to determine the degree of center segregation of a slab, a sample for inspection is taken from the slab or rolled steel, and subjected to a macro structure test, a component analysis test, a Charpy test, etc. I was inspecting and judging the degree. These test methods are off-line inspection methods and have the drawback of being delayed in feedback, and there has been a demand for a method for determining the degree of center segregation of a slab on-line even in light pressure casting.
尚、特許文献2には、1対以上のロールにより鋳片を圧下しつつ引き抜く溶融金属の連続鋳造法において、鋳造速度の減速に起因した偏析悪化鋳片であるか否かを鋳片速度が減速している間の鋳片の凝固時期により判定して偏析レベルに応じた分塊加熱条件を選択する連続鋳造法が開示されているが、特許文献2では、鋳造速度だけで中心偏析を判定しており、オンラインでの判定ではあるが、精度が低く、結局は鋳片のマクロ組織試験、成分分析試験などで中心偏析の程度を確認する必要がある。   In Patent Document 2, in the continuous casting method of molten metal that is drawn out while reducing the slab with one or more pairs of rolls, whether the slab speed is a segregation worsening slab caused by a reduction in the casting speed or not. Although a continuous casting method is disclosed in which a slab heating condition corresponding to the segregation level is selected by determining the solidification time of the slab while decelerating, Patent Document 2 determines center segregation only by the casting speed. Although it is an on-line determination, the accuracy is low, and eventually it is necessary to confirm the degree of central segregation in a slab macro structure test, component analysis test, and the like.
特開昭49−121738号公報JP 49-121738 A 特開平5−220556号公報JP-A-5-220556
本発明は上記事情に鑑みてなされたもので、その目的とするところは、未凝固層を有する凝固末期の鋼鋳片を軽圧下しながら鋳造するときに、実際に鋳片に付与される圧下量を把握することで、鋳造条件の変化が生じた場合であっても正確に鋳片の中心偏析の程度をオンラインで判定することのできる、連続鋳造鋳片の中心偏析判定方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to provide a reduction that is actually applied to a slab when casting a steel slab at the end of solidification having an unsolidified layer while lightly reducing it. To provide a method for determining the center segregation of a continuous cast slab, which can accurately determine the degree of center segregation of a slab on-line even if the casting conditions change by grasping the amount. It is.
上記課題を解決するための第1の発明に係る連続鋳造鋳片の中心偏析判定方法は、鋳造中の鋳片に圧下力を付与することの可能な複数本の圧下ロールからなる軽圧下帯を備えた連続鋳造機を用い、少なくとも鋳片の厚み中心部の固相率が0.4以下の時点から0.7以上になる時点まで、前記圧下ロールで凝固末期の鋳片を圧下しながら鋼鋳片を連続鋳造するにあたり、鋳片の厚み中心部の固相率が予め設定したfslからfshに至るまでの軽圧下帯における所要時間(Te)を計算によって求めるとともに、鋳片の厚み中心部の固相率がfslからfshに至るまでの軽圧下帯における圧下量(De)を実測し、計算によって求めた所要時間(Te)と実測して求めた圧下量(De)とから下記の(1)式に示す有効圧下速度(Re)を鋳片の断面毎に求め、求めた有効圧下速度(Re)に基づいて鋳片の中心偏析の程度を鋳造中にオンラインで判定することを特徴とする。
Re=De/Te…(1)
但し、(1)式において、Reは、有効圧下速度(mm/min)、Deは、実測して求めた、鋳片の厚み中心部の固相率がfslからfshに至るまでの軽圧下帯における圧下量(mm)、Teは、計算により求めた、鋳片の厚み中心部の固相率がfslからfshに至るまでの軽圧下帯における所要時間(min)である。また、fslは、有効圧下速度を求めるための軽圧下帯における鋳造方向2点間の上流側の位置の鋳片厚み中心部の固相率、fshは有効圧下速度を求めるための軽圧下帯における鋳造方向2点間の下流側の位置の鋳片厚み中心部の固相率である。
The center segregation determination method for a continuous cast slab according to the first invention for solving the above-described problem is a method of determining a light reduction belt comprising a plurality of reduction rolls capable of applying a reduction force to a slab during casting. Using the continuous casting machine provided, at least from the time when the solid phase ratio of the thickness center portion of the slab becomes 0.4 or more to the time when it becomes 0.7 or more, the steel while rolling down the slab at the end of solidification with the reduction roll In continuous casting of the slab, the required time (Te) in the light pressure zone from the solid state ratio of the center of the slab to the preset fsl to fsh is calculated, and the center of the slab thickness is calculated. Measure the reduction amount (De) in the light reduction zone from the solid phase ratio of fsl to fsh, and calculate the following (from the required time (Te) obtained by calculation and the reduction amount (De) obtained by measurement: 1) The effective reduction speed (Re) shown in the equation is the cross section of the slab. To seek, and judging on-line during casting the degree of center segregation of the slab on the basis of the effective pressure rate (Re) determined.
Re = De / Te (1)
However, in the formula (1), Re is an effective reduction speed (mm / min), De is a light reduction zone where the solid phase ratio at the center of the thickness of the slab obtained from measurement is fsl to fsh. The amount of reduction (mm) and Te in are the required time (min) in the light reduction zone until the solid phase ratio at the center of the thickness of the slab reaches from fsl to fsh. Further, fsl is the solid phase ratio at the center portion of the slab thickness at the upstream position between two points in the casting direction in the light reduction zone for obtaining the effective reduction speed, and fsh is in the light reduction zone for obtaining the effective reduction speed. It is a solid phase rate at the center portion of the slab thickness at a downstream position between two points in the casting direction.
第2の発明に係る連続鋳造鋳片の中心偏析判定方法は、第1の発明において、前記fslが0を超えて0.4以下であり、前記fshが0.7以上1.0未満であることを特徴とする。   In the center segregation determination method of the continuous cast slab according to the second invention, in the first invention, the fsl exceeds 0 and is 0.4 or less, and the fsh is 0.7 or more and less than 1.0. It is characterized by that.
第3の発明に係る連続鋳造鋳片の中心偏析判定方法は、第1または第2の発明において、鋳片の凝固完了位置をオンラインで検知できる凝固完了位置検知装置を用いて凝固完了位置の情報を取得し、取得した凝固完了位置の情報に合致するように、鋳片の厚み中心部の固相率がfslからfshに至るまでの所要時間(Te)を求めるための計算式を校正することを特徴とする。   The center segregation determination method of the continuous cast slab according to the third invention is the information on the solidification completion position using the solidification completion position detection device capable of detecting the solidification completion position of the slab online in the first or second invention. And calibrate the calculation formula to obtain the required time (Te) until the solid phase ratio at the thickness center of the slab reaches fsh to fsh so that it matches the acquired solidification completion position information It is characterized by.
本発明によれば、連続鋳造鋳片を製造する際に、軽圧下による実際の鋳片圧下状況に基づいて鋳片の中心偏析程度をオンラインで判定するので、鋳造中に操業変化に伴って軽圧下条件が変化して鋳片の中心偏析が悪化しても、中心偏析の悪化している部分を見逃すことがなく、確実且つ精度良く中心偏析を判定することが実現される。また、この判定結果に基づいて鋳片及び当該鋳片から圧延される鋼材における検査位置を特定することが可能となり、検査する個数も大幅に削減でき、検査コストも大幅に削減される同時に、安定した品質の鋼製品を供給することが達成され、工業上有益な効果がもたらされる。   According to the present invention, when the continuous cast slab is manufactured, the center segregation degree of the slab is determined online based on the actual slab reduction condition due to light reduction. Even if the rolling condition is changed and the center segregation of the slab is deteriorated, it is possible to reliably and accurately determine the center segregation without missing a portion where the center segregation is deteriorated. In addition, it is possible to specify the inspection position in the slab and the steel material rolled from the slab based on the determination result, the number of inspections can be greatly reduced, and the inspection cost is greatly reduced. Supply of high quality steel products is achieved, which has an industrially beneficial effect.
有効圧下速度(Re)と鋳片の中心偏析の偏析度との関係を示す図である。It is a figure which shows the relationship between the effective reduction speed (Re) and the segregation degree of the center segregation of a slab. 本発明を実施した垂直曲げ型のスラブ連続鋳造機の側面概要図である。It is a side surface schematic diagram of the vertical bending type slab continuous casting machine which implemented the present invention. オンラインで求めた有効圧下速度(Re)の鋳片鋳込み長さ方向の変動を示す図である。It is a figure which shows the fluctuation | variation of the slab casting length direction of the effective reduction speed (Re) calculated | required online.
以下、本発明を具体的に説明する。先ず、本発明に至った経緯について説明する。   Hereinafter, the present invention will be specifically described. First, the background to the present invention will be described.
本発明者らは、軽圧下条件と中心偏析の程度との関係を調査すべく、鋳造方向長さが14mの軽圧下帯を有する垂直曲げ型スラブ連続鋳造機を用い、軽圧下帯での鋳片の圧下条件を種々変更する試験を実施し、そして、得られた鋳片から試料を採取し、鋳片の中心偏析の程度を調査した。尚、軽圧下帯とは、鋳片に圧下力を付与するべく、鋳片を挟んで対向する鋳片支持ロール間の間隔(「ロール間隔」と呼ぶ)が鋳造方向下流に向かって順次狭くなるように設定された鋳片支持ロール群であり、鋳造方向下流に向かって順次狭くなるように設定されたロール間隔の状態を「ロール勾配」或いは「圧下勾配」と称している。ロール勾配は、通常、1mあたりのロール間隔絞り込み量(mm/m)で表示される。   In order to investigate the relationship between the light reduction condition and the degree of center segregation, the present inventors used a vertical bending slab continuous casting machine having a light reduction zone with a casting direction length of 14 m and cast in the light reduction zone. Tests were performed with various changes in the rolling conditions of the slabs, and samples were taken from the resulting slabs to investigate the degree of center segregation of the slabs. In addition, the light reduction belt means that the interval between the slab support rolls facing each other across the slab (referred to as “roll interval”) is gradually narrowed toward the downstream in the casting direction in order to apply a reduction force to the slab. The slab support roll group set as described above, and the state of the roll interval set so as to become narrower sequentially toward the downstream in the casting direction is referred to as “roll gradient” or “rolling gradient”. The roll gradient is usually displayed as a roll interval narrowing amount (mm / m) per 1 m.
その結果、中心偏析は、凝固末期の未凝固領域において凝固収縮などに伴う未凝固溶鋼の流動を起因としてデンドライト樹間のミクロ偏析した濃化溶鋼が凝固前面に排出されることにより生成することから、鋳片の中心偏析に影響を及ぼしうる範囲の鋳片中心部の凝固状態、即ち、鋳片厚み中心部の固相率が中心偏析に影響を及ぼしうる範囲であるfslからfshの範囲において、実際に鋳片に付与された軽圧下帯での圧下速度を求めることで、中心偏析を評価できるとの知見を得た。   As a result, the center segregation is generated by the discharge of concentrated segregated molten steel between dendritic trees to the solidification front due to the flow of unsolidified molten steel accompanying solidification shrinkage in the unsolidified region at the end of solidification. In the range of fsl to fsh, where the solidification state of the slab center in a range that can affect the center segregation of the slab, that is, the solid phase ratio of the center of the slab thickness can affect the center segregation, It was found that the center segregation can be evaluated by obtaining the rolling speed at the light rolling zone actually applied to the slab.
そこで、厚み250mm、幅1950mmのスラブ鋳片を、鋳型内にモールドパウダーを添加しつつ、1.4m/minの鋳造速度で連続鋳造する際に、鋳型内溶鋼湯面から15〜29mの範囲に離れた位置に設置された、複数のセグメントからなる軽圧下帯において、鋳片の圧下速度が0.7〜1.4mm/minとなるように実験毎に軽圧下帯のロール配置を調整して鋳片を鋳造した。   Therefore, when continuously casting a slab slab having a thickness of 250 mm and a width of 1950 mm at a casting speed of 1.4 m / min while adding mold powder into the mold, the slab slab is within a range of 15 to 29 m from the molten steel surface in the mold. Adjust the roll arrangement of the light reduction belt for each experiment so that the reduction speed of the slab is 0.7 to 1.4 mm / min in the light reduction belt consisting of multiple segments installed at a distant position. A slab was cast.
二次冷却水の比水量を1.48L/kg、タンディッシュ内での溶鋼過熱度を37〜39℃に調整し、化学成分が、C:0.05質量%(以下、「%」と記す)、Si:0.3%、Mn:1.3%、P:0.005%、S:0.005%、Ti:0.01%、sol.Al:0.04%、Nb:0.04%、Cu;0.15%である溶鋼を鋳造した。尚、比水量とは、鋳造される鋳片1kgあたりの冷却水量(リットル)を表す数値である。   The specific water amount of the secondary cooling water is 1.48 L / kg, the superheat degree of the molten steel in the tundish is adjusted to 37 to 39 ° C., and the chemical component is C: 0.05 mass% (hereinafter referred to as “%”). ), Si: 0.3%, Mn: 1.3%, P: 0.005%, S: 0.005%, Ti: 0.01%, sol. Al: 0.04%, Nb: 0.00. A molten steel of 04%, Cu; 0.15% was cast. The specific water amount is a numerical value representing the cooling water amount (liter) per 1 kg of cast slab.
また、その際に、軽圧下帯を構成するセグメントでの実際の軽圧下量を測定するために、それぞれのセグメントの上面側のセグメントの上端及び下端の4隅に差動トランスを設置し、これらの差動トランス(4隅に配置した差動トランスを「ロール間隔測定装置」と呼ぶ)によって軽圧下時のセグメントの変位を測定した。これは、先に述べたように鋳造の初期または末期の非定常鋳造域や鋳造速度の急減速時には、鋳片全体の表面温度が定常鋳造域に比較して低下し、鋳片の長辺或いは短辺の凝固シェル厚の増大により、鋳片全体の変形抵抗が大きくなり、セグメントの耐荷重以上の荷重がかかり、セグメントそのものがロール間隔を設定値よりも大きくするように開放移動することで、セグメントそのものの変位が観測されるからである。尚、試験した軽圧下帯のセグメントは、下面側のセグメントが固定されており、荷重によって上面側のセグメントが開放するように構成されている。   At that time, in order to measure the actual amount of light reduction in the segments constituting the light pressure lower belt, differential transformers are installed at the upper and lower corners of the segment on the upper surface side of each segment. The displacement of the segment under light pressure was measured with a differential transformer (differential transformers arranged at four corners are called “roll interval measuring device”). As described above, this is because the surface temperature of the entire slab decreases compared to the steady casting region at the initial or final stage of the unsteady casting region or when the casting speed is suddenly reduced. By increasing the thickness of the solidified shell on the short side, the deformation resistance of the entire slab increases, a load that exceeds the load resistance of the segment is applied, and the segment itself moves open to make the roll interval larger than the set value, This is because the displacement of the segment itself is observed. In addition, the segment of the tested light pressure lower belt is configured such that the lower surface side segment is fixed and the upper surface side segment is opened by a load.
鋳片からの中心偏析調査用試料の採取位置は、鋳型に注入された部位が凝固完了するまで、鋳造速度の変動、二次冷却水量の変動、鋳片表面温度の変動、鋳型内湯面の変動などの鋳造条件の変動が認められなかった部位で、且つ、上記のセグメント変位の測定結果から設定通りの圧下量が付与された部位に厳選し、中心偏析に及ぼす外乱要因を極力排除した。鋳片の中心偏析の偏析度は、鋳片の厚み方向1/4(=鋳片厚み/4)位置の炭素分析値を偏析の無い基準値(CO)とし、鋳片の幅方向の1/2(=鋳片幅/2)位置及び1/4(=鋳片幅/4)位置から鋳造方向の縦断面試料を切り出し、この断面から鋳片厚み方向に1mmずつスライス加工して分析試料を採取し、この分析試料での最も高い炭素分析値(Ci)と前記基準値(CO)との比(Ci/CO)を偏析度として評価した。偏析度が1.0に近いほど偏析は少ないことを意味し、偏析度が1.0よりも大きい場合が正偏析、1.0よりも小さい場合が負偏析となる。 The sampling position of the center segregation investigation sample from the slab is the fluctuation of the casting speed, the fluctuation of the secondary cooling water, the fluctuation of the slab surface temperature, the fluctuation of the molten metal surface in the mold until the portion injected into the mold is solidified. The site where no change in casting conditions such as the above was observed, and the site where the set amount of reduction was applied from the segment displacement measurement results were carefully selected to eliminate as much as possible the disturbance factors affecting the center segregation. The segregation degree of the center segregation of the slab is defined as 1 in the width direction of the slab, with the carbon analysis value at the position of the slab thickness direction 1/4 (= slab thickness / 4) as the reference value (C O ) without segregation / 2 (= slab width / 2) position and 1/4 (= slab width / 4) position, cut out a longitudinal section sample in the casting direction, slice from this section in the slab thickness direction by 1 mm and analyze sample The ratio (C i / C O ) between the highest carbon analysis value (C i ) and the reference value (C O ) in this analytical sample was evaluated as the degree of segregation. The closer the segregation degree is to 1.0, the smaller the segregation is. The segregation degree is larger than 1.0 and the positive segregation is less than 1.0.
また、軽圧下時のセグメントの変位を考慮して、鋳片の実際の圧下速度(「有効圧下速度」と呼ぶ)を以下の様にして求めた。   In consideration of the segment displacement during light reduction, the actual reduction speed of the slab (referred to as “effective reduction speed”) was determined as follows.
先ず、軽圧下帯において、有効圧下速度を求めるための軽圧下帯における鋳造方向2点間の上流側の位置の鋳片厚み中心部の固相率をfsl、下流側の位置の鋳片厚み中心部の固相率をfshとし、鋳片の厚み中心部の固相率が任意のfslとなる位置の鋳型内湯面からの距離、及び任意のfshとなる位置の鋳型内湯面からの距離を伝熱凝固計算により求める。中心固相率がfslとなる位置及びfshとなる位置は、鋳造速度や二次冷却条件などの鋳造条件を考慮した伝熱凝固計算によって求められる鋳片中心部の温度と、溶鋼成分による液相線及び固相線とを照らし合わせることで求めることができる。ここで、鋳片の厚み中心部の固相率がゼロとなる位置で最も下流側の位置が鋳片中心部の凝固開始位置に該当し、鋳片の厚み中心部の固相率が1.0となる位置で最も上流側の位置が凝固完了位置に該当する。従って、中心固相率fsl及びfshは任意ではあるが、必然的に0<fsl<fsh<1.0の条件を満足する必要がある。鋳片中心部の固相率がfslとなる位置及びfshとなる位置を定めることで、両者の鋳造方向の距離が求められ、この距離を移動するために要する時間が鋳造速度から求められる。本発明では、この距離を移動するために要する時間を所要時間(Te)と定義する。所要時間(Te)の単位は「min」である。   First, in the light reduction zone, the solid fraction of the center of the slab thickness at the upstream position between the two casting directions in the light reduction zone for obtaining the effective reduction speed is fsl, and the thickness center of the slab at the downstream position. The solid phase ratio of the part is fsh, and the distance from the molten metal surface in the mold at the position where the solid phase ratio at the center of the slab thickness is arbitrary fsl and the distance from the molten metal surface in the mold at the position where arbitrary fsh is transmitted. Obtained by thermal solidification calculation. The position at which the central solid fraction is fsl and the position at which fsh are determined are the temperature of the slab center determined by heat transfer solidification calculation considering the casting conditions such as casting speed and secondary cooling conditions, and the liquid phase due to the molten steel components. It can be determined by comparing the line and the solid phase line. Here, the most downstream position corresponds to the solidification start position at the center of the slab at the position where the solid phase ratio at the center of the slab becomes zero, and the solid ratio at the center of the thickness of the slab is 1. The position on the most upstream side corresponding to the position corresponding to 0 corresponds to the solidification completion position. Therefore, although the central solid phase ratios fsl and fsh are arbitrary, it is inevitably necessary to satisfy the condition of 0 <fsl <fsh <1.0. By determining the position where the solid phase ratio at the center of the slab becomes fsl and the position where it becomes fsh, the distance in the casting direction of both is determined, and the time required to move this distance is determined from the casting speed. In the present invention, the time required to move this distance is defined as the required time (Te). The unit of the required time (Te) is “min”.
次に、鋳片の厚み中心部の固相率がfslとなる位置からfshとなる位置までの軽圧下帯における圧下ロールの実際のロール間隔絞込み量を、前記ロール間隔測定装置によって求める。つまり、鋳片の厚み中心部の固相率がfslとなる位置での圧下ロールのロール間隔と、鋳片の厚み中心部の固相率がfshとなる位置での圧下ロールのロール間隔との差が、これら2点間のロール間隔絞込み量となる。この差が、鋳片の厚み中心部の固相率がfslとなる位置から固相率がfshとなる位置までの実際の圧下量である。本発明では、この実測した圧下量を圧下量(De)と定義する。圧下量(De)の単位はmmである。この場合、上面側のセグメント自体は変形しないものとして、ロール間隔測定装置による測定値からロール間隔を幾何学的に求める。   Next, the actual roll interval narrowing amount of the reduction roll in the light reduction zone from the position where the solid phase ratio at the thickness center of the slab becomes fsl to the position where it becomes fsh is obtained by the roll interval measuring device. That is, the roll interval of the reduction roll at the position where the solid phase ratio at the thickness center portion of the slab is fsl and the roll interval of the reduction roll at the position where the solid phase ratio of the thickness center portion of the slab is fsh. The difference is the amount of narrowing the roll interval between these two points. This difference is the actual reduction amount from the position where the solid phase ratio at the thickness center of the slab becomes fsl to the position where the solid phase ratio becomes fsh. In the present invention, the actually measured reduction amount is defined as a reduction amount (De). The unit of the reduction amount (De) is mm. In this case, it is assumed that the segment on the upper surface side itself is not deformed, and the roll interval is obtained geometrically from the measured value by the roll interval measuring device.
そして、実測により求めた圧下量(De)を計算によって求めた所要時間(Te)で除算した、下記の(1)式に示す値を、有効圧下速度(Re)と定義した。有効圧下速度(Re)の単位は「mm/min」となる。
Re=De/Te…(1)
有効圧下速度(Re)が実際に鋳片に付与された圧下量に相当する。
And the value shown to the following (1) formula which divided | segmented the amount of reduction (De) calculated | required by measurement by the required time (Te) calculated | required was defined as the effective reduction speed (Re). The unit of the effective rolling speed (Re) is “mm / min”.
Re = De / Te (1)
The effective reduction speed (Re) corresponds to the reduction amount actually applied to the slab.
図1に、固相率fsl=0.3、fsh=0.7としたときの、有効圧下速度(Re)と鋳片中心偏析の偏析度との関係を示す。図1に示すように、上記で導出した有効圧下速度(Re)と偏析度とには良い相関が認められ、有効圧下速度(Re)をおよそ0.9mm/min以上とすれば、偏析度(Ci/CO)は0.9〜1.2の範囲であり、中心偏析を有効に低減できることが分かった。 FIG. 1 shows the relationship between the effective reduction speed (Re) and the segregation degree of the slab center segregation when the solid phase ratio is fsl = 0.3 and fsh = 0.7. As shown in FIG. 1, there is a good correlation between the effective rolling speed (Re) derived above and the segregation degree. When the effective rolling speed (Re) is about 0.9 mm / min or more, the segregation degree ( C i / C O ) is in the range of 0.9 to 1.2, and it has been found that center segregation can be effectively reduced.
鋳片に軽圧下を施して中心偏析を効率的に軽減するためには、少なくとも鋳片の厚み中心部の固相率が0.4以下の時点から0.7以上になる時点まで、圧下ロールで凝固末期の鋳片を圧下する必要がある。これは、鋳片厚み中心部の固相率が0.4を越えてから軽圧下を開始しても、それ以前に濃化溶鋼の流動が発生する、つまり中心偏析が発生する可能性があり、軽圧下の効果を十分に発揮することができず、一方、濃化溶鋼の流動は、固相率が0.7程度まで発生する可能性があり、それよりも早期に軽圧下を停止してしまうと、濃化溶鋼の流動が発生し、これにより中心偏析が発生して、軽圧下の効果を十分に発揮することができないからである。換言すれば、鋳片厚み中心部の固相率が0.4以下から0.7以上となるまで軽圧下を付与することで、鋳片の中心偏析を効率的に軽減することができる。   In order to efficiently reduce the center segregation by lightly reducing the slab, the reduction roll is at least from the time when the solid phase ratio in the central part of the thickness of the slab is 0.4 or less to 0.7 or more. It is necessary to reduce the slab at the end of solidification. This is because even if light reduction starts after the solid phase ratio at the center of the slab thickness exceeds 0.4, the flow of concentrated molten steel may occur before that, that is, center segregation may occur. On the other hand, the flow of the concentrated molten steel may occur until the solid phase ratio reaches about 0.7, and the light reduction is stopped earlier than that. If this occurs, the flow of the concentrated molten steel occurs, which causes central segregation, and the effect of light reduction cannot be fully exhibited. In other words, the center segregation of the slab can be efficiently reduced by applying light reduction until the solid phase ratio at the center of the slab thickness is 0.4 or less to 0.7 or more.
これに合わせて、固相率fslは0を超えて0.4以下とし、固相率fshは0.7以上1.0未満とすることが好ましい。このようにすることで、中心偏析を軽減する上で軽圧下を必要とする固相率の範囲の圧下速度が把握され、確実に中心偏析を評価可能となる。当然ではあるが、固相率fslが0.4を越え、且つ、固相率fshが0.7未満であっても構わない。   In accordance with this, the solid phase rate fsl is preferably greater than 0 and not greater than 0.4, and the solid phase rate fsh is preferably not less than 0.7 and less than 1.0. By doing so, the reduction speed in the range of the solid phase ratio that requires light reduction to reduce the center segregation is grasped, and the center segregation can be reliably evaluated. Of course, the solid phase ratio fsl may exceed 0.4 and the solid phase ratio fsh may be less than 0.7.
本発明は上記知見に基づいてなされたものであり、鋳造中に、計算によって求めた所要時間(Te)と実測して求めた圧下量(De)とから、上記の(1)式に示す有効圧下速度(Re)を鋳片の断面毎に求め、求めた有効圧下速度(Re)に基づいて鋳片の中心偏析の程度を鋳造中にオンラインで判定することを特徴とする。有効圧下速度(Re)が0.9mm/min以上であれば、中心偏析が軽微であると判定する。   The present invention has been made on the basis of the above knowledge, and the effective time shown in the above formula (1) from the required time (Te) obtained by calculation and the reduction amount (De) obtained by actual measurement during casting. The reduction speed (Re) is obtained for each cross section of the slab, and the degree of center segregation of the slab is determined online during casting based on the obtained effective reduction speed (Re). If the effective reduction speed (Re) is 0.9 mm / min or more, it is determined that the center segregation is slight.
尚、有効圧下速度(Re)の上限値は1.5mm/minとすればよい。圧下速度が1.5mm/minを超えると、濃化溶鋼が鋳造方向とは逆方向に絞り出され、鋳片中心部には負偏析が生成されることから好ましくない。有効圧下速度(Re)は軽圧下帯のロール勾配(mm/m)によって決まる圧下速度よりも小さくなることから、軽圧下帯のロール勾配の調整によって有効圧下速度(Re)の上限値を制御することができる。圧下速度(mm/min)は、軽圧下帯でのロール勾配(mm/m)と鋳造速度(m/min)との積で求めることができる。   The upper limit value of the effective reduction speed (Re) may be 1.5 mm / min. When the rolling speed exceeds 1.5 mm / min, the concentrated molten steel is squeezed in the direction opposite to the casting direction, and negative segregation is generated at the center of the slab, which is not preferable. Since the effective reduction speed (Re) is smaller than the reduction speed determined by the roll slope (mm / m) of the light reduction belt, the upper limit value of the effective reduction speed (Re) is controlled by adjusting the roll slope of the light reduction belt. be able to. The reduction speed (mm / min) can be determined by the product of the roll gradient (mm / m) and the casting speed (m / min) in the light reduction zone.
次に、本発明の具体的な実施方法を、図面を参照して説明する。図2は、本発明を実施した垂直曲げ型のスラブ連続鋳造機の側面概要図である。   Next, a specific implementation method of the present invention will be described with reference to the drawings. FIG. 2 is a schematic side view of a vertical bending slab continuous casting machine embodying the present invention.
図2に示すように、スラブ連続鋳造機1には、溶鋼を注入して凝固させ、鋳片10の外殻形状を形成するための鋳型5が設置され、この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼9を鋳型5に中継供給するためのタンディッシュ2が設置されている。一方、鋳型5の下方には、サポートロール、ガイドロール及びピンチロールからなる複数対の鋳片支持ロール6が配置されている。鋳片支持ロール6が配置された範囲には、鋳造方向に隣り合う鋳片支持ロール6の間隙に水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズルが配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される二次冷却水によって鋳片10は引き抜かれながら冷却されるようになっている。   As shown in FIG. 2, the slab continuous casting machine 1 is provided with a mold 5 for injecting and solidifying molten steel to form the outer shell shape of the slab 10, and at a predetermined position above the mold 5. A tundish 2 for relaying and supplying molten steel 9 supplied from a ladle (not shown) to the mold 5 is installed. On the other hand, a plurality of pairs of slab support rolls 6 including a support roll, a guide roll, and a pinch roll are arranged below the mold 5. In the range in which the slab support roll 6 is disposed, a secondary cooling zone in which a spray nozzle such as a water spray nozzle or an air mist spray nozzle is disposed in the gap between the slab support rolls 6 adjacent in the casting direction is configured. The slab 10 is cooled while being drawn out by the secondary cooling water sprayed from the spray nozzle in the secondary cooling zone.
タンディッシュ2の底部には、溶鋼9の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、浸漬ノズル4が設置されている。また、鋳片支持ロール6の下流側には、鋳造された鋳片10を搬送するための複数の搬送ロール7が設置されており、この搬送ロール7の上方には、鋳造される鋳片10から所定の長さの鋳片10aを切断するための鋳片切断機8が配置されている。   A sliding nozzle 3 for adjusting the flow rate of the molten steel 9 is installed at the bottom of the tundish 2, and an immersion nozzle 4 is installed on the lower surface of the sliding nozzle 3. A plurality of transport rolls 7 for transporting the cast slab 10 are installed on the downstream side of the slab support roll 6. Above the transport roll 7, the cast slab 10 to be cast is provided. A slab cutting machine 8 for cutting a slab 10a having a predetermined length is disposed.
鋳片10の凝固完了位置13を挟んで鋳造方向の上流側及び下流側には、鋳片10を挟んで対向する鋳片支持ロール間の間隔、つまりロール間隔を鋳造方向下流に向かって順次狭くなるように設定された、複数対の鋳片支持ロール群から構成される軽圧下帯14が設置されている。軽圧下帯14では、その全域または一部選択した領域で、鋳片10に軽圧下を行うことが可能である。軽圧下帯14の鋳片支持ロール間にも鋳片10を冷却するためのスプレーノズルが配置されている。尚、軽圧下帯14の鋳片支持ロール6を、軽圧下を施すためのロールであることから「圧下ロール」とも称している。   On the upstream side and the downstream side in the casting direction across the solidification completion position 13 of the slab 10, the interval between the slab support rolls facing each other across the slab 10, that is, the roll interval is gradually narrowed toward the downstream in the casting direction. A light pressure belt 14 composed of a plurality of pairs of slab support rolls set to be installed is provided. In the light reduction belt 14, it is possible to perform light reduction on the slab 10 in the entire region or a partially selected region. A spray nozzle for cooling the slab 10 is also disposed between the slab support rolls of the light pressure lower belt 14. The slab support roll 6 of the light reduction belt 14 is also referred to as a “reduction roll” because it is a roll for light reduction.
図2に示す軽圧下帯14は、3対の圧下ロールを1組とするセグメント構造の圧下ロール群が鋳造方向に3基つながって構成されており、各セグメントの上面側セグメントには、上流側端部の両側及び下流側端部の両側の合計4箇所に圧下ロールのロール間隔を鋳造中に測定するためのロール間隔測定装置15が設置されている。このロール間隔測定装置15は、各セグメントの端部の位置を、差動トランスによって直接測定しており、測定値はロール間隔計測演算部20に入力され、ロール間隔計測演算部20は入力された測定値から各圧下ロールのロール間隔を算出している。図2では、ロール間隔測定装置15からロール間隔計測演算部20への送信を一部省略しているが、全てのロール間隔測定装置15がロール間隔計測演算部20と接続されている。   The light rolling belt 14 shown in FIG. 2 is configured by three rolling roll groups having a segment structure in which three pairs of rolling rolls are set as one set. The upper surface side segment of each segment has an upstream side. Roll interval measuring devices 15 for measuring the roll interval of the rolling roll during casting are installed at a total of four locations on both sides of the end portion and both ends of the downstream end portion. The roll interval measuring device 15 directly measures the position of the end of each segment with a differential transformer, and the measurement value is input to the roll interval measurement calculation unit 20 and the roll interval measurement calculation unit 20 is input. The roll interval of each rolling roll is calculated from the measured value. In FIG. 2, transmission from the roll interval measurement device 15 to the roll interval measurement calculation unit 20 is partially omitted, but all the roll interval measurement devices 15 are connected to the roll interval measurement calculation unit 20.
このスラブ連続鋳造機1においては、軽圧下帯14を構成する各セグメントの下面側セグメントは連続鋳造機の基礎(フレームまたは土台)に固定されていて、負荷が耐荷重を超えた場合には上面側セグメントが移動する構造になっており、上面側セグメントの変位を測定するのみで、ロール間隔が測定される。そして、各セグメントの端部の位置が測定されるので、各セグメントのそれぞれの圧下ロールのロール間隔が分かるようになっている。尚、このロール間隔測定装置15はセグメントに接触して測定しているが、本発明を実施する上で接触して測定する必要はなく、レーザー光などを利用して非接触で測定しても構わない。   In this slab continuous casting machine 1, the lower surface side segment of each segment constituting the light pressure lower belt 14 is fixed to the foundation (frame or foundation) of the continuous casting machine, and the upper surface when the load exceeds the load resistance. The side segment is structured to move, and the roll interval is measured only by measuring the displacement of the upper surface side segment. And since the position of the edge part of each segment is measured, the roll space | interval of each reduction roll of each segment can be known. Although the roll interval measuring device 15 is in contact with the segment for measurement, it is not necessary to perform the measurement in contact with the embodiment of the present invention, and it can be measured in a non-contact manner using a laser beam or the like. I do not care.
また、軽圧下帯14を構成するセグメントとセグメントとの間隙には、凝固完了位置検出用の超音波センサー16が設置され、超音波センサー16による測定データが、凝固完了位置計測演算部18に入力されている。即ち、超音波センサー16と凝固完了位置計測演算部18とで、鋳片10の凝固完了位置13を検出するための凝固完了位置検出装置を構成している。超音波センサー16は縦波超音波または横波超音波を送信し且つ送信した縦波超音波または横波超音波を受信するための装置であり、凝固完了位置計測演算部18は、縦波超音波または横波超音波の信号(パルス信号)を超音波センサー16に送信するとともに、超音波センサー16から入力される超音波センサー16での受信データを処理して、縦波超音波または横波超音波の鋳片10での透過時間から凝固完了位置13を算出して求める装置である。   An ultrasonic sensor 16 for detecting a coagulation completion position is installed in the gap between the segments constituting the light pressure lower belt 14, and measurement data from the ultrasonic sensor 16 is input to the coagulation completion position measurement calculation unit 18. Has been. That is, the ultrasonic sensor 16 and the solidification completion position measurement calculation unit 18 constitute a solidification completion position detection device for detecting the solidification completion position 13 of the slab 10. The ultrasonic sensor 16 is a device for transmitting longitudinal wave ultrasonic waves or transverse wave ultrasonic waves and receiving the transmitted longitudinal wave ultrasonic waves or transverse wave ultrasonic waves. A transverse wave ultrasonic signal (pulse signal) is transmitted to the ultrasonic sensor 16, and reception data at the ultrasonic sensor 16 input from the ultrasonic sensor 16 is processed to cast a longitudinal wave or a transverse wave ultrasonic wave. In this device, the solidification completion position 13 is calculated from the transmission time of the piece 10.
この凝固完了位置検出装置は、対向する1対の超音波センサー16を介して鋳片10に縦波超音波及び/または横波超音波を透過させ、縦波超音波及び横波超音波の透過速度が鋳片10の温度に依存することを利用して、透過時間から鋳片中心部の温度を求め、求めた鋳片中心部の温度から伝熱凝固計算などを利用して凝固完了位置13を検出する装置である。尚、横波超音波は鋳片10の内部に未凝固層12が存在する場合には、鋳片10を透過しないので、凝固完了位置13が超音波センサー16よりも上流側に存在するときのみ凝固完了位置13の検出が可能となる。   This solidification completion position detection apparatus transmits longitudinal wave ultrasonic waves and / or transverse wave ultrasonic waves to the slab 10 via a pair of opposed ultrasonic sensors 16, and the transmission speed of the longitudinal wave ultrasonic waves and the transverse wave ultrasonic waves is increased. Using the dependence on the temperature of the slab 10, the temperature at the center of the slab is obtained from the transmission time, and the solidification completion position 13 is detected from the obtained temperature at the center of the slab using heat transfer solidification calculation. It is a device to do. Note that the transverse wave ultrasonic wave does not pass through the slab 10 when the unsolidified layer 12 is present inside the slab 10, and therefore solidifies only when the solidification completion position 13 exists upstream of the ultrasonic sensor 16. The completion position 13 can be detected.
この超音波センサー16としては、縦波超音波センサーと横波超音波センサーとが一体的に組み合せられたセンサーを使用し、縦波超音波の鋳片10での透過時間から凝固完了位置13を求める算出式を、横波超音波センサーによる凝固完了位置13の検出結果によって校正する方式の凝固完了位置検出装置(特開2005−177860号公報を参照)を用いることが好ましい。   As the ultrasonic sensor 16, a sensor in which a longitudinal wave ultrasonic sensor and a transverse wave ultrasonic sensor are integrally combined is used, and the solidification completion position 13 is obtained from the transmission time of the longitudinal wave ultrasonic wave through the slab 10. It is preferable to use a coagulation completion position detection device (see JP 2005-177860 A) that calibrates the calculation formula based on the detection result of the coagulation completion position 13 by the transverse wave ultrasonic sensor.
凝固完了位置計測演算部18による凝固完了位置13の測定結果は、鋳片中心部固相率演算部19に入力されており、鋳片中心部固相率演算部19は、連続鋳造機用制御計算機(プロセスコンピューター)17から入力される鋳造条件(鋳片厚み、鋳造速度、二次冷却水の水量及び水温、タンディッシュ内溶鋼温度の過熱度、液相線温度、固相線温度、鋼種など)に基づいて伝熱凝固計算によって鋳片10の凝固状況を計算する際に、この計算結果が凝固完了位置計測演算部18から入力されたデータと合致するように、鋳片厚み中心部の鋳造方向における固相率を算出するための計算式を校正し、校正した計算式を用いて鋳片厚み中心部の固相率を算出する。鋳片中心部固相率演算部19は、連続鋳造機用制御計算機17から入力される鋳造条件だけからも鋳片厚み中心部の固相率を算出することはできるが、凝固完了位置計測演算部18からの凝固完了位置13の情報を加味することで、鋳片厚み中心部の固相率を正確に算出することが可能となる。   The measurement result of the solidification completion position 13 by the solidification completion position measurement calculation unit 18 is input to the slab center solid phase ratio calculation unit 19, and the slab center part solid phase ratio calculation unit 19 controls the continuous casting machine. Casting conditions (slab thickness, casting speed, amount and temperature of secondary cooling water, superheat of molten steel temperature in the tundish, liquidus temperature, solidus temperature, steel grade, etc. input from the computer (process computer) 17 ) To calculate the solidification state of the slab 10 by heat transfer solidification calculation, so that the calculation result matches the data input from the solidification completion position measurement calculation unit 18. The calculation formula for calculating the solid phase ratio in the direction is calibrated, and the solid phase ratio at the center of the slab thickness is calculated using the corrected calculation formula. The slab center portion solid phase rate calculation unit 19 can calculate the solid phase rate at the center portion of the slab thickness only from the casting conditions input from the control computer 17 for the continuous casting machine. By adding the information on the solidification completion position 13 from the portion 18, it is possible to accurately calculate the solid phase ratio at the center portion of the slab thickness.
鋳片中心部固相率演算部19は、算出したデータ(凝固データという)を有効圧下速度演算部21に送信する。また、有効圧下速度演算部21には、ロール間隔計測演算部20によって求められた各圧下ロールのロール間隔(ロール間隔データという)も入力される。有効圧下速度演算部21は、入力された凝固データに基づき、鋳片10の厚み中心部の固相率が予め設定したfslからfshに至るまでの軽圧下帯14における所要時間(Te)を計算によって求めるとともに、入力されたロール間隔データに基づき、鋳片10の厚み中心部の固相率がfslからfshに至るまでの軽圧下帯14における圧下量(De)を求める。そして、求めた所要時間(Te)及び圧下量(De)から、上記の(1)式によって有効圧下速度(Re)を求める。有効圧下速度演算部21は、求めた有効圧下速度(Re)を合否判定部22に送信する。合否判定部22は、鋼種のグレード、用途、製品板厚などを参照して、有効圧下速度(Re)から中心偏析の程度を鋳片の断面毎に判定する。例えば、高級グレードの場合は、有効圧下速度(Re)が0.9mm/min以上で中心偏析が良好、0.9mm/min未満で不良と判定する。   The slab center portion solid phase rate calculation unit 19 transmits the calculated data (referred to as solidification data) to the effective reduction speed calculation unit 21. In addition, the effective reduction speed calculation unit 21 also receives the roll interval (referred to as roll interval data) of each reduction roll obtained by the roll interval measurement calculation unit 20. Based on the input solidification data, the effective reduction speed calculation unit 21 calculates a required time (Te) in the light reduction zone 14 until the solid phase ratio at the center of the thickness of the slab 10 reaches a preset fsl to fsh. And a reduction amount (De) in the light reduction zone 14 until the solid phase ratio at the thickness center portion of the slab 10 reaches from fsl to fsh based on the input roll interval data. Then, from the required time (Te) and the amount of reduction (De), the effective reduction speed (Re) is obtained by the above equation (1). The effective reduction speed calculation unit 21 transmits the obtained effective reduction speed (Re) to the pass / fail determination unit 22. The acceptance / rejection determination unit 22 determines the degree of central segregation for each cross section of the slab from the effective rolling speed (Re) with reference to the grade of steel grade, application, product sheet thickness, and the like. For example, in the case of a high-grade grade, it is determined that the effective segregation speed (Re) is 0.9 mm / min or more and the center segregation is good, and less than 0.9 mm / min.
このようにして構成されるスラブ連続鋳造機1を用いて、以下のようにして溶鋼9の連続鋳造を実施する。   Using the slab continuous casting machine 1 configured as described above, the molten steel 9 is continuously cast as follows.
取鍋からタンディッシュ2に溶鋼9を注入してタンディッシュ2に所定量の溶鋼9を滞留させ、タンディッシュ2に滞留した溶鋼9を、浸漬ノズル4を介して鋳型5に注入する。鋳型5に注入された溶鋼9は、鋳型5で冷却されて凝固シェル11を形成し、外殻を凝固シェル11とし、内部に未凝固層12を有する鋳片10として、鋳片支持ロール6に支持されながらピンチロールによって鋳型5の下方に連続的に引き抜かれる。鋳片10は、鋳片支持ロール6を通過する間、二次冷却帯の二次冷却水で冷却され、凝固シェル11の厚みを増大し、且つ、軽圧下帯14では軽圧下されながら凝固完了位置13で内部までの凝固を完了する。凝固完了後の鋳片10は、鋳片切断機8によって切断され鋳片10aが製造される。この場合、少なくとも鋳片中心部の固相率が0.4以下の或る値から0.7以上の或る値までの範囲が軽圧下帯14の設置範囲内になるように伝熱凝固計算などの手法を利用して鋳造速度を設定する。   The molten steel 9 is poured from the ladle into the tundish 2 to retain a predetermined amount of molten steel 9 in the tundish 2, and the molten steel 9 retained in the tundish 2 is poured into the mold 5 through the immersion nozzle 4. The molten steel 9 injected into the mold 5 is cooled by the mold 5 to form a solidified shell 11, the outer shell is the solidified shell 11, and the slab 10 having an unsolidified layer 12 is formed on the slab support roll 6. While being supported, it is continuously pulled out below the mold 5 by a pinch roll. The slab 10 is cooled by the secondary cooling water in the secondary cooling zone while passing through the slab support roll 6, thereby increasing the thickness of the solidified shell 11, and solidification is completed while being lightly reduced in the light pressure lower zone 14. At position 13, solidification to the inside is completed. The slab 10 after solidification is cut by the slab cutting machine 8 to produce a slab 10a. In this case, the heat transfer solidification calculation is performed so that at least the range of the solid phase ratio at the center of the slab from a certain value of 0.4 or less to a certain value of 0.7 or more falls within the installation range of the light pressure lower belt 14 The casting speed is set using a method such as
鋳造中に、鋳片中心部固相率演算部19は、数秒毎ないし数十秒毎に鋳片厚み中心部の鋳造方向における固相率を算出し、算出したデータを有効圧下速度演算部21に送信する。また、ロール間隔計測演算部20は、同様に、数秒毎ないし数十秒毎に各圧下ロールのロール間隔を有効圧下速度演算部21に送信する。有効圧下速度演算部21は、鋳片中心部固相率演算部19及びロール間隔計測演算部20から入力されるデータに基づき、(1)式によって有効圧下速度(Re)を算出する。そして、有効圧下速度演算部21は、求めた有効圧下速度(Re)を合否判定部22に送信する。   During casting, the slab center portion solid phase rate calculation unit 19 calculates the solid phase rate in the casting direction of the slab thickness center portion every few seconds to every tens of seconds, and the calculated data is used as the effective reduction speed calculation unit 21. Send to. Similarly, the roll interval measurement calculation unit 20 transmits the roll interval of each reduction roll to the effective reduction speed calculation unit 21 every few seconds to every several tens of seconds. The effective reduction speed calculation unit 21 calculates the effective reduction speed (Re) by the equation (1) based on data input from the slab center part solid phase ratio calculation unit 19 and the roll interval measurement calculation unit 20. Then, the effective reduction speed calculation unit 21 transmits the obtained effective reduction speed (Re) to the pass / fail determination unit 22.
合否判定部22は、入力される有効圧下速度(Re)に基づいて、予め設定した基準と照合して合否を判定し、不合格の鋳片は、向け先変更、中心偏析調査、屑化処理などの処置を実施する。   The acceptance / rejection determination unit 22 determines acceptance / rejection based on the input effective reduction speed (Re) by comparing with a preset reference, and rejected slabs are changed in destination, center segregation investigation, scrapping treatment Implement measures such as
以上説明したように、本発明によれば、連続鋳造鋳片を製造する際に、軽圧下による実際の鋳片圧下状況に基づいて鋳片の中心偏析程度をオンラインで判定するので、操業変化に伴って鋳造中に鋳片の中心偏析が変化しても、中心偏析の悪化している部分を見逃すことがなく、確実且つ精度良く中心偏析を判定することが実現される。   As described above, according to the present invention, when producing a continuous cast slab, the degree of center segregation of the slab is determined online based on the actual slab reduction situation due to light reduction. Accordingly, even if the center segregation of the slab changes during casting, it is possible to reliably and accurately determine the center segregation without missing a portion where the center segregation has deteriorated.
鋳型内溶鋼湯面から15〜29mの範囲に設置された、長さが14mの軽圧下帯を有する垂直曲げ型スラブ連続鋳造機を用い、前記軽圧下帯における圧下速度が1.2mm/minとなるようにロール勾配を調整してスラブ鋳片を鋳造した。   Using a vertical bending type slab continuous casting machine having a light pressure lower belt having a length of 14 m installed in a range of 15 to 29 m from the molten steel surface in the mold, the reduction speed in the light pressure lower belt is 1.2 mm / min. The slab slab was cast by adjusting the roll gradient so that
化学成分が、C:0.05%、Si:0.3%、Mn:1.3%、P:0.005%、S:0.005%、Ti:0.01%、sol.Al:0.04%、Nb:0.04%、Cu;0.15%である溶鋼を、1.4m/分の鋳造速度で、幅1950mm、厚み250mmの鋳片に鋳造した。タンディッシュ内の溶鋼過熱度は35〜48℃、二次冷却水量は比水量で1.48L/kgとした。また、1チャージ250トンの溶鋼を2チャージ続けて連続鋳造した。   Chemical components are C: 0.05%, Si: 0.3%, Mn: 1.3%, P: 0.005%, S: 0.005%, Ti: 0.01%, sol.Al: Molten steel of 0.04%, Nb: 0.04%, Cu; 0.15% was cast into a slab having a width of 1950 mm and a thickness of 250 mm at a casting speed of 1.4 m / min. The degree of superheated molten steel in the tundish was 35 to 48 ° C., and the amount of secondary cooling water was 1.48 L / kg in terms of specific water. In addition, 250 tons of molten steel was continuously cast for 2 charges.
図3に、固相率fslを0.3、fshを0.7としてオンラインで求めた有効圧下速度(Re)の鋳片鋳込み長さ方向の変動を示す。図3から明らかなように、鋳造中において、有効圧下速度(Re)の明瞭な変化が認められた。鋳造初期のAの領域は、鋳造開示時の過冷却鋳片が軽圧下帯を通過したために、セグメントへの負荷が過荷重となってロール間隔が設定値より大きくなったことに起因する部分であった。また、鋳造長100m付近のBの領域での有効圧下速度(Re)の急減部は、2チャージ目の鋳込み終了時に鋳造速度を減速してトップ処理(鋳型内溶鋼湯面に金物を投入)した時に軽圧下帯内に存在したために、該当断面の中心固相率が0.3から0.7に上昇して実質的な圧下が付与されなかった部位であった。   FIG. 3 shows fluctuations in the cast casting length direction of the effective reduction speed (Re) obtained on-line when the solid fraction fsl is 0.3 and fsh is 0.7. As is clear from FIG. 3, a clear change in effective rolling speed (Re) was observed during casting. The area of A at the beginning of casting is a part caused by the fact that the supercooled slab at the time of casting disclosure passed through the light pressure zone, the load on the segment was overloaded and the roll interval was larger than the set value. there were. In addition, the effective reduction speed (Re) suddenly decreased in the area B near the casting length of 100 m, when the second charge casting was finished, the casting speed was reduced and top treatment was performed (injecting metal into the molten steel surface in the mold). Occasionally, it was present in the light pressure zone, so that the central solid fraction of the cross section increased from 0.3 to 0.7, and no substantial reduction was applied.
A領域及びB領域から鋳片試料を採取し、中心偏析を調査した結果、図1に示す、有効圧下速度と偏析度との関係と矛盾しない結果であった。   As a result of collecting slab samples from the A region and the B region and investigating the center segregation, the result was consistent with the relationship between the effective rolling speed and the segregation degree shown in FIG.
このように、本発明によれば、オフラインでの偏析調査を伴うことなく、オンラインで中心偏析を判定することができ、検査コストも大幅に削減される同時に、安定した品質の鋼製品を供給することが達成され、工業上有益な効果がもたらされる。   As described above, according to the present invention, it is possible to determine the center segregation online without involving an offline segregation investigation, and to greatly reduce the inspection cost, and at the same time, supply a stable quality steel product. Is achieved with industrially beneficial effects.
1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 鋳片支持ロール
7 搬送ロール
8 鋳片切断機
9 溶鋼
10 鋳片
11 凝固シェル
12 未凝固層
13 凝固完了位置
14 軽圧下帯
15 ロール間隔測定装置
16 超音波センサー
17 連続鋳造機用制御計算機
18 凝固完了位置計測演算部
19 鋳片中心部固相率演算部
20 ロール間隔計測演算部
21 有効圧下速度演算部
22 合否判定部
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Casting piece support roll 7 Conveying roll 8 Cast piece cutting machine 9 Molten steel 10 Cast piece 11 Solidified shell 12 Unsolidified layer 13 Solidification completion position 14 Light pressure lower belt 15 Roll interval measuring device 16 Ultrasonic sensor 17 Control computer for continuous casting machine 18 Solidification completion position measurement calculation unit 19 Slab center solid phase ratio calculation unit 20 Roll interval measurement calculation unit 21 Effective rolling speed calculation unit 22 Pass / fail judgment unit

Claims (3)

  1. 鋳造中の鋳片に圧下力を付与することの可能な複数本の圧下ロールからなる軽圧下帯を備えた連続鋳造機を用い、少なくとも鋳片の厚み中心部の固相率が0.4以下の時点から0.7以上になる時点まで、前記圧下ロールで凝固末期の鋳片を圧下しながら鋼鋳片を連続鋳造するにあたり、鋳片の厚み中心部の固相率が予め設定したfslからfshに至るまでの軽圧下帯における所要時間(Te)を計算によって求めるとともに、鋳片の厚み中心部の固相率がfslからfshに至るまでの軽圧下帯における圧下量(De)を実測し、計算によって求めた所要時間(Te)と実測して求めた圧下量(De)とから下記の(1)式に示す有効圧下速度(Re)を鋳片の断面毎に求め、求めた有効圧下速度(Re)に基づいて鋳片の中心偏析の程度を鋳造中にオンラインで判定することを特徴とする、連続鋳造鋳片の中心偏析判定方法。
    Re=De/Te…(1)
    但し、(1)式において、Reは、有効圧下速度(mm/min)、Deは、実測して求めた、鋳片の厚み中心部の固相率がfslからfshに至るまでの軽圧下帯における圧下量(mm)、Teは、計算により求めた、鋳片の厚み中心部の固相率がfslからfshに至るまでの軽圧下帯における所要時間(min)である。
    Using a continuous casting machine equipped with a light reduction belt composed of a plurality of reduction rolls capable of applying a reduction force to a slab during casting, a solid phase ratio of at least the thickness center of the slab is 0.4 or less From the time fsl to the time when the steel slab is continuously cast while the slab at the end of solidification is being squeezed with the above-described rolling roll from the point of time to 0.7 or more. The required time (Te) in the light pressure zone until fsh is obtained by calculation, and the amount of reduction (De) in the light pressure zone until the solid phase ratio at the center of the slab thickness reaches fsh to fsh is measured. The effective reduction speed (Re) shown in the following equation (1) is obtained for each cross section of the slab from the required time (Te) obtained by calculation and the reduction amount (De) obtained by actual measurement, and the obtained effective reduction is obtained. Casting the degree of center segregation of the slab based on the speed (Re) And judging online, center segregation judgment method of continuous casting slab.
    Re = De / Te (1)
    However, in the formula (1), Re is an effective reduction speed (mm / min), De is a light reduction zone where the solid phase ratio at the center of the thickness of the slab obtained from measurement is fsl to fsh. The amount of reduction (mm) and Te in are the required time (min) in the light reduction zone until the solid phase ratio at the center of the thickness of the slab reaches from fsl to fsh.
  2. 前記fslが0を超えて0.4以下であり、前記fshが0.7以上1.0未満であることを特徴とする、請求項1に記載の連続鋳造鋳片の中心偏析判定方法。   2. The center segregation determination method for a continuous cast slab according to claim 1, wherein the fsl is greater than 0 and less than or equal to 0.4 and the fsh is greater than or equal to 0.7 and less than 1.0.
  3. 鋳片の凝固完了位置をオンラインで検知できる凝固完了位置検知装置を用いて凝固完了位置の情報を取得し、取得した凝固完了位置の情報に合致するように、鋳片の厚み中心部の固相率がfslからfshに至るまでの所要時間(Te)を求めるための計算式を校正することを特徴とする、請求項1または請求項2に記載の連続鋳造鋳片の中心偏析判定方法。   Obtain solidification completion position information using a solidification completion position detection device that can detect the solidification completion position of the slab online, so that the solid phase at the center of the slab thickness matches the acquired solidification completion position information. The center segregation determination method for a continuous cast slab according to claim 1 or 2, wherein a calculation formula for obtaining a required time (Te) from the rate fsl to fsh is calibrated.
JP2010094559A 2010-04-16 2010-04-16 Center segregation judgment method for continuous cast slabs Active JP5413289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094559A JP5413289B2 (en) 2010-04-16 2010-04-16 Center segregation judgment method for continuous cast slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094559A JP5413289B2 (en) 2010-04-16 2010-04-16 Center segregation judgment method for continuous cast slabs

Publications (2)

Publication Number Publication Date
JP2011224583A JP2011224583A (en) 2011-11-10
JP5413289B2 true JP5413289B2 (en) 2014-02-12

Family

ID=45040619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094559A Active JP5413289B2 (en) 2010-04-16 2010-04-16 Center segregation judgment method for continuous cast slabs

Country Status (1)

Country Link
JP (1) JP5413289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000045A (en) * 2014-12-24 2017-08-01 杰富意钢铁株式会社 The continuous casing of steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5494350B2 (en) * 2010-08-24 2014-05-14 Jfeスチール株式会社 Continuous casting method for steel slabs
JP5790449B2 (en) * 2011-11-30 2015-10-07 Jfeスチール株式会社 Quality judgment method for continuous cast slabs
CN102601331B (en) * 2011-12-09 2014-01-29 秦皇岛首秦金属材料有限公司 Method for improving center segregation of extra thick slab with thickness of 400mm
CN104439143A (en) * 2014-11-13 2015-03-25 中冶连铸技术工程有限责任公司 Method and device for dynamically maintaining conicity of narrow face of slab crystallizer on line
CN105537543A (en) * 2016-01-28 2016-05-04 中国重型机械研究院股份公司 Closed-loop control system for taper of crystallizer
CN111360221B (en) * 2020-04-03 2021-05-25 中天钢铁集团有限公司 Method for eliminating central shrinkage cavity and controlling central segregation of high-carbon steel with 280mm x 320mm section

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550201A (en) * 1991-08-20 1993-03-02 Nippon Steel Corp Light rolling reduction method in continuous casting
JPH05212517A (en) * 1992-02-06 1993-08-24 Nippon Steel Corp Method for executing light rolling reduction in continuous casting
JP2964888B2 (en) * 1994-11-10 1999-10-18 住友金属工業株式会社 Continuous casting method
JP3511973B2 (en) * 2000-03-23 2004-03-29 Jfeスチール株式会社 Continuous casting method
JP2006051533A (en) * 2004-08-16 2006-02-23 Nippon Steel Corp Method for continuously casting steel
JP5245800B2 (en) * 2008-06-30 2013-07-24 Jfeスチール株式会社 Continuous casting mold and steel continuous casting method
JP5380968B2 (en) * 2008-09-18 2014-01-08 Jfeスチール株式会社 Manufacturing method of continuous cast slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000045A (en) * 2014-12-24 2017-08-01 杰富意钢铁株式会社 The continuous casing of steel
CN107000045B (en) * 2014-12-24 2019-04-26 杰富意钢铁株式会社 The continuous casing of steel
US10543527B2 (en) 2014-12-24 2020-01-28 Jfe Steel Corporation Continuous steel casting method

Also Published As

Publication number Publication date
JP2011224583A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5413289B2 (en) Center segregation judgment method for continuous cast slabs
JP5600929B2 (en) Manufacturing method of continuous cast slab
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
JP5522324B1 (en) Steel continuous casting method
JP4515419B2 (en) Continuous casting method of slab steel with little center segregation
JP5092642B2 (en) Steel continuous casting method and continuous casting machine
JP5098594B2 (en) Manufacturing method of continuous casting slab and continuous casting machine
JP5686062B2 (en) Steel continuous casting method
JP5712575B2 (en) Method for detecting and controlling solidification completion position of continuous cast slab
JP6115735B2 (en) Steel continuous casting method
JP4704980B2 (en) Center segregation improvement method of bearing steel in large section bloom continuous casting.
JP2001259812A (en) Method for evaluating and reducing center segregation in continuously cast slab
JP4704981B2 (en) Center segregation improvement method for machine structural steel in large section bloom continuous casting.
JP5962625B2 (en) Steel continuous casting method
JP5348406B2 (en) Steel continuous casting method
JP2008238257A (en) Method for producing continuously cast slab and continuous caster
JP5790449B2 (en) Quality judgment method for continuous cast slabs
JP2008238256A (en) Method for producing continuously cast slab and continuous caster
JP4704982B2 (en) Center segregation improvement method of spring steel in large section bloom continuous casting.
JP4890981B2 (en) Continuous casting method of slab steel with little center segregation
JP4241137B2 (en) Quality judgment method for continuous cast slabs
JP5494350B2 (en) Continuous casting method for steel slabs
JP5907334B2 (en) Continuous casting method for cast slabs
JP5811820B2 (en) Casting method of slab
JP5476959B2 (en) Continuous casting method under light pressure

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5413289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250